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Abstract : With the growing energy demand, fluctuations in oil prices have become a key driver of global markets, 

influenced by economic and political factors. Oil plays a crucial role in the modern economy. Since the 1973 oil crisis, 

price changes have contributed to rising inflation, prompting central banks to adjust their policies to maintain price 

stability. This research employs wavelet transforms to enhance oil revenue and inflation data by reducing noise. 

Additionally, the smoothing splines method is applied to achieve precise regression estimates. The results indicate that 

the most effective approach is the smoothing spline method with the soft threshold function and the visu threshold 

value, demonstrating its efficiency in improving forecasts and analysing economic data, ultimately aiding in 

maximising oil revenues and ensuring financial stability. 
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INTRODUCTION: To predict and understand patterns and causal relationships in data, regression analysis 

models and measures the relationship between variables. However, estimating nonparametric regression models 

presents several difficulties for researchers because these models need to be able to handle complicated data and 

nonlinear patterns. The development of precise and adaptable nonparametric estimate methods is required to meet 

these demands. In the fields of finance, medicine, engineering, etc., this is becoming increasingly significant. where 

accurate estimation is essential for trustworthy outcomes. Certain techniques, like polynomial regression, are 

insufficient for handling complicated and time-varying data. Consequently, the smoothing spline method, which is 

versatile and responsive to changes in contemporary data, is employed. Studies in this field have expanded due to the 

large increase in interest in non-parametric regression models, particularly with the quick development of applied 

statistical methods. The research of wavelet shrinkage approaches has demonstrated the efficacy of wavelet transform 

in model selection and estimation accuracy improvement, as well as in reducing noise in forecasts and enhancing 

estimate accuracy (Donohoe & Ian ,1994).  

In comparison to conventional techniques, wavelet transform has also been employed to eliminate noise from digital 

photographs, with notable improvements in image quality (Nason, 1995). To deal with missing data and estimate the 

unknown regression function, wavelet transform techniques enhanced nonparametric estimation techniques. 

Simulation trials demonstrated how well these techniques worked to increase the estimates' accuracy (Hamza, 2015). 

Both the wavelet transforms and the AdaBoost model have been used to increase the accuracy of short-range wind 

forecasts (Shao, 2017). The Wavelet transform increases the precision of medical diagnosis of degenerative changes in 

the spine, according to a study that used the Wavelet Gabor transform to analyze Magnetic Resonance Images (MRI)) 

Tao Yang,0202). Selecting the appropriate mother wavelet is crucial as it allows the majority of the signal's energy to 

be concentrated in a small number of wavelet coefficients. This enhances the ability to remove noise and obtain 

precise estimates for the regression function. Given the importance of analysing the price index in Iraq, various mother 

wavelets were evaluated using wavelet transform techniques. The aim was to identify the most suitable wavelet for 

this data, providing accurate estimates of the relationship between trading volume (independent variable) and the Iraq 

Stock Market Index (dependent variable). The results indicated that the Coif1, Coif5, and rbio1.3 wavelets gave the 

best results, with the lowest Mean Squared Error (Hamza & Ali, 2022).  
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Because they were unable to adjust to changing data and fluctuating noise levels. To improve the estimations, more 

adaptable techniques like the wavelet transform and smoothing bar were required. As part of a dissertation, this paper, 

we provide a novel two-step method to enhance nonparametric model estimation. The wavelet transform, which can 

analyse data at various frequency and temporal levels and enhance signal quality, is employed in the first phase as a 

fundamental data filtering and noise reduction technique. In order to obtain a more accurate estimation, the filtered 

data from the inverse of the wavelet transform is then subjected to smoothing using Smoothing Spline regression and 

local polynomials in the second step. employing both simulated and real data, the results show how effective the 

suggested approach is when compared to traditional methods employing the mean squared error criterion. This 

superiority confirms the suitability of the method for applications that require high accuracy in estimating 

nonparametric models in multiple domains. 

2. Wavelets 
Wavelet theory becomes an effective tool for analysing complex phenomena in a variety of domains, including 

engineering, communications, and medicine. Wavelet theory's advancements are essential for more thorough and 

precise data processing. Two primary filter types are employed while dealing with wavelet transform, high-pass filters 

are used to extract high-frequency information from the signal, and low-pass filters are used to recover low-frequency 

information. There are two primary components to wavelets (Daubechies, 1992). In order to determine the form and 

behavior of the wavelets at various resolution levels, more wavelet functions are constructed using the father function 

(scaling function). It is obtained using the following formula: 

 ( )  ∑  ( ) (    ) 
                       (1) 

where C(k) are scalar coefficients that, when applied to a filter, alter the original signal. Each signal point's impact on 

its nearby points is determined by these weights. A mathematical function called the Mother function (Wavelet 

Function) is used to scale and shift a series of wave functions. The signals in the wavelet transform are examined 

using the functions that are produced. 

 ( )  ∑  ( ) (    ) 
                 (2) 

where d(k) is an integer that is used to extract fast changes and precise details from a signal. It can be compared to a 

"edge finder" that displays abrupt signal shifts. The Mother function's properties (Donald et al., 2004) Dimensions and 

displacement: All additional wavelet functions are created via transformation and scaling procedures, which allow the 

signal to be broken down into its constituent parts. It is acquired by applying the subsequent formula: 

    ( )  ( |√   ) (     )       (3) 

where,   is the scaling factor, b is the displacement coefficient. 

 

Zero periodicity the mother function has the property that its integral over time is zero.  

∫  ( )    
 

  
               (4) 

Local in time and frequency the mother function is local in both time and frequency.  

Mother function types. We'll talk about a few popular wavelet functions, such as the Wavelet of Haar. The wavelet 

transform was invented by mathematician Alfred Haar in 1909. Haar, 1910. One of the most basic waveforms for 

wavelet processing and signal analysis is the Haar Wavelet. The Daubechies Wavelet, which is sometimes shortened 

to DbN, is a set of wavelets that were first presented by mathematician Ingrid Daubechies in 1988, The wavelet's order 

is denoted by N (Cohen et al, 1993). Many mathematicians and researchers found the wavelet transform in the late 

20th century, which is a major improvement over earlier transforms. The wavelet transform uses a variable amplitude 

window, which allows for constant change of the window's size and location across the signal, in contrast to 

conventional techniques that use a fixed amplitude window. This makes it possible to efficiently extract information 

about frequency variations, giving signal analysis more flexibility. Therefore, even with noisy signals, wavelet 

transform may break down signals into components of various frequencies while maintaining the important 

information. Researchers across various disciplines agree that the wavelet transform is one of the most accurate and 

efficient methods for signal analysis, the most famous wavelet transforms are Continuous wavelet transform(CWT) 

(Zaidan, 2022).  The continuous wavelet transform divides the signal into an infinite number of wavelets (the mother 

wavelet) that depend on location and scale.  which can be expressed mathematically as follows: 

 
   ( ) 
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)                                   (5) 
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Where a is the Scale factor while b is the time location of the wavelet function, as for the amount 
 

√   
 Represents the 

amount of energy of the signal. The continuous wavelet transform is defined as the internal multiplication of the signal 

f(t) with the basis function of the wavelet (the mother wavelet) (Mallat,1999): 

  (   )  
 

√ 
∫     
 

  
(
   

 
)  ( )        )6) 

   

The DWT is a discrete set of wavelet scales and translations. It is especially designed for the sampled value 

(Daubechies, 1992). This transformation decomposes the signal into a mutually orthogonal set of wavelets. This 

specificity is the main difference between DWT and CWT. In reality, the DWT's dyadic grid scales the mother 

wavelet by a power of two.(    ) and converted using an integer (     ) , where the location index, k, runs from 

1 to       (N is the J is the total number of scales, and j ranges from 0 to J (number of observations). The following 

formula is used to express the DWT (Rhif et al,2019): 

    ( )   
  

   (      )       (7) 

 

3. Wavelet threshold functions 
         The wavelet function estimation process includes removing noise from the signal using a threshold term 

(Hedaoo & Godbole, 2011). Using the discrete wavelet transform, a frequency threshold is set to remove noise while 

keeping the important parts of the signal. Choosing the right threshold is very important. If the threshold is too high, it 

might remove important details, causing the signal to be distorted. If the threshold is too low, too much unnecessary 

detail might pass through, making the estimate unstable. So, selecting the right threshold is key to getting good results. 

The threshold value helps decide whether to keep or remove the wavelet coefficients. There are different types of 

thresholding methods (Donoho, 1995). 

Controlling the magnitude of the interference or noise effect is the main objective of employing a threshold value; 

selecting the ideal threshold value is a crucial step in achieving the lowest mean square error (MSE). Among the most 

widely used techniques, which have been applied in this research, is Sure Thresholding 

It is a technique for determining a threshold value in wavelet analysis, developed by David Donohue and Ian Johnston 

(Zaidan, 2000). This technique is based on Stein's Unbiased Risk Estimation (SURE), a principle used to unbiasedly 

minimize the mean square error (MSE) when estimating noisy signals. 

    (      )     ∑  (        
 
   )  ∑     (        )  

 
     … 8 

where     is the wavelet coefficient,   is the threshold value, N is the number of wave coefficients, and I is the 

indicator function that takes the value 1 if the condition is true and 0 if the condition is false. 

Since the wavelet transform is orthogonal, the transformation performed on the noise using the same transform is also 

orthogonal. This means that the wavelet coefficients    The resulting transformation is also orthogonal. 

                   √         ((      )      … 9 

We determine the threshold value   that minimizes the Stein Unbiased Risk (SURE). This value is used to 

differentiate between transactions that represent noise and those that represent real information (Donoho, & Johnstone, 

1995(, and Visu Thresholding 

 This method improves the comprehensive threshold method, which is considered the basic building block 

in calculating the threshold value. This method addresses the shortcomings that the comprehensive threshold suffers 

from through its good performance even with increased sample size, as it gives a more homogeneous and preliminary 

estimate (Zaidan, 2000). The reason for this is that the global threshold works under conditions, the most important of 

which is that it is sensitive to large values of n, which leads to the loss of many wavelet coefficients with noise, and 

therefore, the threshold does not perform well during interruptions in the signal. This method can be explained 

according to the following formula: 

 

  visu =   √     ( )            …  10 

   It is the standard deviation of the noise level, which can be found through the following relationship: (Donoho & 

Johnstone,1995) 
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  =MAD(Y)/0.6745                … 11 

Where MAD represents the absolute median of the wavelet coefficients. 

 

 

4. Local Polynomial 
Techniques for Estimating Nonparametric Regression Models Nonparametric regression models, which rely on an 

estimated model that offers an approximation of reality and helps with future predictions, are calculated using a 

variety of techniques. These techniques include the local polynomial method. Whittaker (1923) proposed 

approximating the regression curve to the true curve, which is where the idea of smoothing originated. The smoothing 

process, according to Whittaker, is a scale or change of the observations. Recent developments in computing software 

have led to a major evolution in smoothing approaches. Furthermore, academics have acknowledged that not all data 

types may benefit from parametric regression curve estimates.(Walker & Wright, 2000).Local Polynomial Regression 

(LPR)  is a nonparametric regression method where a low-order ordinary least squares (OLS) regression is applied at 

each point of interest,  using data from a neighbourhood around that point. The regression model is expressed as: 

    (  )             (11) 

Where,  (  )                                .

                                                                       

Three crucial parameters determine the quality of the local polynomial fit: bandwidth h regulates the size of the local 

area surrounding x_0. While a big h smoothes the fit but may oversimplify the function, a small h produces a more 

localized fit but may cause overfitting. Polynomial Order p: Establishes the polynomial's degree. Local linear 

regression (p=1) and local quadratic regression (p=2) are commonly employed. Kernel Function K: Indicates how 

observations are given weights according to how far away they are from x_0. Gaussian, Epanechnikov, and uniform 

kernels are examples of common kernels. (Stone, C. J. 1977). 

5. Spline Regression 
      Spline methods are among the most widely used techniques for approximating nonlinear functions. They were first 

employed in the early 20th century as an alternative to local polynomials. Using basis functions and control points, a 

spline is a continuous local polynomial curve that is used to approximate mathematical and geometric solutions in a 

smooth manner. Local polynomial functions are applied to each segment of the data once it has been separated into 

segments. Knots, which indicate the places where changes take place between segments, are used to create these 

functions. In order to reduce computing complexity and ensure that the model only uses the nodes that were taken 

from the data, rather than all of the data points, the number and placement of knots are carefully chosen; this speeds up 

the computations. The continuity of the spline at all locations, including the knots, guarantees an uninterrupted, 

accurate, and seamless portrayal. In the case of smoothing splines, the model minimizes the discrepancies between the 

actual and anticipated values by identifying the curve that best fits the data using the theory of nonparametric 

regression. This increases the estimation's accuracy without running the danger of overfitting or providing too much 

information. (Wahba ,1990). 

6. Iraqi's Oil Revenue and Inflation Data  

Two variables—oil revenues and inflation—are included in the data, which spans the period from May 31, 2007, to 

December 31, 2017, and has a sample size of 128. The explanatory variable, which represents the entire amount of 

money the nation makes from the production and sale of oil, is oil revenue. Numerous intricate elements, such as 

OPEC's production decisions, political upheavals, and shifts in the economy, such as expansion or recession, have an 

impact on oil profits. Predicting oil prices is very difficult due to international difficulties, market fluctuations, and 

worldwide supply and demand. Traditional models are not appropriate for predicting oil income because of the 

unpredictable nature of these components. We chose non-parametric models, particularly the Smoothing Spline 

method combined with Wavelet Transform, to estimate the relationship. This approach allows for better data cleaning 

and analysis while adapting to the ongoing changes in the relationship between oil revenues and inflation, improving 

accuracy and effectively managing data fluctuations. the data is 

availableattheOAPECdatabaselinkhttp://oapecdbsys.oapecorg.org:8081/ords/f?p=100:23andCentralBankdatabaselinkh

ttps://cbiraq.org/SeriesChart.aspx?TseriesID=423.    

 

http://oapecdbsys.oapecorg.org:8081/ords/f?p=100:23
https://cbiraq.org/SeriesChart.aspx?TseriesID=423
https://cbiraq.org/SeriesChart.aspx?TseriesID=423
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Table 1 MSE values for the inflation rate with the best method. 

MSE Threshold value Threshold function Estimation Method 

12.98345 
Visu 

Soft 

Smoothing Spline 

14.67383 
Semi Soft 

Table 1 shows that the smoothing spline with soft threshold function and visu threshold value is the best method due 

to MSE, followed by the estimation method using smoothing spline with semi-soft threshold function and visu 

threshold value.  

 
 

Figure (1) real and estimated data using local polynomial estimation and Smoothing Spline. 

In the figure (1) the black line represents the original data, while the red line represents the results of estimating the 

function using the local polynomial method, while the green line indicates the results of estimating the function using 

the smoothing spline method with the threshold function soft and semi soft the threshold value Visu. 

7. Conclusion 
         In this study, the wavelet transform is combined with two methods (local polynomial and smoothing spline) to 

evaluate the performance of estimate techniques. Estimation accuracy was the main focus of the comparison, and the 

findings indicated that performance significantly improved with increasing sample size, leading to more accurate 

estimations. The findings emphasized how crucial it is to select the right threshold functions because poor selections 

can result in decreased performance. Furthermore, the outcomes demonstrated the smoothing spline method's 

superiority over local polynomial regression estimation techniques because of its great capacity to handle complex 

data and its adaptability to various data properties. 

8. Future Work 
From the results of this study, we suggest the following recommendations: 

Based on the results of the study confirming the importance of different thresholds in improving the accuracy of the 

estimates, we recommend further research on the impact of thresholds Visu, Soft and Semi-Soft on non-parametric 

estimation models. Such studies would contribute to improving the performance of models used in economic 

applications, especially the estimation of inflation rates and oil revenues. The study also highlights the importance of 

improving data quality and analysis using advanced mathematical models, such as Smoothing Spline and Wavelet 

Transform, to enhance the accuracy of estimates and support the effectiveness of fiscal and economic policies. We 

suggest further research into the impact of different thresholds to improve the accuracy of the model in economic 

applications. To enhance financial stability, diversification of income sources through agriculture, industry, and 

tourism is key, while investment in renewable energy can mitigate the effects of oil price fluctuations. In addition, 

improving data collection and analysis using sophisticated models, supporting central bank independence, and 

fostering a stable investment environment are vital for long-term financial stability. Stable fiscal strategies should 

focus on controlling inflation and maximising revenues to address both global and domestic economic challenges. 

Table (2) Shows the Actual and Estimated Data of the Dependent Variable Using Estimation Methods 
No. x y ypol yspl 

1 16079151 38.6 53.157 53.157 

2 19853823 46 69.515 69.515 
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No. x y ypol yspl 

3 24172796 30.5 27.385 27.385 

4 29240702 20 9.770 9.770 

5 33375532 34.8 38.471 38.471 

6 38439127 20.4 20.475 20.475 

7 43948206 15.5 12.385 12.385 

8 53162592 4.7 1.743 1.743 

9 2503549 1.3 -0.942 -0.942 

10 13015534 8.1 4.985 4.985 

11 19627396 5.6 3.938 2.849 

12 26340364 5.5 3.805 3.415 

13 36466983 4.6 3.613 3.165 

14 45246926 -6.3 -6.163 -6.163 

15 54359419 -1.4 0.826 0.826 

16 59746791 -5.2 -4.863 -4.863 

17 66451214 0.3 3.114 3.415 

18 71902074 7.6 7.486 7.486 

19 75535725 6.7 6.370 6.370 

20 79131752 6.8 3.985 4.035 

21 2468325 0.6 3.715 3.715 

22 4861691 0.2 3.315 3.315 

23 7982503 -3.1 0.015 0.015 

24 11149916 -5.7 -4.690 -4.690 

25 14601313 -5.6 -2.590 -2.590 

26 19187704 0.7 3.894 3.894 

27 24132372 -1.5 1.615 1.615 

28 28998911 -0.3 2.815 2.815 

29 36250440 -2.7 0.415 0.415 

30 41055791 -6.4 -4.133 -4.133 

31 46092179 -4.9 -2.922 -2.922 

32 51719059 -4.4 -1.285 -1.285 

33 4941148 2.2 4.249 5.315 

34 9293123 2.5 4.154 5.615 

35 16329057 3.4 4.006 5.740 

36 22932808 2.9 3.872 5.759 

37 27843168 1.6 3.776 4.715 

38 33697020 1.7 3.664 4.815 

39 38673396 0.6 3.573 3.715 

40 43405765 1.7 3.488 4.815 

41 49000223 2.7 3.392 5.815 

42 54464352 3.6 3.301 5.874 

43 59964428 3.1 3.213 5.874 

44 66819670 3.3 3.108 5.858 
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No. x y ypol yspl 

45 7237156 5.8 4.198 5.857 

46 14661596 5.9 4.041 5.743 

47 23393615 5 3.863 5.702 

48 31851046 5.8 3.699 5.690 

49 41695814 6.6 3.519 5.615 

50 49765754 6.1 3.379 5.578 

51 58071727 6.2 3.243 5.573 

52 66520685 5.2 3.113 5.495 

53 74723651 5.1 2.994 5.467 

54 82894707 4.8 2.884 5.441 

55 91123832 4.8 2.780 5.125 

56 98090214 6 2.885 5.065 

57 8668492 5.4 4.168 5.021 

58 14093408 5.7 4.052 4.958 

59 22873204 8.3 5.185 5.185 

60 37483854 8.7 5.585 5.585 

61 50202966 7.2 4.085 4.725 

62 59325823 5.8 3.223 4.382 

63 66918350 5.7 3.107 4.341 

64 72024164 7 3.885 4.253 

65 45334668 6.4 3.455 4.177 

66 96001586 4.8 2.722 4.148 

67 106729085 4.5 2.605 3.997 

68 116597076 3.6 2.508 3.964 

69 9644874 2.8 4.147 3.918 

70 18132528 2.2 3.969 3.816 

71 28270812 1.3 3.767 3.455 

72 36936615 1.2 3.604 3.445 

73 46319198 1.1 3.438 3.423 

74 54069509 2.3 3.308 3.332 

75 61684583 2.5 3.186 3.014 

76 73206555 0.1 3.016 2.917 

77 84145401 0.3 2.868 2.860 

78 91446283 3.1 2.776 2.692 

79 99324469 2.7 2.685 2.677 

80 110677542 3.1 2.565 2.665 

81 8252744 4 4.176 2.554 

82 16798073 3 3.996 2.518 

83 23406812 2 3.863 2.295 

84 32544939 1.5 3.686 2.222 

85 41219920 1.4 3.527 2.134 

86 50368089 2.3 3.369 2.039 
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No. x y ypol yspl 

87 55517837 2.3 3.284 1.988 

88 67131218 2.7 3.104 1.969 

89 74664750 2.1 2.995 1.866 

90 81823595 0.9 2.898 1.826 

91 90285779 3 2.790 1.698 

92 97072410 1.6 2.710 1.632 

93 3684273 -0.4 2.715 1.624 

94 6816588 0.3 3.415 1.614 

95 11170092 0.2 3.315 1.607 

96 17249458 0.5 3.615 1.550 

97 21781638 1.7 3.895 1.473 

98 28216875 2.2 3.768 1.467 

99 32258696 2.6 3.691 1.468 

100 37335553 2.6 3.597 1.470 

101 41107533 2.1 3.529 1.473 

102 45407324 1.6 3.454 1.515 

103 48338973 1 3.403 1.700 

104 51312621 2.3 3.353 1.806 

105 1939372 -0.9 2.215 1.812 

106 3857459 1.5 4.272 1.837 

107 5971971 1.8 4.226 1.845 

108 8585645 2.1 4.169 1.863 

109 15186201 2.5 4.030 2.308 

110 19350311 0.1 3.215 2.319 

111 22537760 -0.4 2.715 2.429 

112 26865821 0.2 3.315 2.560 

113 29463906 0.3 3.415 2.565 

114 34350332 0.2 3.315 2.635 

115 38269023 -1 2.115 2.115 

116 44267063 -0.7 2.415 2.415 

117 4467428 -0.9 2.215 2.215 

118 8569894 -0.8 2.315 2.315 

119 13390064 0.3 3.415 3.415 

120 17723733 1 3.977 3.560 

121 22729366 0.1 3.215 3.215 

122 27008790 -0.1 3.015 3.015 

123 32949964 0.7 3.678 3.766 

124 39197493 0.2 3.315 3.315 

125 47808419 0.4 3.412 3.515 

126 54193699 0.1 2.833 2.833 

127 59450680 0.7 -9.895 -9.895 

128 65071929 0.8 -10.982 -10.982 
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