
Kufa Journal of Engineering 

Vol. 16, No. 2, April 2025, P.P. 96 -118 
Article history: Received 21 June 2024, last revised 6 August 2024, 

                        accepted 5 September 2024  

 This work is licensed under a Creative Commons Attribution 4.0 International License. 

 

CLASSIFYING ANDROID MALWARE CATEGORIES 

BASED ON DYNAMIC FEATURES: AN INTEGRATION OF 

FEATURE REDUCTION AND SELECTION TECHNIQUES 

Abdullah Al-Sraratee1* and Ahmed Al-Azawei2 

1*College of Information Technology, University of Babylon, Babil, Iraq. 

Email:Abdullahallawim.sw@student.uobabylon.edu.iq  

2 College of Information Technology, University of Babylon, Babil, Iraq. 

Email:ahmedhabeeb@itnet.uobabylon.edu.iq  

https://doi.org/10.30572/2018/KJE/160206 

ABSTRACT  

Android malware has grown steadily into a major internet threat. Despite efforts to identify and 

categorize malware in seemingly safe Android apps, addressing this issue is still lacking. 

Therefore, understanding the unique behaviors of common Android malware categories is 

essential. This study utilizes machine learning techniques namely, K-Nearest Neighbor, 

Random Forest and Decision Tree to classify Android malware based on dynamic analysis. As 

feature selection and reduction techniques, Mutual Information and Principle Component 

Analysis are used. The research analyzes a large dataset, containing fourteen primary malware 

categories using the CCCS-CIC-AndMal2020 dataset. Unlike previous research, the proposed 

method makes a balance between the number of features and classifiers’ performance, resulting 

in an overall detection accuracy of 98% in the fourteen analyzed categories and excluding 

78.87% of the original dataset’s features. The research, thus, introduces an efficient Android 

malware detection method that reduces the computational cost and improves the classification 

accuracy. 
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1. INTRODUCTION 

As Android devices have become practically a part of our lives, they have unfortunately 

attracted some unwanted guests. This may include, but are not limited to, a growing swarm of 

malicious software, or malware, targeting these devices. Android malware poses a serious threat 

to our privacy, communication, finances, and even how well our devices work (Xu et al., 2023). 

It constantly changes its tactics to sneak past our defenses (Vijay, Portillo-Dominguez and 

Ayala-Rivera, 2022). This is why it is important to accurately and quickly identify and 

categorize malwares. However, traditional ways of analyzing malware, which involves looking 

at its code, often have limitations because malware creators are growing better at hiding their 

tracks. To meet this challenge, researchers are turning to another approach called dynamic 

analysis. It is essential to investigate virus activity as a detective when observes a suspect (V et 

al., 2023). Even if the application attempts to conceal its genuine aims and how it operates, its 

true objectives can be discovered if the application is run in a secure and controlled environment 

(Cui et al., 2023). 

The fight against malicious software for Android devices is comparable to a never-ending game 

of cat and mouse. Criminals in the cyber world are coming up with more ways to avoid being 

caught. Some of these ways may include encrypting their code, using techniques that stop 

analysis, and even changing the way the malware works (A. Mawgoud, Rady and Tawfik, 

2021)(Hussain and Mohideen S, 2023).Criminals are also using machine-learning techniques 

to trick security systems (G, P and S, 2023). Overcoming the constraints of code analysis can 

provide a more accurate depiction of the characteristics of malicious software using several 

different approaches such as static, dynamic, and hybrid analysis. This work focuses on 

dynamic analysis as it observes the way a virus acts in real time (Le et al., 2020). This analysis 

is used to highlight and appear malware’s masks and its true intentions, regardless of how hard 

the malware tries to hide. Using this method, a lot about its behavior can be observed such as 

what kind of calls it makes to the system, what it does on the network, and how it uses resources. 

Recently, deep learning (Mohammed, Kareem and Mohammed, 2022) and machine learning 

techniques have been widely adopted to look at the information gathered in order to successfully 

classify different types of malware (Xu, Zhang and Tang, 2023). Although data mining 

techniques achieved high accuracy in previous literature, their use is not without limitations.  

Earlier research achieves high prediction accuracy with the utilization of a large number of 

features. For example, Islam et al. (Islam et al., 2023) obtained an overall accuracy of 95% with 

45 features out of the initial pool of 141 features. Accordingly, this present study aims to reduce 

the number of features in predicting Android malware based on integrating feature reduction 
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and selection techniques. To enhance classification accuracy, while minimizing feature 

dimensionality, an optimal balance between them is achieved. This can lead to ensuring that 

the chosen techniques not only streamline the dataset but also contribute in improving model 

performance. 

This research adds several contributions in comparison with earlier literature. To introduce a 

systematic and operational strategy for the detection of Android malware categories, it focuses 

mainly on dynamic features to overcome the constraints associated with static analysis such as 

ignoring malware behavior and actual intention. Hence, the proposed approach addresses issues 

related to malware detection such as the incapacity in identifying Android malware applications 

that employed concealment techniques. Moreover, this research confirms the performance and 

efficiency of the proposed model through the utilization of machine-learning classifiers. Third, 

it compares the effectiveness of various machine learning techniques, including Decision Trees 

(DT), Random Forest (RF), and K-Nearest Neighbors (KNN). Finally, the research provides a 

comparative analysis with earlier literature, highlighting the distinctive contributions and 

advancements achieved in Android malware detection. 

The reminder of this study is structured as follows. Section two introduces and reviews some 

of related studies. Section three covers the dataset analysis, data preprocessing methods, feature 

selection and reduction process, and the machine learning models that are implemented. Section 

four provides a comprehensive analysis of the experiment's outcomes and conducts a 

comparative analysis with relevant results from other studies. Section five shows the practical 

implications of this research, whereas Section six summarizes and concludes its key concepts.  

2. RELATED WORK  

Malware analysis techniques are typically categorized as static and dynamic analyses. This is 

based on the type of features that are used and how malware samples are processed. Here, recent 

studies that used either static or dynamic analysis are reviewed, focusing on the number of 

features included and accuracy achieved. 

With static analysis, characteristics are extracted without the need to execute or install the 

sample. The detector's exceptional performance and rapidity are attributed to its unique 

characteristic of identifying samples belonging to well-known malware families. However, this 

approach exhibits suboptimal performance when confronted with samples that employ 

obfuscated technology. Within the domain of Android malware detection, static analysis is 

frequently employed to derive characteristic features of samples, such as code information, API 

calls, or permissions. A research study conducted in 2022 (Shatnawi, Yassen and Yateem, 
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2022) was based on Android permissions and API calls where three machine learning 

algorithms (Support Vector Machine, K-Nearest Neighbor, Naive Bayes) are used with 50 

important features. The average accuracy rate achieved is approximately 94% using permission 

features and 83% according to API call features. Another study proposed the AdDroid 

framework that implemented Adaboost with a Decision Tree algorithm (Mehtab et al., 2020). 

The achieved classification accuracy was 99.11%. The limitation of AdDroid can be enhanced 

by using a larger dataset of both malicious and benign applications. Furthermore, Zhao et al. 

(Ma et al., 2019) developed a ML Approach for identifying Android malware by creating a 

control flow graph and extracting API data by constructing the control flow graphs (CFG) for 

each application to create three types of datasets: API usage dataset, API frequency dataset, and 

API sequence. An ensemble model based on application of C4.5, Deep Neural Network, and 

Long Short-Term Memory methods achieved an overall detection accuracy of 98.98%. A recent 

study presented a framework called DIDroid (Rahali et al., 2020). It is a deep neural network 

approach that utilizes images to classify twelve types of android malware and 191 malware 

families. The system achieved an accuracy rate of 93.36%. 

Another category of research is directed into exploring dynamic features. This type of literature 

also incorporates machine learning methods. The integration of feature selection techniques 

appears as a strategic approach, offering the potential to yield more refined insights with a 

reduced set of features. This not only enhances the effectiveness of the model but also 

contributes to mitigating complexity, thereby optimizing the overall malware detection process 

Tiwari et al. (Tiwari and Shukla, 2018) proposed a machine learning model that extract 

permissions and API from classes.dex and generate two types of feature vector: common and 

combined feature vector. Both types classified with logistic regression which achieved 97.25% 

accuracy with common features and 95.87% accuracy for 131 feature of permissions. Similarly, 

Gronat et al. (Gronat, Aldana-Iuit and Balek, 2019) constructed MaxNet model on dataset 

consisting of 361.265 samples where the API calls and system calls were extracted from 

Android applications. Combining the LSTM with the recurrent neural network approach was 

done to enhance the model’s performance with an overall accuracy of 96.2%. In 2019, the 

support vector classifier was utilized by the TFDroid framework (Lou et al., 2019) to identify 

malware using the source, sink, and application description of Android apps. The model divides 

applications into functional clusters and detects abnormal behavior in each cluster to identify 

potential malicious applications. Only benign applications were deployed to train the 

classification algorithm, which achieved 93.65% accuracy. Finally A machine learning 

ensemble model integrating Random Forest, Multi-level Perceptron, Decision Tree, K-Nearest 
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Neighbor, Support Vector Machine, and Logistic Regression algorithms was introduced (Islam 

et al., 2023) to categorize twelve types of malware using 45 features out of 141 in which the 

proposed model obtained an accuracy rate of 95%.  

Based on the above discussed literature, it can be inferred that dynamic analysis offers key 

advantages in Android malware detection in comparison with static analysis. It reveals hidden 

intentions by identifying application behavior, not just its code, discovering obfuscated threats 

and analyzing real-time behavior such as suspicious network calls. For such reasons, this 

present research focuses on dynamic features in identifying Android malware. Previous 

research gained either high accuracy with a high number of features or low accuracy with a low 

number of features. This research, however, aims at achieving high accuracy with low number 

of features.  

3. THE PROPOSED SYSTEM 

Fig. 1 depicts the key phases of the proposed system, including data preprocessing, feature 

selection and reduction, classification, and results evaluation. 

 

Fig. 1. The proposed system 
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3.1. The Research Dataset 

The CCCS-CIC-AndMal-2020 Android malware dataset, which was jointly published by the 

University of New Brunswick (UNB) and the Canadian Institute for Cybersecurity (CIC), was 

used in this study (AndMal 2020 | Datasets | Research | Canadian Institute for Cybersecurity | 

UNB). It comprises 400,000 Android applications evenly distributed between benign (200,000) 

and malware (200,000) categories. The examination of applications for Android malware was 

conducted in a virtual environment. The dataset includes both static and dynamic features. 

Static elements consist of Android malware families, permissions, and intents. The dynamic 

features consist of detailed log files that contain process logs, package information, log states, 

battery states, and other pertinent data. The dataset includes fourteen categories of malware, 

such as adware, backdoors, file infectors, zero-day, Potentially Unwanted Apps (PUA), 

ransomware, riskware, scareware, Trojan, trojan-banker, trojan-dropper, trojan-sms, and trojan-

spy.  

The primary emphasis of this research revolves around the dynamic analysis segment of the 

dataset, which is partitioned into two distinct components. First, the initial dynamic analysis of 

Android malware, which encompasses 28,380 Android malware applications before the reboot 

of an Android emulator, was applied. Second, the dynamic analysis of Android malware 

consists of 25,059 applications were executed after restarting the Android emulator. This 

research merges the two parts of dynamic analysis and then splits the resulting dataset into 80% 

training and 20% testing. Based on different experiments conducted in this research, it was 

found that the optimum strategy is to allocate 20-30% of the data for testing and the remaining 

70-80% for training to achieve the best outcomes (Gholamy, Kreinovich and Kosheleva, 2018). 

3.2. Data preprocessing 

Data preprocessing plays a crucial role in studies involving machine learning-based 

classification. Datasets often contain missing values, outliers, or extraneous features. All of 

which can significantly influence the performance of machine learning algorithms. In this 

research, firm and precise steps were followed to ensure data cleaning. First, the categories of 

the dataset were replaced with numeric values from 1 to 14. Furthermore, a check of missing 

values was conducted, showing that no missing values in the dataset. Additionally, a Boolean 

check was conducted to discover data duplication where no duplication was identified. Fourth, 

the random oversampling method was used to balance all the fourteen categories of malware as 

shown in Fig.2 which is a technique used to address class imbalance in machine learning 

datasets by increasing the number of instances of the minority class. The reason of choosing 
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oversampling technique is to improve model performance for the minority classes and pay 

attention to the other thirteen labels, if most of the data belongs to the majority class, the model 

will prioritize learning to classify those instances accurately and this, in turn, could lead to 

untrusted and bias classification. The oversampling technique, however, is not without 

limitations. It raises the possibility of over-fitting by duplicating minority class instances 

(Chawla et al., 2002) .This drawback was addressed in this research by applying ensemble 

classifiers such as the Random Forest algorithm. It is strong against overfitting. because 

Random Forest computes the average of the predictions from many trees. Each tree with some 

variation due to randomness in training and this, in turn, can lead to reducing the variance and 

avoiding the memorization of just the training data. 

The outliers are also checked, showing that the dataset contains numerous outliers which can 

be defined as observations that exhibit significant deviations from the rest of the values in a 

population-based random sample. For this reason, a capping method was used to handle the 

outliers. This method calculates the Inter Quartile Range (IQR) (Frery, 2023) to determine data 

variation. Outliers are values outside the (25th percentile –1.5x Inter Quartile Range) to (75th 

percentile + 1.5x Inter Quartile Range). Outlier values were then replaced with the calculated 

maximum or minimum capped values. Fig.3 demonstrates an example of some features before 

and after handling outliers. Finally, a StandardScaler normalization was used which is a method 

employed in data preprocessing to transform and scale features within a dataset. It follows the 

standardization approach, which involves rescaling the features to have a total mean of zero 

and a standard deviation of one. The rationale behind the application of this technique is to 

prevent bias towards features with larger scales. Equation 1 is used to calculate standard 

scaling(Gopal, Patro and Kumar Sahu, 2015). This normalization technique is particularly 

useful when dealing with features that exhibit varying scales, ensuring that each feature 

contributes equally to the model's learning process.   

Z =
(x− μ)

σ
                     (1) 

where:        

  Z is the value that has been standardized. 

  X is the initial value of the feature. 

  µ is the average value of the characteristic. 

  Ϭ is the measure of variability or dispersion of the property. 
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Fig. 2. The application of oversampling method for data balancing 

 

Fig. 3. An example of features before and after handling outliers 
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3.3. Feature selection 

Feature selection includes choosing a portion of the most important features from a dataset with 

the objectives of reducing dimensionality and computational cost, improving model 

interpretability, and enhancing predictive performance. In the present study, the Mutual 

Information method was employed (Zhou, Wang and Zhu, 2022), resulting in the selection of 

only 50 features out of the original 142 features as shown in Fig.4. The reason behind the 

selection of this method includes its capacity to capture complex interactions between features 

and the target variable. Mutual Information outperforms approaches such as correlation that are 

limited to linear relationships, especially in complicated real-world datasets (Battiti, 1994)The 

choice of this specific number was determined through a series of experiments, striking a 

balance between achieving optimal accuracy and minimizing the number of features 

incorporated in the model. Equation 2 estimates the amount of information shared by two 

variables, X and Y (Liu et al., 2009). 

I(X; Y) = ∑ ∑ P(X, Y)LOG
P(X,Y)

P(X)P(Y)x∈Xy∈Y      (2) 

where: 

X, Y: random variables. 

P(x) is the probability density function of X. 

P(Y) is the probability density function of Y. 

According to this definition, if X and Y are strongly related to one another, the value of I(X; Y) 

will be quite high, whereas if I(X; Y) = 0, this indicates that these two variables are completely 

unrelated. 

3.4. Dimension reduction  

In this study, the Principal Component Analysis (PCA) was applied to perform dimensionality 

reduction on the dataset. PCA is a statistical approach used to decrease the number of 

dimensions in datasets. The process discovers and ranks the primary characteristics, known as 

main components, by capturing the highest amount of variation in the data. The linear 

combinations of the original features provide a reduced-dimensional representation of the data 

while preserving maximum information (Li et al., 2020). The number of principal components 

that were selected based on this technique was only thirty three features. This helps reduce the 

number of features from fifty features obtained based on the Mature Information feature 

selection approach to only thirty three features and this, in turn, leads to decreasing the 

computational cost.   
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Fig. 4. The top fifty important features selected by the Mutual Information method 

3.5. Classification techniques 

In this study, three machine learning algorithms are applied to evaluate and compare the 

effectiveness of the Android malware detection namely, Random forest, Decision tree and K-

Nearest Neighbors. 
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3.5.1. Random Forest (RF) 

Random Forest is one of the most popular ensemble machine-learning techniques (Dudek, 

2022). It can achieve accurate and reliable predictions by utilizing the collective knowledge. 

Every tree in Random Forest explores the data from a different perspective which is shaped by 

bootstrapped training sets and randomized feature selection (Rajendiran and Rethnaraj, 2023). 

The ensemble's strength is powered by its inherent diversity. Each tree gives a "vote" for the 

most likely result when produced a prediction. For regression and classification, the average or 

majority wins out. By reducing the biases of individual trees, this democratic method produces 

resilient and broadly applicable results. Because of its versatility, simplicity, and ability to solve 

both regression and classification problems, Random Forest is used in a wide range of fields, 

including environmental science, healthcare, marketing, finance, and environmental science 

(Breiman, 2001). Fig.5 illustrates the key principles of the Random mechanism (Belgiu and 

Drăguţ, 2016). 

Fig. 5. The Random Forest mechanism 
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3.5.2. Decision Trees (DT) 

Decision Trees are tree-like graphs with core nodes representing attribute tests, branches 

indicating test outcomes, and leaf nodes indicating class labels. Classification rules are based 

on the path from the root node to the leaf. The root node is selected as the primary property for 

dividing input data. Assigning properties and values to each intermediary node of the tree 

allows for input data analysis (Tan, Steinbach and Kumar, 2014). After forming a tree, it may 

anticipate new data by traveling from root to leaf nodes, visiting internal nodes based on 

attribute test requirements. 

3.5.3. K-Nearest Neighbors (KNN)  

The K-Nearest Neighbors method is a widely used and simple machine learning technique that 

classifies real-world scenarios by identifying the closest neighbors. The K-Nearest Neighbors 

algorithm calculates the distance between normal values and attacks, then selects object values 

that are close to the k-values of the class. The process starts by acquiring network data through 

the input data (Liu et al., 2022). The Euclidean distance function (Ei) was employed in this 

study to calculate the distance between the values of objects. The Euclidean distance function 

can be expressed as in Equation 3.  

Ei = √(a1 − a2)2 + b(b1 − b2)2            (3) 

where Ei is the sum of the squared difference between (a1 - a2) and (b1 - b2), where a1, a2, b1, 

and b2 are variables in the input data. 

3.6. The Optimization Techniques  

In this research, the Grid Search Optimizer is used to fine-tune the hyperparameters of the data 

mining techniques.  It is a popular technique for figuring out a classification model's proper 

hyperparameters. If there are enough grid nodes, it might be able to arrive at the optimal solution 

(Erdogan Erten, Bozkurt Keser and Yavuz, 2021). In this study, the three algorithms used to 

choose the ideal hyperparameters are integrated with the grid search-based optimization. In the 

grid search optimizer approach, the dataset is randomly divided into test and training sets using 

cross-validation. Optimizing hyperparameters can greatly enhance prediction accuracy, but 

may also increase time complexity. However, since this process is conducted offline, the 

additional computational cost is generally manageable. Its mechanism can be explained in 

Algorithm 1. 
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Algorithm 1: Grid Search Optimizer 

Input: List of classifier’s parameters. 

Output: Return best_paramameters. 

Step 1: Initializing best score = -inf (negative infinity) and best_paramameter = None. 

Step 2: while parameters list  != null 

             Begin 

                      Create a clone of the model with the current hyperparameter combination. 

                      Train the cloned model on your data. 

                      Evaluate the trained model using evaluation metric. 

                      If (current score > best_score): 

                          Update best_score with the current score. 

                          Update best_params with the current hyperparameter combination. 

              End  

Step 3: Return best_paramameter. 

3.7. Performance Evaluation 

It is crucial to evaluate the expected accuracy of algorithms utilizing machine learning methods 

for classification. When constructing a model, the data is separated into a training and 

evaluation sets. The learning set is utilized to construct the model, while the evaluation set is 

employed to assess its accuracy. Precision, recall, accuracy, and F1-score are metrics utilized 

to evaluate the pattern identification abilities of machine learning techniques. These metrics can 

be defined in four different scenarios (M and M.N, 2015). Accuracy is defined in Equation 4. 

It speaks of the percentage of correct predictions generated from the test data. It can be easily 

calculated by dividing the total number of predictions by the number of accurate forecasts. 

However, the accuracy Paradox causes problems with predictive analysis. Because of this, it 

may be confirmed using Precision and Recall indicators, which determine whether the 

"Negative" ratio of the real data provides an accurate classification of situations that are unlikely 

to occur. Precision is defined by Equation 5. The percentage of accurate positive results to those 

that the classifier predicted to be positive is how it is computed. Positive Predictive Value is 

another term for accuracy (PPV). Equation 6 computes the recall by dividing the total number 

of true positive findings by the total number of applicable samples. The Recall is also known 

as the True Positive Rate (TPR). Recall and precision serve as indicators of divergent concepts. 
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Verifying the F1 Score, the Harmonic Mean of Precision, and Recall could improve the 

correctness of the model. The F1 Score is established by Equation 7. To assess how well the 

model is performing, harmonic means are utilized to balance both the Precision and Recall 

indicators when one of them is low and nearly zero. Moreover, the "Confusion Matrix" 

approach was utilized to assess the efficacy of training-based methods by comparing what was 

expected to the real ones (Breiman, 2001). Assessment metrics evaluate the relationship 

between the model's responses and the real replies. 

Accuracy =
TP+TN

TP+FP+TN+FN
               (4) 

Precision =
TP

TP+FP
                           (5) 

Recall =
TP

TP+FN
                                      (6) 

F1 = 2
Precision+Recall

Precision∗Recall
                      (7) 

4. RESULTS AND DISCUSSION 

This research aims to identify Android malware based on dynamic features. However, several 

different improvements are achieved to obtain the best classification accuracy. This includes 

dimensionality reduction, feature selection, and optimization. First, the accuracy is obtained 

based on the original 142 features of the dataset as a baseline. The only preprocessing step that 

was implemented with the baseline is handling the missing values. The findings are summarized 

in Table 1. It can be noticed that the accuracy for the Random Forest classifier is the highest in 

comparison with the other two classifiers namely, K-Nearest Neighbor and Decision Tree.  

Table 1: Accuracy of the baseline implementation with the 142 features 

Classifier Accuracy Precision Recall F1-score Handling outliers Normalization 

RF 0.83 0.83 0.83 0.83 X X 

DT 0.74 0.74 0.74 0.74 X X 

KNN 0.60 0.59 0.60 0.59 X X 

Table 2 reports the accuracy after applying preprocessing techniques include such as data 

balancing, handling outliers and performing features’ normalization. Furthermore, the Mutual 

Information selection algorithm was applied with PCA. Only the top fifty features were selected 

by Mutual Information based on their weight which became the input for the PCA algorithm 

that reduced the number of features to only thirty three features which are illustrated in Fig.6.  

The PCA results suggest that the Memory, API and Logcat features are the most effective 

categories. This is because they have the highest representation among the selected components. 

Memory features in particular with 14 out of 33 features being from this category appear to be 
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critical, potentially due to their ability to capture various aspects of system performance and 

behavior.  

The next most significant category of features is API features. It is shown by the results that 

nine out of 33 features were chosen, with specific API calls and cryptographic operations. 

Logcat features also play a vital role which were represented with only six features. This can 

capture different types of system messages. Moreover, only four network features were chosen, 

reflecting the role of data transmission and reception in classifying the data. The absence of 

Battery and Process features in the selected components suggests that these categories might 

not provide substantial discriminatory power for the classification tasks in this dataset. 

Table 2: Accuracy with the 33 features after applying preprocessing and feature selection 

techniques 

Classifier Accuracy Precision Recall F1-score Handling outliers Normalization 

RF 0.97 0.97 0.97 0.97 ✓ ✓ 

DT 0.95 0.95 0.95 0.95 ✓ ✓ 

KNN 0.90 0.90 0.90 0.90 ✓ ✓ 

It is obvious that the accuracy of all classifiers was improved after applying the preprocessing 

stage. Although preprocessing might increase the model complexity, it can help reduce the 

number of features fed into the classification algorithms and this, in turn, can lead to reducing 

complexity and computational cost. Since the model was operated offline, the accuracy-

complexity tradeoff prioritizes the accuracy over the complexity.  

Table 3 includes the findings of the classifiers of thirty three features after using the Mutual 

Information feature selection with PCA and grid search optimizer which was also visualized in 

Fig. 7. For the Random Forest model, the best accuracy was found at 100 n_estimators. For the 

Decision Tree min_samples_split was set to 2 and max_depth: None. For k-nearest neighbor, 

n_neighbors were set to 3 and 'weights' to ‘distance’. Furthermore, by comparing expected and 

actual values, the "Confusion Matrix" was created for each classifier to assess the efficacy of 

training-based prediction for the fourteen malware categories.  

Table 3: A comparison of accuracy after using the Grid Search Optimizer 

Classifier Accuracy Precision Recall F1-score 

RF 0.98 0.98 0.98 0.97 

DT 0.95 0.95 0.95 0.95 

KNN 0.96 0.96 0.96 0.96 
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Fig. 6. The selected features using the PCA method 

Pertaining to the use of Random Forest as it achieves the highest accuracy, the total of the 

diagonal elements in the confusion matrix shows that 38364 (97.50%) malware samples are 

correctly categorized into their appropriate categories. while only 982 (2.50%) samples are 

incorrectly identified. By considering the categories backdoor, file infector, PUA, scareware 

and Trojan-Dropper which are labelled 2, 3, 5, 8 and 11 respectively as shown in Fig.8, it can 

be seen that all samples are 100% accurately categorized. On the other hand, the investigation 

of the Riskware category (label 7) shows that 546 samples out of 2854 were incorrectly 
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identified, which is the highest false identification that reduced the overall classification 

accuracy of the proposed model. The potential cause of this false classification is a significant 

variation in sample sizes between categories of the dataset, which requires using data balancing 

techniques. The random oversampling method is applied to avoid bias towards the largest label, 

despite raising the overfitting level to an acceptable level. Regardless of the model's remarkable 

accuracy, the prediction still contains a number of false positive and false negative samples. 

This is demonstrated in Fig. 8. 

 

Fig. 7. Accuracy of classifiers                        Fig. 8. The RF Confusion Matrix              

Table 4 shows a comparison between the output findings of this study and other previous works.  

Only literature that used dynamic approach are included in this comparison. The majority of 

the studies employed either a machine learning or deep learning techniques. The selected 

studies in this comparison are similar to this present research in terms of dataset and number of 

predicted categories. Although some of the earlier literature predicted twelve categories only 

based on the notion that not all categories information are available in the dataset (Islam et al., 

2023),(Rahali et al., 2020), this study focused on identifying all malware categories in the 

CCCS-CIC-AndMal-2020 dataset because categories that have not all information are for static 

features only as mentioned in the dataset original website (AndMal 2020 | Datasets | Research 

| Canadian Institute for Cybersecurity | UNB). As shown in Table 4, the highest accuracy 

achieved was 95% in (Islam et al., 2023), while our suggested model outperforms their findings 

by achieving 97.52% of accuracy for the fourteen categories. The reasons behind such achieved 

accuracy can be attributed to 1) the combination of both before and after reboot files in one data 

frame which makes the classifiers learn more about malware behavior in training phase, 

resulting in improving classification accuracy, 2) an efficient preprocessing steps were followed 
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to prepare the dataset for classification phase which helped improve the model performance, 

and 3) the use of two stages of feature reduction led to shrinking the feature vector from 142 

features to only thirty three important features. 

Table 4: A comparison between the findings of this research and previous literature 

Reference Analysis Dataset 
No. of 

Classes 
Year Algorithm Accuracy 

(Musikawan 

et al., 2023) 

Dynamic CCCS-CIC-AndMal-2020 14 2022 DNN 78.82 

Static CCCS-CIC-AndMal-2020 2 DNN 97.72 

(Rahali et 

al., 2020) 

Static CCCS-CIC-AndMal-2020 12 2020 
SSD 93.36 

(Islam et al., 

2023) 

Dynamic CCCS-CIC-AndMal-2020 12 2023 Ensemble 

ML 
95 

 This study 

Without a 

Grid 

search 

optimizer 

 

Dyna

mic 

 

CCCS-CIC-

AndMal-2020 

 

14 

 

 

 

2024 

RF 97.48 

DT 95.40 

KNN 90.27 

With Grid 

search 

optimizer 

 

Dyna

mic 

 

CCCS-CIC-

AndMal-2020 

 

14 
RF 97.50 

DT 95.48 

KNN 96.25 

5. PRACTICAL IMPLICATIONS 

This study improved prediction accuracy and reduced implementation complexity. This was 

done by applying grid search optimization, feature selection, feature reduction, feature 

normalization, and missing and outlier handling.  It supports multi-class characterization on 

huge dataset and exceeded prior studies with fewer characteristics, even though it was grounded 

on past research. The study has many practical implications for people, organizations, and 

academics. Better business security protects important data and mobile workers. Security 

applications and antivirus software should provide better detection algorithms that can protect 

users from risky apps and activities. 

6. CONCLUSIONS 

This research introduced a machine learning model leveraging Random Forest, Decision Tree, 

and K-Nearest Neighbors algorithms for the purpose of classifying fourteen prominent malware 

categories within a recently published dataset titled CCCS-CIC-AndMal-2020. It encompasses 

a comprehensive variety of safe and harmful applications. The study followed a data balancing 

mechanism and a clearly established data preparation method which is appropriate for various 

dynamic analysis features. A robust outlier handling process, coupled with mutual information 

feature selection and PCA, resulted in the elimination of 76.8% of features. Consequently, only 

thirty three features out of the initial 142 were incorporated into the model. This reduction in 
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feature set not only addresses issues of complexity but also contributes to improved accuracy. 

The final accuracy achieved by the model is 97.50%.  

Although this study adds significant contributions in comparison with earlier literature, it is not 

without limitations that may invite further research. The dataset used in the study, CCCS-CIC-

AndMal-2020, had some limitations and class imbalance. Future work can involve the use of 

more diverse and balanced datasets to evaluate the performance of the ensemble model. This 

can extend the scope of evaluation beyond the current dataset. Furthermore, this study focused 

on dynamic feature analysis for multi-classification. However, exploring the effectiveness of 

both static and dynamic feature analysis may help improve the model's performance.  Finally, 

the use of another efficient data balancing method may lead to avoiding the overfitting 

limitation. 
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