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ABSTRACT 
 

With an emphasis on individuals with Type 1 diabetes, this study reviews blood glucose 

management techniques during the last five years. A brief introduction is provided to show 
how this biological issue turns out to be a control system issue in terms of plasma blood 
glucose management. This paper discusses new research on automated insulin delivery 
using the Bergman mathematical model. An attempt has been made to undertake a 
systematic review of the research that has been done so far in the development of artificial 
pancreas systems. The conclusion describes the development of a cognitive glucose-insulin 
controller and provides a fundamental grasp of how the nonlinear Bergman model for 
blood glucose regulation can be used to establish a control system for this biomedical 
control challenge. When compared to other current methods, the proposed cognitive 
controller shows a quicker response in terms of blood glucose maintenance. Additionally, 
the comparison results demonstrated that the suggested cognitive glucose-insulin control 
algorithm improved the time to reach a normal physiological blood glucose level for the 
first patient by 10% compared to the fuzzy logic and the fractional-order PID control 
algorithms, by 25% compared to the type-2 fuzzy control algorithm. 
 
Keywords: Control strategy, Diabetes mellitus, Insulin action, Plasma blood glucose. 
 

 

1. INTRODUCTION 
 

One of the most important and common chronic diseases in the world is diabetes, sometimes 
referred to as diabetes mellitus, which is mostly brought on by elevated blood glucose levels. 
Diabetes can be fatal or significantly impair a person's quality of life, regardless of gender. 
Diabetes is a chronic illness that only develops when blood glucose levels are too high. The 
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body uses glucose as an energy source, and the hormone insulin, which is released by the 
pancreas, regulates the amount of glucose that cells may use as fuel (Chinnababu and 
Jayachandra, 2024). Diabetes mellitus (DM) is becoming more and more common 
worldwide; by 2045, there will likely be over 783 million cases, mostly in low- and middle-
income nations (Gudiño-Ochoa et al., 2024). About 90% of cases are Type 2 diabetes 
mellitus (T2DM), with the remaining instances being Type 1 diabetes mellitus (T1DM) and 
gestational diabetes mellitus (GDM). Serious side effects include nerve damage, 
cardiovascular problems, and an elevated risk of dying young are linked to these disorders. 
Thus, accurate, timely, and cost-effective blood glucose monitoring and control are essential 
for those individuals. Experts are specifically studying the diabetes sufferers with type 1 
diabetes mellitus (T1DM) in great depth. Because of this, a lot of research has been done to 
develop a number of the diabetes sufferer mathematical models of insulin and glucose that, 
to a certain degree, accurately depict the physiological behavior of the human body 
(Kalaimani and Jeyakumar, 2024).  
The first generally recognized classification was released by the WHO in 1980 (Rivai and 
Kurniawan, 2023). IDDM (Type I) and NIDDM (Type II) were proposed as the two main 
classifications of diabetes mellitus. Because patients were categorized based on treatment 
rather than pathophysiology, it was suggested that the names "insulin-dependent diabetes 
mellitus" and "non-insulin-dependent diabetes mellitus" be dropped. The cases were 
referred to as Type I and Type II, with the former mostly originating from the death of 
pancreatic islet beta-cells and the latter from the common primary form of diabetes caused 
by abnormalities in insulin secretion (Rivai and Kurniawan, 2023). Even though type I 
diabetes only makes up 5–10% of all cases, its incidence is rising globally and it has major 
short- and long-term effects. According to the definition, diagnosis, and classification of 
diabetes mellitus and its complications (Engell et al., 2021), type I denotes the process of 
beta-cell destruction in the pancreas that may eventually result in diabetes mellitus, where 
"insulin is required for survival" to avoid the development of ketoacidosis, coma, and death. 
For Type I diabetes, which requires constant attention to several areas such insulin delivery, 
blood glucose monitoring, meal planning, and diabetes-related problem screening, a 
multidisciplinary health team is the best setting. These effects, which include microvascular 
and macrovascular disease, are the main cause of morbidity and mortality associated with 
Type I diabetes (Qteat and Awad, 2021). The most prevalent type of diabetes is type II. 
Type II diabetes has been identified in millions of people worldwide, and many more are still 
undiagnosed. If diabetes is not identified or is not adequately managed, people with the 
condition are more likely to get heart attacks and strokes. They also have a higher chance of 
losing their sight, having their feet and legs amputated because of damage to their blood 
vessels and nerves, and developing renal failure that necessitates dialysis or a transplant 
(Hettiarachchi et al., 2024).  When blood glucose levels are higher than normal but not 
high enough to be considered diabetes, people almost invariably have "prediabetes" before 
developing Type II diabetes. Recent research suggests that prediabetes may already be 
permanently damaging the body, especially the heart and circulatory system (Liu, 2019). 
Insulin is either ignored by the cells or the body does not make enough of it in Type II 
diabetes. For the body to be able to use glucose as fuel, insulin is required. The body converts 
all sugars and starches into glucose, the fundamental fuel for cells, when food is consumed. 
Blood sugar is transported into the cells by insulin. Diabetes problems may arise when 
glucose accumulates in the circulation rather than entering the cells. The purpose of this 
work is to demonstrate how the diabetes sufferers with type 1 diabetes, whose bodies 
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cannot properly utilize the insulin they produce, need insulin injections in order to survive. 
Many studies have been conducted to develop a number of mathematical glucose-insulin 
control models that determine the prompt and optimal insulin-infusion control action value 
in order to improve the performance of the plasma blood glucose level in the diabetes 
sufferer model with regard to regulation and stabilization of the plasma blood glucose at the 
normal physiological level within a suitable time to avoid the hyperglycemia and 
hypoglycemia states. People with diabetes have a challenging disease that essentially 
involves regulating plasma blood glucose levels to prevent both hyperglycemia and 
hypoglycemia, according to the study's description of the issue. Furthermore, determining 
the amount of insulin-infusion level is essential for controlling and stabilizing the blood 
glucose level to the normal physiological level in the shortest amount of time.  
 
2. THE NONLINEAR DIABETIC PATIENT MODEL 
 
Generally speaking, the intestine, where carbs are absorbed from digested food, and the liver 
are the two places where glucose enters the plasma blood (Benzian, 2021). The pancreas 
produces the hormones insulin and glucagon, which have opposing effects and are necessary 
for the body to maintain a steady blood glucose level, as shown in Fig. 1 (Benzian, 2021) 
and (Chinnababu and Jayachandra, 2024). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 1. The general diagram of the insulin-glucagon system (Benzian, 2021; 
Chinnababu and Jayachandra, 2024). 

 
The beta cells of the pancreatic islets, which are tiny islands of endocrine cells in the 
pancreas, produce and secrete insulin. The pancreatic islets' alpha cells produce and excrete 
glucose. Glycogen is stored by the liver, which then transforms it back into glucose and 
delivers it into the bloodstream. By secreting insulin, the pancreas helps cells absorb blood 
glucose. According to (Benzian et al., 2021; Chinnababu and Jayachandra, 2024), this 
reduces blood glucose levels. A normal blood glucose level is required for the organs to 
function properly because glucose is the cell's primary fuel. Diabetes is a metabolic disease 
in which the body either produces insufficient insulin or develops resistant to its effects, 
resulting in abnormally high blood glucose levels. Two widely used tests, the oral tolerance 
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test (OGTT) and the intravenous glucose tolerance test (IVGTT), can identify the abnormally 
elevated blood glucose levels associated with diabetes (Benzian, 2021; Chinnababu and 
Jayachandra, 2024). 
In our work, a model of the glucose-insulin system based on the Bergman glucose insulin 
minimum model has been taken. In particular, the three important compartments in this 
model are shown in Fig. 2, which describes the relationship among the concentration level of 

the distant insulin compartment Ins(k) in (mU/L), the level of the plasma blood glucose 
compartment Gp(k) in (mg/dl), and Xp(k) is the variable which describes the insulin effect 
on net glucose disappearance and the unit of Xp(k) is (1/min). Blood glucose, a hormone, and 
insulin were thought to be stored in two separate compartments and to interact with each 
other. In this context, several research works used the Bergman glucose-insulin basic model, 
which lacks the biological complexity shown in (Chinnababu and Jayachandra, 2024), to 
study the distribution of insulin and the regulation of blood glucose (Bergman et al., 1981).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 2. The compartments of the Bergman glucose insulin minimal model. 
 

The following is a description of this model, which is based on nonlinear ordinary differential 
equations (Pujol-Vázquez et al., 2023; Kaçar et al., 2020; Yazdani and Moghaddam, 
2021; Nath et al., 2018; Alkahtani et al., 2018): 
 
�̇�𝑝(𝑘) = −𝑃1[𝐺𝑝(𝑘) − 𝐺𝑏] − 𝑋𝑝(𝑘)𝐺𝑝(𝑘) + 𝐹𝑜𝑜𝑑(𝑘)                                                                      (1)  
                                                                                           
𝑋�̇�(𝑘) = −𝑃2𝑋𝑝(𝑘) + 𝑃3𝐼𝑛𝑠(𝑘)                                                                                                                (2)  
 
𝐼𝑛𝑠̇ (𝑘) = −𝑛[𝐼𝑛𝑠(𝑘) − 𝐼𝑏] + 𝑌[𝐺𝑝(𝑘) − ℎ]+ 𝑡 + 𝐹𝑏Insulin(𝑘)                                                           (3)  
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Since diabetic people are unable to regulate their blood sugar levels, this factor  
𝑌[𝐺𝑝(𝑘) − ℎ]+ 𝑡 =0 will not be taken into account while developing the transfer function. 
Instead, a given parameter will be derived based on the assumption of a steady-state 
condition, as given below (Pujol-Vázquez et al., 2023; Kaçar et al., 2020; Yazdani and 
Moghaddam, 2021): 
 
𝐼𝑛𝑠̇ (𝑘) = −𝑛[𝐼𝑛𝑠(𝑘) − 𝐼𝑏] + 𝐹𝑏𝐼𝑛𝑠𝑢𝑙𝑖𝑛(𝑘)                                                                                              (4) 
 
Table 1 displays the parameters of the nonlinear Bergman model equations that describe 
the normal individual and three models of people with diabetes. (Incremona et al., 2018;  
Pujol-Vázquez et al., 2023; Bergman et al., 1981; Abadi et al., 2014). 
 

Table 1. The diabetes sufferers' parameters of the nonlinear Bergman model (Bergman et al., 

1981; Incremona et al., 2018; Pujol-Vázquez et al., 2023; Abadi et al., 2014). 
 

Patient #3 Patient #2 Patient #1 Normal Person Parameters Units 

0 0 0 0.031 P1 (1/min) 
0.014 0.007 0.011 0.012 P2 (1/min) 

9.94×10-6 2.16×10-6 5.3×10-6 4.92×10-6 P3 (L/mUmin2) 
0.0046 0.0038 0.0042 0.0039 𝑌(mU/mg.min2) 
82.937 77.578 80.2 79.035 h (mg/dl) 
0.281 0.246 0.26 0.265 n (min-1) 

70 70 70 70 Gb (mg/dl) 
7 7 7 7 Ib (mU/L) 

210 220 230 280 Go (mg/dl) 
60 55 50 364.8 Io (mU/L) 

710×10-6 308×10-6 481×10-6 492×10-6 SI=P3/P2 

 
where Xp(k) is the effect of active insulin in the distant compartment variable 1/min, and 
Gp(k) is the blood glucose concentration variable mg/dl. Food(k) is the meal disturbance 
input variable mg/dl.min-1, 𝐹𝑏Insulin(𝑘) is the controlled insulin-infusion rate variable, 
mU/L.min-1, and Ins(k) is the blood-insulin concentration variable mU/L.  
P1 is the glucose effectiveness factor, P2 and  P3 are the fractional transfer coefficients of 
insulin into and out of the remote compartment where insulin action is expressed, Gb is the 
basal concentration of the plasma blood glucose, Ib is the basal concentration of the plasma 
blood-insulin, n denotes to the first-order decay rate of plasma insulin, h denotes the glucose 
threshold value above which the pancreatic β-cells release insulin, and Y is the rate of the 
pancreatic β-cells' release of insulin following the glucose injection with glucose 
concentration. Insulin sensitivity SI is calculated as P3/P2. 
To check the nonlinear diabetic patient model based on the Bergman minimal model is stable 
in each patient's parameters as in Table 1, the Lyapunov function (Ogata, 2010) is proposed 
as follows: 
 
𝑉(𝑥1, 𝑥2, 𝑥3) > 0.5𝑥1(𝑡)2 + 0.5𝑥2(𝑡)2 + 0.5𝑥3(𝑡)2                                                                              (5) 
 
Clearly, 𝑉 ≥ 0 if all states (𝑥1, 𝑥2 𝑥3) ≥ 0, the function is positive definite in all values of the 
states.  
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The nonlinear Bergman minimal mode can be expressed as in Eq. (6) based on the Eq. (1), 
Eq. (2), Eq. (3), and Eq. (4). 
 

[
𝑥1̇

�̇�2

�̇�3

] = [
−𝑝1

0
0

−𝑥1

−𝑝2

0

0
𝑝3

−𝑛
] [

𝑥1

𝑥2

𝑥3

]                                                                                                                    (6) 

 
where, 𝑥1, 𝑥2 𝑥3 are Gp, Xp, and Ins, respectively. The time derivative of Eq. (5) becomes: 
 
�̇�(𝑥1, 𝑥2, 𝑥3) < 𝑥1𝑥1̇ + 𝑥2𝑥2̇ + 𝑥3𝑥3̇                                                                                                           (7) 
 
Substituting Eq. (6) in Eq. (7), the derivative state vector becomes as follows: 
 
�̇�(𝑥1, 𝑥2, 𝑥3) < 𝑥1(−𝑝1𝑥1 − 𝑥1𝑥2) + 𝑥2(−𝑝2𝑥2 − 𝑝3𝑥3) + 𝑥3(−𝑛𝑥3)                                           (8) 
 
�̇�(𝑥1, 𝑥2, 𝑥3) < −𝑝1𝑥1𝑥1 − 𝑥1𝑥1𝑥2 − 𝑝2𝑥2𝑥2 − 𝑝3𝑥2𝑥3 − 𝑛𝑥3𝑥3                                                       (9) 
 
�̇�(𝑥1, 𝑥2, 𝑥3) < −𝑝1𝑥1

2 − 𝑝2𝑥2
2 − 𝑛𝑥3

2 − 𝑥2𝑥1
2 − 𝑝3𝑥2𝑥3                                                                    (10) 

 
Clearly, if all states (𝑥1, 𝑥2 𝑥3) = 0, �̇� = 0, and if all states (𝑥1, 𝑥2 𝑥3) > 0, �̇� < 0, the function 
�̇� is negative definite in all values of the states, and the system is globally asymptotically 
stable with four weighting parameters (𝑝1, 𝑝2, 𝑛, 𝑝3)of the normal person model. But, when 
the parameter 𝑝1 is equal to the zero value of the Bergman patient model, �̇�(𝑥1, 𝑥2, 𝑥3) is 
expressed as in Eq. (11) as follows: 
 
�̇�(𝑥1, 𝑥2, 𝑥3) < −𝑝2𝑥2

2 − 𝑛𝑥3
2 − 𝑥2𝑥1

2 − 𝑝3𝑥2𝑥3                                                                                   (11) 
 
The effect of 𝑥1in Eq. (11) is still appears, so �̇� is negative definite in all values of the states, 
and the system is globally asymptotically stable with three weighting parameters (𝑝2, 𝑛, 𝑝3) 
of the different types of patient models. 
 
3. HALF DECADE STUDIES 
 

In a half decade, in the artificial pancreas, numerous kinds of glucose-insulin controllers 
were created to maintain the patient's blood glucose levels within the normal range of 80–
100–120 mg/dl. Using a PSO algorithm to adjust the gain parameters in continuous time 
rather than discrete time with a small search space and the design and implementation of a 
digital PID controller based on the Xilinx system generator for regulating the T1D patient's 
blood glucose level were detailed by (Benzian et al., 2019). Different controllers are 
obtained as a result of these variations in the control gain parameters. Sorensen created a 
single MPC for dual model infusion of insulin and glucagon with an unmeasured disturbance 
at a random moment in (Dias et al., 2020), a thorough physiological model. The suggested 
controller's efficacy is evaluated using average tracking error (ATE), which gives the average 
blood glucose deviation from the threshold. While the set point is believed to be 90 mg/dl, 
the usual limit, where the blood glucose can deviate for optimal performance, is 14.4 mg/dl. 
This approach offers a better and more effective way to control blood sugar levels. Moreover, 
(Benzian et al., 2021) used a fractional-order-PID (FOPID)controller and a fuzzy-logic (FL) 
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controller to control a T1D patient's blood glucose level. They also used a variety of meta-
heuristic methods to adjust the FOPID's control gain parameters. This work's drawback is 
that the controllers were only developed for a single patient and the linear Bergman model, 
and they only employed five rules for the membership function. They also utilized a trial-
and-error approach to determine the input-output fuzzy logic controller's gain. As a result, 
the controller produces an insulin control action value that is too quick and suboptimal, 
which causes the blood glucose level to respond too quickly. In (Babar et al., 2021) 
designed a control glucose-insulin system using a sliding mode-back-stepping controller 
with three control gain parameters that were adjusted by trial-error method to achieve 
quick response and reduced chattering in a T1DM patient model for an intravenous glucose 
tolerance test. 
Additionally, an artificial pancreas system was developed by the authors (Patra and Nanda, 
2021) that automatically releases insulin and maintains the patient's blood glucose level by 
suggesting a model predictive controller for T1DM patients with insulin pumps that uses a 
Laguerre function and a linearized structure. However, a digital PID controller for diabetes 
patients' blood glucose levels using a linear Bergman model was introduced by (Sharma et 
al., 2022). Because the Ziegler-Nichols (Z-N) tuning method is not appropriate for 
investigating and utilizing the global extreme solution of the issue, they used it to determine 
the control settings, which resulted in an overshoot in the patient's blood glucose response. 
An intelligent controller using a radial basis function neural network for an automated 
insulin delivery system for a virtual the diabetes sufferer model was described in (Barbosa 
de Farias et al., 2022) for monitoring and regulating the plasma blood glucose level in a 
matter of days. 
The estimation of the T1D patient model was demonstrated in (Khaqan et al., 2022) using 
a UVA/Padova metabolic simulator. For the linear third-order diabetes sufferer model, 
control algorithms that managed the blood glucose level were designed using an intelligent 
predictive control model with linear and nonlinear controllers. A physiological system was 
created in (Homayounzade, 2022) utilizing an observer-based bbackstepping controller 
for an intravenous glucose tolerance test, the diabetes sufferer model with type 1 diabetes 
using an expanded Bergman model to estimate the plasma level and insulin concentration. 
The controller then uses these estimates as feedback to maintain the patient's blood glucose 
levels within a typical physiological range. A generalized type-2 (GT2) fuzzy-logic system 
(FLSs) controller was created in (Yan et al., 2022) specifically for the first diabetes sufferer 
model and the linear diabetes sufferer Bergman model. To get the four control gains in the 
control law, it employs the trial-and-error technique. Because the controller generates a 
quick and less-than-ideal value of the insulin control action, this causes a slight oscillation in 
the plasma blood glucose level response. The optimal interval type-2 fuzzy (IT2F) controller 
was suggested by (Sayed et al., 2023) for the nonlinear Bergman model in patients with 
type 1 diabetes. The eight control gains in the control law are obtained using the grey wolf 
optimization (GWO) technique. This results in a minor oscillation in the blood glucose level 
response as the controller produces a rapid and suboptimal value of the insulin control 
action. Futhermore, a fractional-order-PID (FOPID) controller was utilized to improve the 
tracking plasma blood glucose error and control the diabetes sufferer's blood glucose level, 
while a complex-order PID (COPID) controller was suggested for higher blood glucose levels 
in a T1D diabetes sufferer model in (Saleem and Iqbal, 2023). However, these controllers 
have two drawbacks: the control parameters are modified by numerical optimization, and 
the beginning settings are dependent on the designer's experience. Additionally, the 
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adaptive Tilt Integral-Derivative Filter controller was developed in (Patra and Panigrahi, 
2023) using a Romora optimization technique. Its four controller gains parameters are 
adjusted for the blood glucose levels of patients with type 1 diabetes mellitus. The precision, 
consistency, robustness, noise reduction, and enhanced uncertainty handling of the 
proposed patient model with RO-TIDF are evaluated. But in the Lehman-Based Diabetic 
Patient Model (LBDPM). (Kalaimani and Jeyakumar, 2024) created and investigated 
adaptive controllers to control blood sugar levels through insulin administration. This work 
utilizes the ANYA fuzzy rule-based system, an online adaptive type controller that uses the 
N-BEATS algorithm, for the application of diabetes. Normal blood glucose levels are 
monitored by the model using the suggested controller, even in the event of unanticipated 
external disturbances. Using data from simulated diabetic patient models, the primary goal 
in type 1 diabetes research is to increase the accuracy of a deep learning system. The linear 
blood glucose-insulin model in type 1 diabetes was enhanced by (Shenbagam et al., 2024), 
who also proposed a fractional-order PID (FOPID) controller with a genetic algorithm to 
modify the five control parameters. This improved the tracking plasma blood glucose error 
and aided the plasma blood glucose levels of the diabetes sufferer model.The previous works 
related to the glucose-insulin control algorithm can be summarized in Table 2, in terms of 
the algorithms used, the simulation results, and the drawbacks in their research works. 

 
Table 2. The previous works related to the glucose-insulin control algorithm 

Author Names Algorithms Simulation Results Drawback 
(Benzian et al., 

2019) 
PID controller with 

PSO 
High overshoot response of 
plasma blood glucose level 

Small search space for the 
gain parameters 

(Dias et al., 
2020) 

Single MPC 
Blood glucose level was 

good performance 
Trial-error method for 

tuning parameters 

(Benzian et al., 
2021) 

Fractional order 
PID controller and 

the fuzzy logic 
controller 

Overshoot in the 
response of the blood 

glucose level 

The linear Bergman model 
and they used only five rules 

for the membership 
function, with a trial-and-

error method 

(Babar et al., 
2021) 

Back-stepping-
sliding mode 

controller 

Quick response and less 
chattering in an 

intravenous glucose level 

Trial-error method for 
tuning three control gain 

parameters 

(Patra and 
Nanda, 2021) 

Model predictive 
controller 

Stabilizes the blood 
glucose level for the 

diabetes sufferer  

Linearization model of 
Bergman diabetes 

sufferer model 

(Sharma et al., 
2022)  

Using Ziegler-Nichols 
(Z-N) tuning, a digital 

PID controller 

Overshooting, the 
response of the blood 

glucose 

The optimized algorithm 
lacked intelligence. 

(Barbosa de 
Farias et al., 

2022) 

Intelligent controller 
with a radial basis 

function neural 
network 

Blood glucose level was 
good performance 

The automated insulin 
delivery system was a big 

value 

(Khaqan et al., 
2022) 

Intelligent 
predictive control 

model 

Stabilizes the plasma 
blood glucose level for 
the diabetes sufferer 

model 

Linearization model of 
Bergman diabetes 

sufferer 
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(Homayounzade, 
2022)  

Observer-based 
back-stepping 

controller 

Fast glucose level 
response 

Linearization model of 
Bergman diabetes 

sufferer 

(Yan et al., 2022) 

Generalized type-2 
(GT2) fuzzy-logic 

system (FLSs) 
controller 

The slight oscillation in 
the blood glucose level 

response. 

Linear patient Bergman 
model. 

It uses the trial-and-error 
method 

(Sayed et al., 
2023) 

Optimized interval 
type-2 fuzzy (IT2F) 

controller with GWO 

Quick and suboptimal 
value of the insulin 

control action 

The tuning algorithm has 
many iterations 

(Saleem and 
Iqbal, 2023) 

Complex-order PID 
controller 

The blood glucose 
tracking error was a 

small value 

Tuning the control 
parameters using 

numerical optimization 

(Patra and 
Panigrahi, 2023)  

Controller for 
Adaptive Tilt Integral-

Derivative Filters 

Quick response to the 
glucose level of the 

diabetes sufferer model 

The tuning algorithm has 
many iterations 

(Kalaimani and  
Jeyakumar, 

2024) 

Adaptive Fuzzy 
Controller 

Track the diabetes 
sufferer model's normal 

blood glucose levels. 

Deep learning algorithm 
has a long time for tuning 

parameters. 

(Shenbagam et 
al., 2024) 

Fractional-order 
PID controller with 
a genetic algorithm 

Quick response of the 
diabetic patient model's 

plasma blood glucose 
level 

Linearization model of the 
diabetes sufferer 
Bergman model 

 
4. PROPOSED CONTROLLER 
 
The general structure of the proposed cognitive plasma blood glucose-insulin control 
strategy is shown in Fig. 3, which demonstrates the three layers for achieving the optimal 
insulin-infusion level for the nonlinear diabetic patient model to avoid the hyperglycemia 
and hypoglycemia states and to stablize the plasma blood glucose level of the diabetes 
sufferer in the desired normal state. 
This three-layer structure consists of: 
• Layer #1: The cognitive dataset that represents the attributes of the control system, and 

it depends on three different types of diabetic patients, such as the first patient has high 
insulin sensitivity. The second patient has low insulin sensitivity, and the third patient 
has very high insulin sensitivity. 

• Layer #2: The neural network identifier patient model that represents the different types 
of nonlinear diabetic patients with different types of meal disturbances. 

• Layer #3: The feedback neural network controller based on the radial basis function 
neural network model to find the optimal insulin-infusion value and to keep the plasma 
blood glucose level for the diabetes sufferer in the normal state. 

The identifier model is based on the NARMA-L2 neural network model that will represent 
the different types of the nonlinear diabetic patient model. Three different types of the 
nonlinear Bergman glucose-insulin model are used with the input-output dataset, including 
insulin Ins(k) in (mU/L) and glucose Gp(k) in (mg/dl), as well as the dataset in layer #1 to 
build the proposed nonlinear identifier neural network glucose-insulin model. Therefore, 
the modelling of the nonlinear glucose-insulin is the primary aim of the proposed cognitive 
blood glucose-insulin control strategy, which is utilized to provide the preconditions for 
analysis and will be used in the third layer of the control design.  
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Figure 3. Cognitive plasma blood glucose-insulin control strategy for the nonlinear diabetic patient 
model. 

 
In fact, the purpose of the nonlinear glucose-insulin identification is to find a mathematical 
model of the different types of the nonlinear Bergman glucose-insulin model whose output 
corresponds to the output of the nonlinear diabetic patient models. In this regard, neural 
networks are mathematical models with excellent fault tolerance, adaptiveness, and 
associative memory capacities that can process data concurrently. In order to establish the 
neural network glucose-insulin model, the identifier model of the nonlinear diabetic patient 
model is constructed using the NARMA-L2 neural network model, as seen in Fig. 4.  
For the proposed identification, the NARMA-L2 model was selected among several 
traditional neural networks due to its unique advantages. More specifically, strong 
robustness performance, no output oscillation, high dynamic representation, and an 
increasing degree of the nonlinear glucose-insulin model performance are provided by the 
two networks of FH[-] and GH[-], which are raised in the order of the hidden units. The 
cognitive attributes input is represented in Eq. (12), therefore, the number of input to each 
network is equal to 7 that lead to the number of neurons in each network is equal to 15 based 
on equation 2n+1 (Narendra and Parthasarthy, 1990; Al-Araji et al, 2019) where n is the 
number of inputs.  
 
𝐵𝑖(𝑘) = [𝐺𝑜(𝑘) 𝐼𝑜(𝑘) 𝐹𝑜𝑜𝑑(𝑘) 𝐼𝑚𝑎𝑥(𝑘) 𝐺𝑝(𝑘) 𝑋𝑝(𝑘) 𝐼𝑛𝑠(𝑘 − 1)]                        (12) 
 
The proposed NARMA-L2 model of the nonlinear glucose-insulin model can be described in 
Eq. (13). 
 
𝐺𝑚(𝑘 + 1) = 𝐹𝐻[𝐺𝑝(𝑘), 𝑋𝑝(𝑘), 𝐼𝑛𝑠(𝑘 − 1), 𝐹𝑜𝑜𝑑(𝑘), 𝐼𝑜(𝑘), 𝐺𝑜(𝑘), 𝐼𝑚𝑎𝑥(𝑘)] +
𝐺𝐻[𝐺𝑝(𝑘), 𝑋𝑝(𝑘), 𝐼𝑛𝑠(𝑘 − 1), 𝐹𝑜𝑜𝑑(𝑘), 𝐼𝑜(𝑘), 𝐺𝑜(𝑘), 𝐼𝑚𝑎𝑥(𝑘)] × 𝐼𝑛𝑠(𝑘)                                (13) 
                                                                                       
The 𝐹𝐻[−] and 𝐺𝐻 [-] network weights can be represented as follows: FVai represents the 
weight matrix of 𝐹𝐻[−] in the hidden layer, FWb represents the weight matrix of 𝐹𝐻[−] in 
the output layer, GVai represents the weight matrix of 𝐺𝐻 [-] in the hidden layer, and GWb 
represents the weight matrix of 𝐺𝐻 [-] in the output layer. 
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Figure 4. FH[−] and GH[-] neural network structure. 

 
To illustrate the calculations in the hidden layer based on the fifteen neurons, firstly, we will 
sum the net of the weights of FVai and GVai using Eq. (14) and Eq. (15). 
 

𝐹𝐻𝑛𝑒𝑡𝑎 = ∑ 𝐹𝐻𝑎𝑖 × 𝐵�̅�
𝑛𝑓ℎ
𝑎=1                                                                                                                         (14) 

 

𝐺𝐻𝑛𝑒𝑡𝑎 = ∑ 𝐺𝐻𝑎𝑖 × 𝐵�̅�
𝑛𝑔ℎ
𝑎=1                                                                                                                        (15)   

Where nfh and ngh represent the hidden nodes’ number, which is equal to fifteen nodes. 
Secondly, the neuron outputs of both FHa and GHa are calculated as a continuous unipolar 
sigmoid activation function of the FHneta and GHneta, as illustrated in Eq. (16) and Eq. (17), 
respectively. 
 

𝐹𝐻𝑎 =
1
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                                                                                                                                        (16) 

     

𝐺𝐻𝑎 =
1

1+𝑒−𝐺𝐻𝑛𝑒𝑡𝑎
                                                                                                                                        (17) 
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Thirdly, to calculate the weighted sum Fneto and Gneto of the output layers, Eq. (18) and Eq. 
(19) are used, respectively. 
 

𝐹𝑛𝑒𝑡𝑜 = ∑ 𝐹𝑊𝑏 × 𝐹𝐻𝑎
̅̅ ̅̅ ̅̅𝑛𝑓ℎ

𝑎=1                                                                                                                        (18) 
 

𝐺𝑛𝑒𝑡𝑜 = ∑ 𝐺𝑊𝑏 × 𝐺𝐻𝑎
̅̅ ̅̅ ̅̅𝑛𝑔ℎ

𝑎=1                                                                                                                        (19) 
 
The one linear neuron passes the sum of both (Fnetfo) and (Gnetgo) through a linear function 
of slope 1, as shown in Eq. (20) and Eq. (21). 
 
𝐹𝑂 = 𝐿𝑖𝑛𝑒𝑎𝑟(𝐹𝑛𝑒𝑡𝑜)                                                                                                                               (20) 
 
𝐺𝑂 = 𝐿𝑖𝑛𝑒𝑎𝑟(𝐺𝑛𝑒𝑡𝑜)                                                                                                                               (21) 
The neural network output is the glucose level of the modelling Gm(k) that can be expressed 
as given in Eq. (22): 
 
𝐺𝑚(𝑘) = 𝐹𝑂 + 𝐺𝑂 × 𝐼𝑛𝑠(𝑘)                                                                                                                 (22) 
 
The identifier model based on NRMA-L2 will produce the same actual response of the 
glucose level after using the neural network's training procedure.  
 
The mean square error is used as the cost function to evaluate each solution in the GWO 
algorithm: 
 

𝑀𝑆𝐸 = ∑ [
1

𝐾
∑ ((𝐺𝑝(𝑖) − 𝐺𝑚(𝑖)) 2)]𝐾

𝑖=1
𝐼𝑇𝑚𝑎𝑥
𝐼𝑡=1                                                                                        (23) 

 
where ITmax is the maximum number of iterations and K denotes the maximum number of 
samples.  
The NARMA-L2 neural network model serves as the foundation for the feedforward neural 
network controller, which calculates the maximum insulin-infusion amount 𝑈𝑚𝑎𝑥 for each 
meal as shown in Fig. 5. 
The control law that indicates the maximum insulin-infusion level for every meal is provided 
by the Jacobian, which is also known as the GH[-] neural network. This law will be utilized in 
the closed loop control system's multi-objective function to lower the value of the feedback-
insulin control action. 
 
 
 
 
 
 
 
 

S 
 
 

Figure 5. The structure of the feedforward neural network controller. 
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It has the sign definite in the nonlinear Bergman glucose-insulin model operation region to 
ensure the uniqueness of the model inverse at that operating region, which can be expressed 
in Eq. ( 24) and Eq. (25) based on Eq. (22) and Eq. (13). 
 

𝑈𝑚𝑎𝑥 =
𝐺𝑑−𝐹𝐻[−]

𝐺𝐻[−]
                                                                                                                                       (24) 

 
𝑈𝑚𝑎𝑥(𝑘 + 1) = (𝐺𝑑(𝑘 + 1) − 𝐹𝐻[𝐺𝑝(𝑘), 𝑋𝑝(𝑘), 𝐼𝑛𝑠(𝑘 − 1), 𝐹𝑜𝑜𝑑(𝑘), 𝐼𝑜(𝑘), 𝐺𝑜(𝑘), 𝐼𝑚𝑎𝑥(𝑘)])/

𝐺𝐻[𝐺𝑝(𝑘), 𝑋𝑝(𝑘), 𝐼𝑛𝑠(𝑘 − 1), 𝐹𝑜𝑜𝑑(𝑘), 𝐼𝑜(𝑘), 𝐺𝑜(𝑘), 𝐼𝑚𝑎𝑥(𝑘)]                                                                        (25)  
 
Where,  𝐺𝑑(𝑘 + 1): denotes the desired blood glucose level. 

The GWO algorithm is a clever algorithm that is based on grey wolf predation. Similar to 
other intelligent algorithms, each grey wolf's position indicates a feasible response, and the 
prey indicates the optimal one. Grey wolves are ranked according to the value of their fitness 
function in an effort to identify the best solution (Gao et al., 2022). With three different 
kinds of grey wolf groups, hierarchical commands can be created. The grey wolves with the 
highest fitness function value make up the leader group, often known as the alpha (α) group. 
The alphas are in charge of making judgments about hunting, waking times, sleeping spots, 
and other things. Ironically, despite not being the strongest person in the group, the alpha 
must be the best pack manager. The beta (β) group, the second echelon of leadership, is 
frequently called co-leaders since they assist the alpha in pack activities and decision-
making. The delta (Δ) groups come after them. The probable prey is located nearer the 
wolves α, β, and Δ (Kraiem et al., 2021). Figure 6 illustrates the hierarchy of gray wolves 
during predation, which is one distinctive feature of GWO. The three primary phases of 
hunting, finding the prey, encircling the prey, and attacking the prey, are carried out to 
optimize efficiency. 

After α groups lead gray wolves to encircle their victim, β and Δ groups assault the prey, and 
the prey is eventually taken. This process results in a method with few parameters, no 
special search parameters, and good convergence performance (Almazini and Ku-
Mahamud, 2021). It is very easy to design. At the beginning of the process, a fixed number 
of grey wolves are used, and their locations are selected at random.  

 

 

 

 

 

 

 

Figure 6. The hierarchy of gray wolves. 
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Each group in the pack will encircle the others according to the following mathematical 
equations (Almazini et al., 2023; Almazini and Ku-Mahamud, 2021): 

𝐷 = |𝐶 × 𝑋𝑝(𝑖𝑡𝑒𝑟) − 𝑋(𝑖𝑡𝑒𝑟)|                                                                                            (26) 

 
𝑋(𝑖𝑡𝑒𝑟 + 1) = |𝑋𝑝(𝑖𝑡𝑒𝑟) − 𝐴 × 𝐷|                                                                                           (27) 

 
where Eq. (26) represents the distance between the grey wolf individual and its prey. Eq. 
(27) contains the formula for the gray wolf's position update, where iter represents the 
current iteration, A and C are coefficient vectors, and Xp and X are the position vectors of the 
prey and the grey wolf, respectively (Almazini and Ku-Mahamud, 2021; Almazini et al., 
2023). The formulas used to determine A and C are as follows: 
 
𝐴 = 2𝑎 × 𝑟1 − 𝑎                                                                                                        (28) 
𝑎 = 2 × (1 − 𝑖𝑡𝑒𝑟/𝐼𝑡𝑀𝑎𝑥)                                                                                           (29) 
𝐶 = 2 × 𝑟2                                                                                                          (30) 
 
The basic steps of the GWO methodology for figuring out and modifying the weights of the 
FH[-] and GH[-] neural networks are shown in Fig. 7. 
The convergence factor serves as its representation, and the random vectors r1 and r2 are 
chosen at random from the interval (0,1). The total number of iterations is called ItMax. The 
following equations (Gao et al., 2022; Kraiem et al., 2021; Almazini and Ku-Mahamud, 
2021; Almazini et al., 2023) state that the prey position Xp (iter + 1) update is calculated 
by averaging the grey wolf locations α, β, and Δ (the three temporarily ideal solutions), with 
the remaining locations being discarded for position update: 
 

𝑋𝑝(𝑖𝑡𝑒𝑟 + 1) =
𝑋1+𝑋2+𝑋3

3
                                                                                                          (31) 

Where: 
𝑋1(𝑖𝑡𝑒𝑟) = 𝑋𝛼(𝑖𝑡𝑒𝑟) − 𝐴1 × 𝐷𝛼

𝑋2(𝑖𝑡𝑒𝑟) = 𝑋𝛽(𝑖𝑡𝑒𝑟) − 𝐴2 × 𝐷𝛽

𝑋3(𝑖𝑡𝑒𝑟) = 𝑋∆(𝑖𝑡𝑒𝑟) − 𝐴3 × 𝐷∆

}                                                                                                          (32) 

and: 
𝐷𝛼 = |𝐶1 × 𝑋𝛼(𝑖𝑡𝑒𝑟) − 𝑋(𝑖𝑡𝑒𝑟)|

𝐷𝛽 = |𝐶2 × 𝑋𝛽(𝑖𝑡𝑒𝑟) − 𝑋(𝑖𝑡𝑒𝑟)|

𝐷∆ = |𝐶3 × 𝑋∆(𝑖𝑡𝑒𝑟) − 𝑋(𝑖𝑡𝑒𝑟)|

}                                                                                                           (33) 

 

The random vectors C1, C2, and C3 characterize the final positions of people, whereas Dα, 
Dβ, and DΔ in Eq. (26), respectively, indicate the distances between α, β, and Δ and other 
individuals. Furthermore, their beginning and finishing positions are specified by Eq. (27). 
When the victim eventually stops moving, the grey wolf attacks to put an end to the search 
(Gao et al., 2022; Kraiem et al., 2021; Almazini and Ku-Mahamud, 2021; Almazini et 
al., 2023). By gradually decreasing the value of an, the range of A's fluctuations is reduced. 
This is the fundamental method for creating a process model. Put another way, the analogous 
value of A changes in the interval (-𝑎, 𝑏) during the iterative process in a way that is 
comparable to the linear decrease of an in the interval (2, 0). 
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Figure 7. The flowchart of updating the weights for the identifier patient model based on 
the GWO algorithm. 
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5. SIMULATION RESULTS 
 

In this work, the numerical fourth-order Runge-Kutta (4RK) method based on the MATLAB 
package with a half-minute sampling time was utilized for implementing the cognitive blood 
glucose-insulin control strategy for the nonlinear diabetic patient model in Fig. 3. This 
control strategy will achieve the optimal insulin-infusion level for the different types of 
nonlinear diabetic patient models to avoid the hyperglycemia level and hypoglycemia level 
and to keep the plasma blood glucose level of the diabetes sufferer in the desired normal 
state. Specifically, five steps are implemented, as illustrated below: 
The first step is to determine the cognitive attributes dataset, with the blood glucose level of 
the patient Gp(k), the blood-insulin concentration level Ins(k), and the active insulin in the 
remote compartment performs Xp(k), as an open-loop patient model for a healthy individual 
as well as for three distinct categories of the diabetes sufferers (NP, P#1, P#2, and P#3) who 
are dependent on the glucose starting levels (Go) of (280, 230, 220, and 210) mg/dl, 
respectively. Fig. 8 demonstrates the plasma blood glucose level of different types of three 
patients (Gp1(k), Gp2(k), and Gp3(k)), with the same initial glucose levels Go. However, the 
disturbance meal at breakfast is equal to 15 mg/dl.min-1 blood glucose level.  
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 8. The diabetes sufferers (P#1, P#2, and P#3) and a normal person (NP) of the plasma 
glucose level responses in the breakfast-meal state. 

 
Fig. 9 demonstrates the dynamic behaviour of the Bergman glucose insulin minimum model 
for the three different types of diabetic patients, representing the blood glucose level with the 
same initial glucose levels Go, but the disturbance meal at lunch is equal to 20 mg/dl.min-1   

blood glucose level.  
Fig. 10 demonstrates another dataset, which includes adding the disturbance meal at dinner 
with a blood glucose level equal to 5 mg/dl.min-1 for the three different types of diabetic 
patients with the same initial glucose levels Go. 
In step two, the nonlinear glucose-insulin the diabetes sufferer model is displayed in Fig. 3 
using the structure of the NARMA-L2 neural network (Dagher, 2018). Accordingly, the 
suggested number of nodes in each of the networks, which have three layers, including the 
input layer, the hidden layer, and the output layer, is as follows: [7: 15: 1], respectively 
(Narendra and Parthasarthy, 1990; Al-Araji et al., 2019). 
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Figure 9. The diabetes sufferers (P#1, P#2, and P#3) and a normal person (NP) of the 
plasma glucose level responses in the lunch-meal state. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 10. The diabetes sufferers (P#1, P#2, and P#3) and a normal person (NP) of the 
plasma glucose level responses in the dinner-meal state. 

 

 The number of nodes in the hidden layer is equal to twice the number of nodes in the input 
layer plus one. The third step involves learning the identifier model of the nonlinear glucose-
insulin the diabetes sufferer using the GWO off-line algorithm and then tuning the models 
online. Signals entering or exiting the neural network (NN) have been considered to lie 
between (-1) and (+1) in order to solve numerical issues pertaining to actual values (Al-
Araji et al., 2019; Dagher, 2018). As a result, the neural network terminals' first and last 
layers (input-output) require the application of scaling functions, respectively, such that the 
ranges of these inputs are as follows: Gp(k)=(50 to 500) mg/dl; Xp(k)=(0 to 0.05) 1/min; 
Ins(k)=(0 to 700) mU/L; Food(k)=(5 to 25) mg/dl.min-1; Io(k)=(50 to 60) mU/L; Go(k)=(210 
to 280) mg/dl; and Imax(k)=(0 to 70) U/min.  
In the learning mode, the responses of the different types of the nonlinear neural network 
glucose-insulin the diabetes sufferer models (Gm1, Gm2, and Gm3) are shown in Figs. 11-a, 
b, c for three models with two cases the breakfast and the lunch meals learning dataset.  
These models have a very small error value in the modelling between the Bergman glucose 
level and the diabetic patient neural network model (Gm1, Gm2, and Gm3) for 600 patterns 
as a learning set, and they have good responsiveness of the identifier models with a very 
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good dynamical behaviour during the different cases of disturbance meal inputs (breakfast 
meal and lunch meal) for the three different types of the nonlinear glucose-insulin patient 
models. The performance of the best convergence curve is depicted in Fig. 12.  
 

 
 
 
 
 
 
 
 
 

                                             
 

(a) 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

(b) 
 

 

 

 

 
 
 
 
 
 
 
 

(c) 
 

Figure 11. The response of the different types of the nonlinear neural network glucose-insulin 
patient models for the breakfast meal learning set and the lunch meal learning set, a) The first 

diabetes sufferer model Gm1, b) The second diabetes sufferer model Gm2, c) The third diabetes 
sufferer model Gm3. 
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It is based on the off-line GWO algorithm for three different types of patient models with 500 
iterations and with an agents’ number equal to 32 for the neural networks. In addition, the 
number of weights is 272. Specifically, the best alpha convergence curve for the optimal 
updated weights of the identifier neural network is presented in Fig. 12. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. The best alpha convergence curve response of the different types of nonlinear neural 
network glucose-insulin patient models. 

 
The mean square error response for the optimal updated weights of the identifier neural 
network patients in the learning mode are presented in Figs. 13-a, b, c. To verify that these 
neural network models have remarkable learning, the testing mode in our work is 
essentially for the nonlinear glucose-insulin patient models to prove that these neural 
models have been learned in all the excitation and active regions of the real models and 
eliminated the overlearning problem. This problem means that the network learns on a part 
of the region and forgets other regions during the learning mode. However, the meta-
heuristic GWO algorithm learning cycle was excellent because this algorithm is ideal for 
investigating and taking advantage of the problems' global extreme solutions. Figs. 14-a, b, 
c demonstrate the dynamical behaviour of the nonlinear glucose-insulin patient models 
during the testing mode using dinner meal.  To verify that these neural network models have 
remarkable learning, the testing mode in our work is essentially for the nonlinear glucose-
insulin patient models to prove that these neural models have been learned in all the 
excitation and active regions of the real models and eliminated the overlearning problem. 
This problem means that the network learns on a part of the region and forgets other regions 
during the learning mode. However, the meta-heuristic GWO algorithm learning cycle was 
excellent because this algorithm is ideal for investigating and taking advantage of the 
problems' global extreme solutions. Figs. 15-a, b, c demonstrate the dynamical behaviour 
of the nonlinear glucose-insulin patient models during the testing mode using dinner meal. 
The mean square error response of the different types of nonlinear neural network glucose-insulin 
patient models, a) The first diabetes sufferer model Gm1, b) The second diabetes sufferer model Gm2, 

c) The third diabetes sufferer model Gm3. The fourth step involves representing the closed-loop 
control system for the nonlinear Bergman model based on the proposed NN controller with 
the GWO meta-heuristic method using the objective function (Al-Bayati et al., 2020). This 
function will reduce the error between the desired glucose level and the patient’s glucose 
level, and at the same time, it will reduce the value of the insulin control action for each 

50 100 150 200 250 300 350 400 450 500
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2
x 10

6

Number of Iterations

C
o
n

v
e
r
g
e
n

c
e
 C

u
r
v
e
 P

e
r
fo

r
m

a
n

c
e

 

 

Alpha convergence for Gm#1

Alpha convergence for Gm#2

Alpha convergence for Gm#3



Journal of Engineering, 2025, 31(6) 
 

Kh. E. Dagher and  J. Haggege  

 

20 

solution of the control gain parameters for the NN controller to find the best value of the 
insulin-infusion control action in the transient and the steady-state regions. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) 
Figure 13. The mean square error response of the different types of nonlinear neural network 

glucose-insulin patient models, a) The first diabetes sufferer model Gm1, b) The second diabetes 
sufferer model Gm2, c) The third diabetes sufferer model Gm3. 
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

(c) 
Figure 14. The response of the different types of the nonlinear neural network glucose-insulin 
patient models for the dinner meal testing set, a) The first diabetes sufferer model Gm1, b) The 

second diabetes sufferer model Gm2, c) The third diabetes sufferer model Gm3. 
 

The fourth step involves representing the closed-loop control system for the nonlinear 
Bergman model based on the proposed NN controller with the GWO meta-heuristic method 
using the objective function (Al-Bayati et al., 2020). This function will reduce the error 
between the desired glucose level and the patient’s glucose level, and at the same time, it will 
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reduce the value of the insulin control action for each solution of the control gain parameters 
for the NN controller to find the best value of the insulin-infusion control action in the 
transient and the steady-state regions. Fig. 15 displays the response of the proposed closed-
loop insulin-infusion neural network controller, when the Bergman diabetic patient model 
adds the breakfast meal as a disturbance.  It is important to note that at 200 minutes, the 
plasma blood glucose levels of the first diabetes sufferer model and second diabetes sufferer 
model did not precisely reach 80 mg/dl at steady state. They remain at their typical 
physiological level.  

 
 

 
 
 
 
 
 
 

 
 
 

 
 

Figure 15. The plasma blood glucose responses for each Bergman diabetes sufferer model 
based on the closed-loop cognitive NN controller with the breakfast disturbance. 

 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 16. The insulin action of the proposed controller for the three different types of 
Bergman models with the breakfast disturbance. 

 

The output response of the insulin-infusion NN controller during the first ten samples is 
displayed in Fig. 16 when the blood glucose level abruptly rises. The NN efficiently and 
rapidly determines the insulin action value for each of the three diabetes sufferer model to 
track the sudden increase in the blood glucose levels. 
To determine the optimal control gain settings of the NN controller, Fig. 17 shows the 
response of the best alpha convergence for the three diabetes sufferers.  
The lunch disturbance effect was introduced for a duration of ten samples for each patient 
to show the effectiveness of the insulin-infusion control action. In particular, 20 mg/dl.min-1 
is the suggested lunch disturbance value. The following points indicate that the suggested 
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overall controller improves the diabetes sufferer's glucose level response as shown in Fig. 
18.  
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 17. The best alpha fitness curve response of the NN controller for the diabetes sufferers 
models (P#1, P#2, and P#3) of Bergman patient models with the breakfast distubance. 

 
 
 

 
 
 
 
 
 
 
 
 

Figure 18. The plasma blood glucose responses for each Bergman diabetes sufferer model based 
on the closed-loop cognitive NN controller with the lunch disturbance. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 19. The plasma blood glucose responses for each Bergman diabetes sufferer model based 

on the closed-loop cognitive NN controller with the dinner disturbance. 
 

The suggested closed-loop insulin-infusion cognitive controller's response to the addition of 
dinner as a perturbation in the Bergman diabetic patient model is shown in Fig. 19. 
Specifically, the recommended dinner disturbance value is 5 mg/dl.min-1.  
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To confirm the effectiveness of the optimization algorithm (GWO) for modifying the 
parameters of the NN controller in this work, the simulation results of the proposed 
cognitive neural controller are compared with the results of other controller types that have 
taken from (Benzian et al., 2021; Yan et al., 2022). The results are shown in Table 3. 
 

Table 3. Simulation results contrasting alternative architectures with the proposed controller. 
 

Type of control algorithm 
Tuning 

algorithm 

Steady- State Error 
Overshoot OS(%) 

Time to reach normal 
physyological level 

Enhance the time 
to reach the blood 

glucose level at 
100 mg/dl  

Fractional order PID and Fuzzy 
logic controllers (Benzian et 

al., 2021) for 20 mg/dl lunch-
meal disturbance 

GA, ACO, 
BAT, IWO 

No oscillation Ess=0 
T=100 min 

10% for patient#1 
T=90 min 

Type-2 Fuzzy controller (Yan 
et al., 2022)  for 20 mg/dl 
lunch-meal disturbance 

Trial and 
Error 

Small oscillation 
Ess=0 

T=120 min 

25% for patient#1 
T=90 min 

The proposed cognitive neural 
networks controller 

GWO No oscillation Ess=0  

 
The fractional-order PID (FOPID) and fuzzy-logic (FL) controllers in (Benzian et al., 2021) 
were built for the linear Bergman model and only for the first the diabetes sufferer (P#1), 
using only five rules for the membership function and the trial-and-error method to 
determine the gain in the input-output fuzzy logic controller. As a result, the controller 
produces an insulin control action value that is too quick and suboptimal, which causes the 
plasma blood glucose level to respond too quickly. The suggested controller, on the other 
hand, employs the nonlinear Bergman model, the feedback NN with the GWO heuristic 
method. Based on the optimum parameters identified by the optimization algorithm, the 
controller has generated optimal or nearly optimal insulin control action, resulting in the 
reduction of blood glucose levels to a normal physiological level without overshooting or 
response oscillation. In contrast to fuzzy-logic controller algorithms and fractional-order-
PID algorithms, the comparison findings demonstrated that the NN with the GWO algorithm 
improved the time to attain the blood glucose level in a normal condition for patient #1 by 
10% (Benzian et al., 2021). 
In (Yan et al., 2022), the type-2 fuzzy controller was created only for the first diabetes 
sufferer (P#1) using the linear patient Bergman model. Trial and error is how the four 
control gains in the control law are acquired, which results in a minor oscillation in the blood 
glucose level response as the controller produces a rapid and suboptimal value of the insulin 
control action. The proposed cognitive neural controller, which consists of the feedback NN 
controller with the heuristic GWO method, works with a nonlinear patient Bergman model. 
The controller produces an ideal or nearly optimal insulin control action based on the best 
parameters found by the optimization algorithms, bringing the blood glucose level to a 
physiologically normal level without fluctuating or overshooting. When compared to the 
type-2 fuzzy controller algorithm, the comparison findings demonstrated that the NN with 
the GWO algorithm improved the time to attain the blood glucose level in normal conditions 
for patient #1 by 25% (Yan et al., 2022).  
The simulation's findings demonstrate that the optimal insulin control action can be 
achieved by the suggested cognitive neural network glucose-insulin controller using the 
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GWO algorithm. This makes it possible for the nonlinear diabetes sufferer Bergman model 
to track the necessary plasma blood glucose level with the least degree of tracking error and 
to attain optimal performance without oscillation in the output blood glucose levels of the 
different diabetes sufferer types. 
Furthermore, to show the effectiveness of the proposed cognitive glucose-insulin controller, 
we will take another parameter of the minimal glucose model, especially to show the effect 
of the glucose effectiveness factor P1, which is the rate constant for the glucose uptake in 
muscles and liver, which is not equal to zero. In the Bergman minimal model, the parameter 
P1 also known as glucose effectiveness (S_G), quantifies glucose's ability to facilitate its own 
uptake and suppress its production, independent of insulin action. A number of factors, 
including model simplifications, individual variability in insulin secretion and sensitivity, 
and underlying physiological conditions impacting glucose metabolism, can cause variations 
in the estimated values of P1, including zero or extremely tiny. The impacts of P1 zero versus 
small values on a few features are displayed in Table 4. 
 

Table 4. The effects of P1 zero vs small value. 
 

Feature 
P1 = 0 (No Glucose 

Effectiveness) 
P1 = Small (Minimal Glucose 

Effectiveness) 
Muscle Glucose 

Uptake 
Fully dependent on insulin 

A very small amount occurs 
independently 

Liver Glucose 
Suppression 

No suppression without 
insulin 

Slight suppression, but still needs insulin 

Impact on Blood 
Sugar 

Extreme glucose instability 
Slightly better glucose clearance, but still 

requires insulin 

 
Table 5 demonstrates the parameters of the minimal glucose model for the fourth patient 
(Xavier et al., 2022). The response of the suggested closed-loop insulin-infusion proposed 
controller is shown in Fig. 20 based on the Bergman diabetic patient model parameters as 
in Table 5. In particular, Go is equal to 200 mg/dl value in the blood at beginning, the insulin-
infusion action stabilizes patient #4's glucose level, as indicated by the red-colour line, which 
drops from 200 mg/dl to 80 mg/dl (the normal physiological level) and takes up 42 minutes. 
While the open loop response of patient #4 as indicated by the purple-colour line, decreases 
from 200 mg/dl to 120 mg/dl during 100 minutes, then remains at a level of 120 mg/dl blood 
glucose to 300 minutes. 

 
Table 5. The parameters’ values of the minimal model for the fourth patient (Xavier et al., 2022). 

 

Patient #4 Parameters Units 

0.028735 P1 (1/min) 
0.028344 P2 (1/min) 

5.0353×10-6 P3 (L/mUmin2) 
0.1 n (min-1) 
120 Gb (mg/dl) 
10 Ib (mU/L) 

200 Go (mg/dl) 
10 Io (mU/L) 

177.65×10-6 SI=P3/P2 
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 To monitor the abrupt rise in blood glucose levels as shown in Fig. 21, the proposed neural 
networks quickly and effectively calculate the insulin action value for the initial blood 
glucose level, Go. The maximum insulin-infusion control action value of 34.5 mU/L.min-1, 
then the rating insulin action is 8 mU/L.min-1. 
 
 
 

 
 
 
 
 

 
 
 
 
 

Figure 20. The glucose responses for patient #4 model based on the closed-loop cognitive 
controller with the p1 effect. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 21. The insulin action of the proposed controller for the fourth patient with the p1 

effect. 
6. CONCLUSIONS 
  

The cognitive blood glucose-insulin control technique is presented in this work, which uses 
three layers in the controller's structure to monitor and control the plasma blood glucose 
levels of various diabetic patients’ types. The first layer was the cognitive dataset that 
represented the attributes of the control system. The second layer was the identifier neural 
network model that represented the different types of nonlinear Bergman diabetic patient 
models. The third layer was the feedback NN controller based on the radial basis function 
neural network model to find the optimal insulin-infusion value and to maintain a normal 
level of blood glucose. The grey wolf optimization (GWO) meta-heuristic technique was used 
to train this controller. Due to its rapid processing speed and capacity to detect multiple 
invasions, GWO has been widely used in both data estimation and training. The following 
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problems can be effectively resolved by using the glucose-insulin management technique 
based on the suggested three layers: 
• The blood glucose level is effectively tracked and kept steady at the target level of 80 

mg/dl, which is within the normal physiological range of 60–120 mg/dl.  
• An ideal or almost ideal smooth value of the insulin-infusion control action was generated 

in order to enhance the blood glucose level response in diabetes patients without reaching 

saturation. 

• The suggested controller, which is based on the NN controller with the GWO algorithm, 
attains a high level of tracking accuracy for the plasma blood glucose level that is observed. 
Its offline and online tuning control settings offer smooth insulin action without a 
significant spike and no saturation state.  

• At intervals longer than 220 minutes, the maximum tracking error level for plasma blood 
glucose monitoring gets closer to zero. 

• The suggested controller improved the time by 10% to bring the blood glucose level back 
to a normal physiological level with the lunch disturbance as compared to the fractional-
order PID controller method. Furthermore, the suggested controller improved the time by 
25% in comparison to the type-2 fuzzy control algorithm to get the plasma blood glucose 
level to a physiologically normal level with the lunch disturbance.  

To create an artificial pancreas, the suggested glucose-insulin control strategy based on 

offline and online neural network controller with the GWO algorithm will be experimentally 

implemented in the future utilizing an FPGA development board with an insulin pump 

device. 
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 مراجعات نصف عقد وتصميم وحدة التحكم لنموذج بيركمان لمريض السكري 

 
 2*، جوزيف حجيج ،1خلود اسكندر داغر

 
 العراق ، بغداد ،  جامعة بغداد ، كلية هندسة الخوارزمي  , قسم هندسة الطب الحياتي1

 تونس ،  تونس  العاصمة    ،جامعة تونس المنار  ، المدرسة الوطنية للمهندسين بتونس  2
 

 الخلاصة
مع التركيز على الأفراد المصابين بداء السكري من النوع الأول، تستعرض هذه الدراسة تقنيات إدارة نسبة الكلوكوز في الدم من  
خلال السنوات الخمس الماضية. ان في فقرة المقدمة توضح موجزة لكيف حول هذه المشكلة البيولوجية إلى مشكلة في نظام  

لكلوكوز في بلازما الدم. في هذا البحث تم مناقشة دراسة جديدًة حول توصيل الأنسولين الآلي  التحكم فيما يتعلق بإدارة نسبة ا
باستخدام نموذج بيركمان الرياضي اللاخطي. لقد جرت محاولات كثيرة من خلال المراجع المنهجية للأبحاث التي تم إجراؤها  

الاس يصف  الاصطناعية.  البنكرياس  أنظمة  تطوير  مجال  في  الآن  الكلوكوز  حتى  في  المعرفي  التحكم  جهاز  تطوير  تنتاج 
والأنسولين ويوفر فهمًا أساسيًا لكيفية استخدام نموذج بيركمان اللاخطي لتنظيم الكلوكوز في الدم لإنشاء نظام سيطرة لهذا التحدي  

ة المقترحة استجابة أسرع من  في مجال التحكم الطبي الحيوي. عند مقارنتها بالطرق الحالية الأخرى، تظهر وحدة السيطرة المعرفي 
حيث الحفاظ على نسبة الجلوكوز في الدم. بالإضافة إلى ذلك، أظهرت نتائج المقارنة أن خوارزمية التحكم المعرفي بالجلوكوز  

% 10والأنسولين المقترحة قد حسنت الوقت اللازم للوصول إلى مستوى جلوكوز الدم الفسيولوجي الطبيعي للمريض الأول بنسبة  
% مقارنة بخوارزمية 25ذات الترتيب الكسري، وبنسبة    PIDرنة بخوارزميات التحكم المنطقي الضبابي وخوارزميات التحكم  مقا

 التحكم الضبابي من النوع الثاني.
 

 بلازمة سكر الدم.  ،فعل الانسولين  ،داء السكري  ،ستراتيجية السيطرة  الكلمات المفتاحية:
 
 
 


