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Abstract  

    HIV is a leading cause of death, in particular, in Sub-Saharan Africa. In this paper, 

a fractional differential system in vivo deterministic models for HIV dynamics is 

presented and analyzed. The main roles played by different HIV treatment methods 

are investigated using fractional optimal control theory. We use three treatment 

regimens as system control variables to determine the best strategies for controlling 

the infection. The optimality system is numerically solved using the fractional 

Adams-Bashforth technique. 

 

Keywords: Fractional optimal control, HIV, Pontryagin’s maximum principle, 

Fractional Adams-Bashforth method.  

 

 ترميم التحكم الأمثل للنموذج الكدري لفيروس نقص المناعة البذرية داخل الجدم الحي
 

*سناء لفته خلف, زينب اسعد لازم  

العراق البرره, جامعة البرره, كمية العموم, قدم الرياضيات ,  
 
 الخلاصة 

جشوب الرحراء الكبرى. في هذا فيروس نقص السشاعة البذرية هو سبب رئيدي لموفاة ، لا سيسا في أفريقيا     
تفاضمية كدرية في الشساذج الحتسية في الجدم الحي لديشاميكيات فيروس  ، تم تقديم وتحميل نظام معادلات البحث

نقص السشاعة البذرية. يتم التحقيق في الأدوار الرئيدية التي تمعبها طرق علاج فيروس نقص السشاعة البذرية 
تحكم الأمثل الكدري. ندتخدم ثلاثة أنظسة علاجية كستغيرات لمتحكم في الشظام لتحديد السختمفة باستخدام نظرية ال

 Adams-Bashforthأفزل الاستراتيجيات لمديطرة عمى العدوى. تم حل نظام الأمثمية عدديًا باستخدام تقشية 
 ية.كدر ال

1. Introduction 

     HIV is an abbreviation for human immunodeficiency virus. HIV is a virus that remains in 

the body indefinitely. Unlike other viruses that cause the common cold or flu, which only stay 

in the body for a few days. Memory is associated with the process of evolution and epidemic 

control in human societies. There should be a correlation between people's prior knowledge of 

disease spread and their response; for example, if people know that a specific disease has 

occurred in their area, they may take precautionary measures like vaccinations [1]. On the other 

hand, memory effects are a significant feature of fractional-order derivatives that do not exist in 

integer-order derivatives. In contrast to the local behavior of integer order derivatives, these 

derivatives are non-local. In other words, the next state of a fractional system is determined by 
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all of its historical states as well as its current state [2]. 

Over time, mathematical modeling has played an important role in analyzing the dynamics of 

diseases such as tuberculosis, malaria and acquired immune deficiency syndrome (AIDS). 

Where it played an important role in the comprehension of the epidemiological patterns of 

disease treatment [3, 4, 5]. Also, the optimal control theory is a very important and effective 

tool in disease modeling as it provides strategies that are appropriate for the prevention and 

control of diseases [6, 7, 8, 9]. 

  Since fractional-order behavior is dependent on memory, fractional optimal control problems 

(FOCPs) are now being applied to epidemiological models for faster and more precise disease 

control. As a result, FOCPs can become one of the most versatile methods for modeling 

memory-related epidemiological and biological systems [10]. Sun as well et al [11] also 

presented a comparison that was between the derivative of an integer and a fractional derivative 

of a fixed order, as well as two types of fractional derivatives that were of variable order in 

describing the effect of memory in systems. For biological systems with memory, Rehan [12] 

presented a class of differential models with the fractional arrangement, an example being 

tumor-immune system dynamics and T-cell dynamics of HIV infection, so Rayhan proposed a 

stable, unconditioned method using the fractional Caputo derivative of ordering   and Euler's 

approximation implicit to find a numerical solution to the resulting systems. Sun et al. suggest 

the existence of the term noise in the partial order in the random order partial differential 

equation model [13]. By surveying three new methodologies for modeling fractional 

derivatives, Chen et al. [14] have demonstrated that these new methodologies are useful 

mathematical tools for describing complex physical behaviors. Fractional optimal control 

problems are a generalization of classical optimal control problems, we note that the differential 

equations are fractional differential equations [15]. Agrawal (2004) [16] formulated a 

generalization of FOCPs in terms of partial Riemann-Liouville derivatives (R-LFDs) and 

presented a numerical method for solving FOCPs. Using the fractional Grunwald-Letnikov 

derivative, Agrawal formulated FOCPs and used numerical techniques to solve a set of 

equations [17]. 

Sweilam et al. [18] used two numerical methods to solve FOCP for the fractional multi-strain 

tuberculosis model. By using fractional optimal control, Ding et al. [19] studied the 

HIV-Immune system model and used a forward-backward algorithm to solve the FOCP. The 

authors obtained optimality conditions for all FOCPs by expressing the co-state and state 

equations in terms of right and left fractional derivatives. 

The rest of this article is organized as follows. Section two provides preliminaries and concepts 

that are used throughout this work. In section three, we give a general formulation of the HIV 

model' fractional optimal control problem. In section four, we used the maximal Ponntryagin 

principle to infer the necessary conditions. In section five, we discussed the numerical results. 

Finally, section six summarizes the conclusions. 

2. Preliminary 

Fractional order derivatives are defined in a variety of ways, including Riemann-Liouville, 

Caputo, Grunwald Letnikov, Atangana-Baleanu, Caputo-Fabrizio, and others. For more 

information about fractional order definitions with applications, see, for example, [20, 21] and 

the references therein. Throughout the article, we have used Caputo's definition. 

Definition 2.1 [22] Let , > 0nf C a  and , , ,a b t R . Then the left (right) Caputo fractional 

derivative of order 1< <m m N   of f  are given by 

           
 

     
11
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D f t t f d
m


   



 


    (1) 



Lazima and Khalaf                       Iraqi Journal of Science, 2022, Vol. 63, No. 9, pp: 3877-3888 
 

3879 

           
 

 
   

1
( )

1
=

m b
m

C m

t b

t

D f t t f d
m


   



 


    (2) 

 where 1 < < ,m m m N   and ( ) -  is the Gamma function. 

 

3. Model Formulation 

 In order to conduct fractional optimum control procedures, we need to develop a model that 

explains the fundamental interaction between the body’s immune system and HIV virions. We 

create a mathematical model for HIV in-host infection using three-drug combinations. Seven 

variables are included in the model, which are ( )T  susceptible, ( )I  infected, ( )lI  latently 

infected, ( )V  HIV infectious virions, ( )nV  non-infectious HIV virions, ( )Z  8CD  T-cells, 

and ( )aZ  activated 8CD  T-cells. Table 1 describes the model’s parameter variables inside 

the host. 

 

 Table 1-Parameters used in HIV in-vivo and their meaning 
Parameter Description 

T  The rate of production of non-infected 4CD 
 T cells. 

T  The rate of dissolution of non-infected 4CD 
 T-cells. 

  The viral infection rate of CD4+ T-cells. 

I  The death rate of the infected 4CD 
 T-cells. 

I
l

  Latently infected 4CD 
 T-cell death rate. 

V  The rate in which HIV virions are produced from the infected 4CD 
 T-cells. 

V  The infectious virus’s mortality rate. 

V
n

  The non-infectious virus’s mortality rate. 

  The rate at which activated 8CD 
 T-cells kill infected cells. 

Z  The rate of production of 8CD 
 T-cells. 

z  The rate at which T-cells die. 

  The rate at which the virus activates 8CD 
 T-cells and infects 4CD 

 T-cells. 

Za  Activated defense cell decay rate. 

 

      In order to explain the in vivo dynamics of HIV, we construct the following system of 

fractional differential equations:  
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4. The fractional optimal control 

 Fractional optimal control theory is a widely used technique for determining the extreme value 

of an objective functional with dynamic variables. The optimal drug treatments as functions of 

time are determined using fractional optimal control theory in this section. The aforementioned 

controls represent an effective chemotherapy dosage that is limited to a range of 0  to1 . The 

situation 1 2 3= = = 1u u u  represents 100%  efficacy of the Reverse Transcriptase inhibitors 

and Protease inhibitors respectively and 1 2 3= = = 0u u u  represents 0%  efficacy. The study’s 

goal is to boost the number of healthy 4CD   T-cells as well as 8CD   T-cells ( )Z , while 

lowering viral loads ( )V , drug resistance mutations, and HIV treatment costs. 

Consider the cost function as follows:  

          2 2 2

1 2 3 1 1 2 2 3 3

0

1
( ( ) ) = ( )

2

T
f

u t A T A Z A V B u B u B u d t                             (4) 

with the state variables are given in model (3) and the following initial conditions: 

           0 0 0 0 0 0 0( 0 ) = , ( 0 ) = , ( 0 ) = , ( 0 ) = , ( 0 ) = , ( 0 ) = , ( 0 ) =l l n n a aT T I I I I V V V V Z Z Z Z      (5) 

 Where 0 < 1  . It should be noted that the solutions of Eq.(4) represent the functions 

( ), ( )T t Z t  and ( )V t . 1A  and 2A  represent the cost value associated with an increase in the 

number of 4CD   T cells and 8CD   T cells, respectively. The parameter 3A  represents the 

cost value associated with reducing viral load. Furthermore, 1 2,B B  and 3B  are non-negative 

constants representing the relative weights associated with the current cost value of each 

treatment system. fT  is a terminal time constant of the treatment program subject to the 

Caputo fractional differential equations that are shown in model Eq. (3). This study makes the 

assumption that there is no linear relationship between the effect of treatment on HIV viruses 

4CD   T cells, and 8CD   T cells. As a result, 1 2,u u  and 3u  are Lebesgue integrals. The 

primary goal of this therapeutic study is to maximize the function identified in (4) by increasing 

the number of uninfected 4CD   T cells and the number of 8CD   T cells, decreasing the viral 

load ( )V , and lowering the adverse side effects and treatment cost within a specific time period 

[0, ]fT  . As a result, the purpose of this research is to determine the best control * *

1 2,u u  and *

3u  

so that:  

           *

1 2 3( ( ) ) = max ( ( ) ) : = ( , , )u t u t u u u u U   .                                    (6) 

 Where  

           1 2 3 = 1 , 2 , 3 = 1 , 2 , 3= = ( , , ) : , 0 1 , 0i i fU u u u u u meas ur ab l e u t T                     (7) 

 The Hamiltonian function of model (3) is given by  
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(8) 

 where 7

1 2 3 4 5 6 7= ( , , , , , , )        R  is the adjoint variable, 1 2 3= ( , , )u u u u  is the control 

variable and 0ijv   are the penalty multipliers that incorporate the boundedness of the control 

variables and fulfill the following criteria  

          

*
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Now, we compute the necessary conditions of the model (3).  
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 Where ( ) = 0 , =1,2,...,7i fT i  are the transversely conditions.  

Theorem 4.1  The optimal controls * * *

1 2 3( , , )u u u  that maximize the objective function given by 

Eq. (4) over the invariant area are presented by 

          * 1
1

1

= m a x ( 0 , m i n ( 1 , ) )  
2

TV
u

B

 
 

          * 2 3
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          * 4 5
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      
 

  Proof: In the Pontryagin’s maximum principle of the model (3), the optimal controls * *

1 2,u u  

and *

3u  achieve the following conditions:  

          
1

= 0  
H

u




                                 (24) 

          
2

= 0  
H

u




                                (25) 

          
3

= 0  
H

u




                                (26) 

 From Eq. (8) differentiating the Hamiltonian function with respect to 1u  on the set 

1: [0,1]U t u  , we can get the following optimality equation  

          1 1 1 1 1 1 2

1

= 2 = 0  
H

B u T V v v
u

 


   


               (27) 

 Put *

1 1=u u  in Eq.(27). Then we get *

1u  as follows  

          * 1 1 1 1 2
1

1

=  
2

TV v v
u

B

   
                                                (28) 

 From the conditions given by Eq. (9), we can get the following distinct three cases:   

    1.  On the set *

1( (0,1))t u  , in Eq.(28) we assume 11 12= = 0v v . Then *

1u  is given by  

          * 1
1

1

=  
2

TV
u

B

 
                             (29) 

     2.  Likewise, on the set *

1( =1)t u  put 11 = 0v  and 12 0v  , then from Eq.(28), we get  
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          * 1 1 2
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u

B
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                          (30) 

 Eq.(30) we can rewrite it as follows:  

          * 1
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B
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 Accordingly, for the set *

1( =1)t u , we have  
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2

TV
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     3.  On the set *

1( = 0)t u , put 11 0v   and 12 = 0v  then from Eq.(28) we will get  
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 which implies that  
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                        (34) 

 From Eq. (29), Eq. (32), and Eq. (34), we get *

1u  , as follows:  
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 The control *

1u  is formulated as follows:  

          * 1
1

1

= m a x ( 0 , m i n ( 1 , ) )  
2

TV
u

B

 
                        (36) 

  On the set 2: [0,1]U t u  . From Eq. (8) differentiating the Hamiltonian function with respect 

to 2u  we can get the following optimality equation  
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   

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 Put *

2 2=u u  in Eq.(37). Then we get the optimal control as follows:  
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B
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 From the conditions given by Eq. (9), we can get the following distinct three cases   

    1.  On the set *

2( (0,1))t u  , in Eq.(38) we assume 21 22= = 0v v . Then *

2u  is given by  

          * 2 3
2
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TV TV
u

B

    
                                          (39) 

     2.  Likewise, on the set *

2( =1)t u  put 21 = 0v  and 22 0v  , then from Eq.(38) we get  

           * 2 3 2 2
2

2

= 1 =
2

T V T V v
u

B

     
                               (40) 

 Eq.(40) we can rewrite it as follows  
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 Accordingly, for the set *

2( =1)t u , we have  
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     3.  On the set *

2( = 0)t u , put 21 0v   and 22 = 0v  then from Eq.(38) we will get  

          * 2 3 2 1
2

2

= 0 =
2

T V T V v
u

B

     
                                 (43) 

 which implies that  

          * 2 3
2

2

= 0
2

TV TV
u

B

    
                                     (44) 

 Now, from Eq. (40), Eq. (42), and Eq. (44) we can get *

2u , as follow  

          

2 3 2 3

2 2

2 3

*

22

2 3

2

0 < < 1
2 2

0 0
2=

1 1
2

TV TV TV TV
if

B B

TV TV
if

Bu

TV TV
if

B

       

   

   

   



 



  
 




                    (45) 

 The control *

2u  is formulated as follows  

          * 2 3
2

2

= max(0, min(1, )) 
2

TV TV
u

B

    
                    (46) 

  On the set 3: [0,1]U t u   We can derive the following optimality equation from Eq. (8) by 

differentiating the Hamiltonian function with respect to 3u . 

          3 3 4 5 3 1 3 2

3

= 2  = 0  V I V I

H
B u I I v v

u
     


    


                  (47) 

 Put *

3 3=u u  in Eq.(47). Then we get the optimal control as follows  

          * 4 5 3 1 3 2
3

3

 
=

2

V I V II I v v
u

B

        
                         (48) 

 From the conditions given by Eq. (9), we can obtain the three distinct cases listed below.   

    1.  On the set *

3( (0,1))t u  , in Eq.(48) we assume 31 32= = 0v v . Therefore, the optimal 

control *

3u  is given by  

          * 4 5
3

3

 
=

2

V I V II I
u

B

      
                                      (49) 

     2.  Likewise, on the set *

3( =1)t u  put 31 = 0v  and 32 0v  , then from Eq.(48), we get  

          * 4 5 3 2
3

3

 
= 1 =

2

V I V II I v
u

B

       
                               (50) 

 Eq.(50) we can rewrite it as follows  
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         * 4 5
3

3

 
 = 1

2

V I V II I
u

B

      
                                 (51) 

 Accordingly, for the set *

3( =1)t u , we have  

          * 4 5
3

3

 
= min(1, )

2

V I V II I
u

B

      
                                (52) 

     3.  On the set *

3( = 0)t u , put 31 0v   and 32 = 0v  then from Eq.(48) we will get  

          * 4 5 3 1
3

3

 
= 0 =

2

V I V II I v
u

B

       
                              (53) 

 which implies that  

          * 4 5
3

3

 
= 0

2

V I V II I
u

B

      
                                       (54) 

  From Eq. (49), Eq. (52), and Eq. (54), we can get *

3u  as follow  

          

4 5 4 5

3 3

4 5

*

33

4 5

3

  
0 < < 1

2 2

 
0 0

2=

 
1 1

2

V I V I V I V I

V I V I

V I V I

I I I I
if

B B

I I
if

Bu

I I
if

B

           

     

     

   


  



  
 




                   (55) 

 The control *

3u  is formulated as follows  

          * 4 5
3

3

 
= max(0, min(1, )) 

2

V I V II I
u

B

      
                 (56) 

5. Discussion of the Numerical Results 

 In this part, we use the fractional Adams-Bashforth technique on the optimality scheme to 

explore the influence of optimal strategy on HIV. This method offers numerical solutions over a 

long time interval. For the simulations with the initial conditions and parameters, we use the 

MAPEL software. We will continue iterating until convergence is achieved. This problem is a 

fractional problem, with discrete boundary conditions at times = 0a . The fT  represents the 

time in months when treatment is discontinued. Moreover, we will take the values of the weight 

functions as 1 2 3= = = 0.01B B B . We use the parameter values mentioned in Table 2 to obtain 

the numerical solution of the in vivo model. 

The main results have been graphically illustrated using numerical simulation results. Also, we 

discussed the numerical solutions to the optimality system described by Eq. (11) of the FOCP 

(10). The fractional Adams-Bashforth method is a good way to find numerical solutions to 

fractional ordinary differential equations. It can be used to solve both linear and nonlinear 

problems. In this section, the primary goal is to explain how the combination of controls 1 2,u u  

and 3u  affects the proposed model in relation to the relative weights of the controls used. The 

derivative order   has an effect on the values of the controls, as it is shown in Figure 8, Figure 

9, and Figure 10. This is related to the memory characteristic of fractional derivatives. When   

is increased to 1 , the maximum levels of the controls are reduced. However, when   is 

increased to 1, the fractional derivative memory effect is diminished. 
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Table 2-The parameters and controls for the HIV model  

Parameter Value Reference 

T  
310 / /cell mm day  [23] 

T  
2 110 day 

 [24] 

  6 3 1 124 10 mm vir day    [25] 

I  
10.5day

 [26] 

I
l

  10.5day
 [26] 

V  
1 1100vir.cell day 

 Assessment 

V  
12day
 [28] 

V
n

  13day
 Assessment 

  2 12 10 day   [28] 

Z  
320cell/mm /day  [28] 

z  
2 14 10 day   [28] 

  3 14 10 day   [28] 

Za  
3 14 10 day   [28] 

1u  0 1  Assessment 

2u  0 1  Assessment 

3u  0 1  Assessment 

 

Table 3- Shows the initial values of variables for the HIV model. 
Variables Initial values 

( )T t  3(0) = 500 /T cell mm  

( )I t  3(0) = 100 /I cell mm  

( )lI t  
3(0) = 0 /lI cell mm  

( )V t  3(0) =100 /V virion mm  

( )nV t  
3(0) = 0 /nV virion mm  

( )Z t  3(0) = 100 /Z cell mm  

( )aZ t  
3(0) = 10 /aZ cell mm  

  

 
        Figure  1- ( )T t  with 0 < 1            Figure  2- ( )I t  with 0 < 1   
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         Figure  3- ( )lI t  with 0 < 1           Figure  4- ( )V t  with 0 < 1   

   

 
           Figure  5- ( )nV t  with 0 < 1       Figure  6- ( )Z t  with 0 < 1   

   

 
          Figure  7- ( )aZ t  with 0 < 1           Figure  8- 1( )u t  with 0 < 1   

    

 
        Figure  9- 2 ( )u t  with 0 < 1            Figure  10- 3( )u t  with 0 < 1   

6. Conclusion 

 In this paper, we presented a fractional optimum control issue for the in-vivo HIV fractional 

model. The Pontryagin maximum principle has been used to derive the fractional-order optimal 

necessary conditions. Then, we used the fractional Adams-Bashforth method to transform the 

given problem into an optimization problem. The numerical simulation was done by using the 

optimization technique in Maple 16 to study the behavior of how the combination of controls 

1 2,u u  and 3u  affects the proposed model depending on relative weights. Also, we studied the 

effect of the order of the fractional derivative (the memory property of fractional derivatives) on 

this model. However, if we do not take the memory property of the in-vivo HIV model into 

account, i.e., =1 , one can see that our result is consistent with the work in [29]. That is to 

say, our study in this paper is an extension of the study in [29]. 
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