

On βk Generalized & αk Generalized in Intuitionistic Topological Spaces Hind F. ABBAS

Directorate of Education Salah Eddin/ Khaled Ibn Al Walid School/ Tikrit City Abstract

In this paper, we introduce some two weaks called βk –generalized and αk –generalized by using

 βk –intuitionistic open and αk – intuitionistic open and investigate some properties . Finaly

we study the relations between this concepts .

Keywords: generalizations, BK

حول التعميمات من النوع βk في الفضاءات التبولوجية الحدسية تحصيم ومن النوع هند فاضل عباس في هذا البحث قدمنا شكلين ضعيفين هما المعمم βk والمعمم αk باستخدام المجموعة المفتوحات و βk والمجموعة المفتوحة الحدسية αk واستقصينا بعض خواصها . واخيرا درسنا العالقات . المفاهيم. كلمات مفتاحية : تعميمات ، BK

1-Introduction

In this sections we give some definitions which are needed in this paper .

Definition 1.1 [1] Let $M \subseteq X \neq \emptyset$ and. The Intuitionistic set \widetilde{M} (IS, for short) is the

form $\widetilde{M}=\langle x,M_1,M_2\rangle$ and M_1 , $M_2\subseteq X$ with condition $M_1\cap M_2=\emptyset$. The set M_1

is called "the set of members" of \widetilde{M} and M_2 is called "the set of non-members"

of \widetilde{M} .

Definition 1. 2 [1] Let $X \neq \emptyset$, and let $\widetilde{M} = \langle x, M_1, M_2 \rangle$, $\widetilde{N} = \langle x, N_1, N_2 \rangle$ are two Intuitionistic sets respectively. Also, let{ \widetilde{M}_s ; $s \in S$ } be a collection of "Intuitionistic

sets in X", and $\breve{M}_i = \langle x, M_s^{(1)}, M_s^{(2)} \rangle$, the following is valid.

- $1)\,\widetilde{\mathsf{M}}\subseteq \ \widetilde{\mathsf{N}} \ \ \text{iff} \ \ \mathsf{M}_1\subseteq\mathsf{N}_1 \ \text{and} \ \ \mathsf{N}_2\subseteq\mathsf{M}_2 \ ,$
- 2) $\widetilde{M} = \widetilde{N}$ iff $\widetilde{M} \subseteq \widetilde{N}$ and $\widetilde{N} \subseteq \widetilde{M}$,
- 3) The complement of \widetilde{M} is denoted by $\overline{\widetilde{M}}$ and defined by $\overline{\widetilde{M}}$ = $\langle x, M_2, M_1 \rangle$,

$$\begin{array}{l} 4) \cup \widetilde{M}_{i} = \langle x, \cup M_{s}^{(1)} , \cap M_{s}^{(2)} \rangle \\ 5) \dot{\emptyset} = \langle x, \emptyset, X \rangle , \dot{X} = \langle x, X, \emptyset \rangle. \end{array}$$

Definition 1.3 [2] Let $X \neq \emptyset$, $w \in X$ and let $\widetilde{M} = \langle x, M_1, M_2 \rangle$ be an Intuitionistic set

the Intuitionistic point (IP f, for briefily) "Is \dot{w} " defined by $\dot{w} = \langle x, \{w\}, \{w\}^c \rangle$ in X. Also

a Vanishing Intuitionistic point defined by Is $\ddot{w} = \langle x, \emptyset, \{w\}^c \rangle$ in X. The Is \dot{w} is said

belong in \widetilde{M} ($\dot{w} \in M$, for brief) iff $w \in M_1$, also Is \ddot{p} contained in \widetilde{M} ($\ddot{w} \in \widetilde{M}$, for short) iff $w \notin M_2$.

Definition 1.4 [3] Let $X \neq \emptyset$. An Intuitionistic topology (ITS, for short) on X is

a collection μ of an "Intuitionistic sets" in X satisfying :

(1) $\dot{\emptyset}, \dot{X} \in \mu$.

(2) μ is closed under finite intersections.

(3) μ is closed under arbitrary unions.

Each element in $\mu\,is\,$ called "Intuitionistic open set " and denoted by "IOS"

The complement of an "Intuitionistic open set" is called "Intuitionistic closed set"

denoted by "ICS" .

Definition 1.5 [3] Let (X, μ) be an ITS and let $\widetilde{M} = \langle x, M_1, M_2 \rangle \subseteq X$. Then:

 $int(\widetilde{M}) = \cup \{ \widetilde{V} : \widetilde{V} \subseteq \widetilde{M}, V \in \mu \},\$

 $cl(\widetilde{M}) = \cap \{ \tilde{J} : \widetilde{M} \subseteq \tilde{J}, \overline{\tilde{J}} \in \mu \}.$

Definition 1.6. [3]

Let (X,μ) be an ITS. IS \widetilde{M} of X is said to be

1. IaoS if $\widetilde{M} \subseteq \text{lint}(\text{Icl}(\text{lint}(\widetilde{M})))$,

2. I β OS if $\widetilde{M} \subseteq Icl(Iint(Icl(\widetilde{M})))$.

The family of all intuitionistic α -open and β -open sets of (X, μ) are denoted by "I α OS(X)"

and "I β OS(X)" respectively. Also the complement of all intuitionistic α -open and β -open sets of (X, μ) are denoted by "I α CS(X)" and "I β CS(X)" respectively.

Section 2 βk generalized & αk generalized Closed Sets

In this section, we give define and study some properties of βk –generalized &

 αk –generalized closed sets.

Definition 2.1 Let (X, μ) be an ITS and IS $\widetilde{M} \subseteq X$ is said to be βk intuitionistic open if there exists intuitionistic closed set \widetilde{F} s.t, $\widetilde{F} \subseteq \widetilde{M}$ A. The collections of all βk intuitionistic open

sets in intuitionistic topological space (X, μ) denoted by βkIO .

Definition 2.2 Let (X, μ) be an ITS and IS $\widetilde{M} \subseteq X$ is said to be βk – generalized intuitionistic closed (for short, $\beta kgIC$) set if $\beta kcl(\widetilde{M}) \subseteq \widetilde{Q}$ whenever $\widetilde{M} \subseteq \widetilde{Q}$ and \widetilde{Q} is βk is IOS in (X, μ) . Also IS $\widetilde{M} \subseteq X$

is βk – generalized intuitionistic open (for short , $\beta kgIO$) if \widetilde{M} is $\beta kgIC$ in (X, μ)

Definition 2.3 Let (X, μ) be an ITS and IS $\widetilde{M} \subseteq X$ is said to be αk intuitionistic open if there exists intuitionistic closed set \widetilde{F} s.t, $\widetilde{F} \subseteq \widetilde{M}$. The collections of all αk intuitionistic open sets in intuitionistic topological space (X, μ) denoted by αkIO .

Definition 2.4 Let (X, μ) be an ITS and IS $\widetilde{M} \subseteq X$ is said to be αk – generalized intuitionistic closed (for short, $\alpha kgIC$) set if $\alpha kcl(\widetilde{M}) \subseteq \widetilde{Q}$ whenever $\widetilde{M} \subseteq \widetilde{Q}$ and \widetilde{Q} is αk is IOS in (X, μ) . Also IS $\widetilde{M} \subseteq X$

is αk – generalized intuitionistic open (for short, $\alpha kgIO$) if \widetilde{M} is $\alpha kgIC$ in (X, μ)

Proposition 2.5 If \widetilde{M} is β kIO and β kgIc then \widetilde{M} is β kIc.

Proof. Suppose that \widetilde{M} is β kIO and β kgIc. Since \widetilde{M} is β kIO and $\widetilde{M} \subseteq \widetilde{M}$, we have β kcl(\widetilde{M}) $\subseteq \widetilde{M}$, also $\widetilde{M} \subseteq \beta$ kcl(\widetilde{M}), thus β kcl(\widetilde{M}) = \widetilde{M} . Therefore \widetilde{M} is β kIc.

Proposition 2.6 If \widetilde{M} is αkIO and $\alpha kgIC$ then \widetilde{M} is αkIc . **Proof:** it's obvious .

Proposition 2.7 If IS \widetilde{M} of X is β kgIc and $\widetilde{M} \subseteq \widetilde{N} \subseteq \beta$ kcl (\widetilde{M}) , then \widetilde{N} is β kgIC set in X.

Proof. Let \widetilde{M} be β kgIc set s.t, $\widetilde{M} \subseteq \widetilde{N} \subseteq \beta$ kcl (\widetilde{M}) . Let \widetilde{W} be β kIO of X s.t, $\widetilde{N} \subseteq$ of X s.t, $\widetilde{N} \subseteq \widetilde{W}$. Since \widetilde{M} is β kcl (\widetilde{M}) , so β kcl $(\widetilde{M}) \subseteq \widetilde{W}$. Now β kcl $(\widetilde{M}) \subseteq \beta$ kcl $(\widetilde{N}) \subseteq$

 β kcl(β kcl(\widetilde{M})) = β kcl(\widetilde{M}) $\subseteq \widetilde{W}$.

Thus $\beta kcl(\widetilde{N}) \subseteq \widetilde{W}$, where \widetilde{W} is βkIO . Therefore \widetilde{N} is $\beta kcl(\widetilde{M})$ set in X.

Proposition 2.8 If IS \widetilde{M} of X is α kgIC and $\widetilde{M} \subseteq \widetilde{N} \subseteq \alpha$ kcl(\widetilde{M}), then \widetilde{N} is α kgIC set in X.

Proof. Let \widetilde{M} be akglc set s.t, $\widetilde{M} \subseteq \widetilde{N} \subseteq \alpha \operatorname{kcl}(\widetilde{M})$. Let \widetilde{W} be aklO of X s.t, $\widetilde{N} \subseteq$ of X s.t, $\widetilde{N} \subseteq \widetilde{W}$. Since \widetilde{M} is $\alpha \operatorname{kcl}(\widetilde{M})$, so $\alpha \operatorname{kcl}(\widetilde{M}) \subseteq \widetilde{W}$. Now $\alpha \operatorname{kcl}(\widetilde{M}) \subseteq \alpha \operatorname{kcl}(\widetilde{N}) \subseteq \alpha \operatorname{kcl}(\widetilde{M}) = \alpha \operatorname{kcl}(\widetilde{M}) \subseteq \widetilde{W}$. Thus $\alpha \operatorname{kcl}(\widetilde{N}) \subseteq \widetilde{W}$, where \widetilde{W} is $\alpha \operatorname{klO}$. Therefore \widetilde{N} is $\alpha \operatorname{kcl}(\widetilde{M})$ set in X.

Proposition 2.9 The intersection of a β kgIc set and a β kIc set is β kgIc.

Proof. Let \widetilde{M} be β kgIc and \widetilde{F} be β kIc. Assume that \widetilde{N} is β kIc set s.t, $\widetilde{M} \cap \widetilde{F} \subseteq \widetilde{N}$, Let $\widetilde{W} = X \setminus \widetilde{F}$. Thus $\widetilde{M} \subseteq \widetilde{N} \cup \widetilde{W}$, since \widetilde{W} is β kIO, then $\widetilde{N} \cup \widetilde{W}$ is β kIO and since

 $\widetilde{M} \text{ is } \beta \text{kgIc, then } \beta \text{kIc}(\widetilde{M}) \subseteq \widetilde{N} \cup \widetilde{W}. \text{ So that } \beta \text{kIc}(\widetilde{M} \cap \widetilde{F}) \subseteq \beta \text{kIc}(\widetilde{M}) \cap \beta \text{kIc}(\widetilde{F}) = \beta \text{kIc}(\widetilde{M}) \cap \widetilde{F}$ $\subseteq (\widetilde{N} \cap \widetilde{W}) \cap \widetilde{F} = (\widetilde{N} \cap \widetilde{F}) \cup (\widetilde{W} \cap \widetilde{F}) = (\widetilde{N} \cap \widetilde{F}) \cup \widetilde{\emptyset} \subseteq \widetilde{N}.$

Proposition 2.10 The intersection of a α kgIc set and a α kIc set is α kgIc.

Proof: it's obvious .

Proposition 2.11 Let (X, μ) be an ITS. Then \widetilde{M} is β kgIc iff β kcl $(\widetilde{M}) \setminus \widetilde{M}$ does not contain

any non-empty α kcl set.

Proof. Suppose that \widetilde{M} is β kgIc set in X. Let \widetilde{F} be β kcl set s.t, $\widetilde{F} \subseteq \beta$ kcl $(\widetilde{M}) \setminus \widetilde{M}$ and $\widetilde{F} \neq \widetilde{\emptyset}$. Then $\widetilde{F} \subseteq X \setminus \widetilde{M}$ this implies $\widetilde{M} \subseteq X \setminus \widetilde{F}$. Since \widetilde{M} is β kgIc and $X \setminus \widetilde{F}$ is β kIO, thus β kcl $(\widetilde{M}) \subseteq X \setminus \widetilde{F}$, that is $\widetilde{F} \subseteq \beta$ kcl (\widetilde{M}) . Hence $\widetilde{F} \subseteq \beta$ kcl $(\widetilde{M}) \cap (X \setminus \beta$ kcl $(\widetilde{M})) = \widetilde{\emptyset}$.

So that $F = \widetilde{\emptyset}$ and it a contradiction. Therefore $\beta kcl(\widetilde{M}) \setminus \widetilde{M}$ does not contain any non-empty αkcl

set in X.

conversely. Let $\widetilde{M} \subseteq \widetilde{W}$, where \widetilde{W} is βkIO in X. If $\beta kcl(\widetilde{M})$ is not contained in \widetilde{W} ,

then $\beta kcl(\widetilde{M}) \cap X \setminus \widetilde{W} \neq \widetilde{\emptyset}$. Now, since $\beta kcl(\widetilde{M}) \cap X \setminus \widetilde{W} \subseteq \beta kcl(\widetilde{M}) \setminus \widetilde{M}$ and $\beta kcl(\widetilde{M}) \cap X \setminus \widetilde{W}$ is a non-empty αkcl set, this is a contradiction and so \widetilde{M} is

 $\beta kgIc$.

Proposition 2.12 Let (X, μ) be an ITS. Then \widetilde{M} is β kgIc iff β kcl $(\widetilde{M}) \setminus \widetilde{M}$ does not contain

any non-empty α kcl set.

Proof. It's obvious .

Proposition 2.13 Let (X, μ) be an ITS. Then \widetilde{M} is β kgIc, then the following are equivalent:

1- \widetilde{M} is β kIc.

2- β kcl(\widetilde{M}) \ \widetilde{M} is β kIc.

Proof. (1)) \Rightarrow (2). If \widetilde{M} is a β kgIc set which is also β kIc, then β kcl(\widetilde{M}) $\setminus \widetilde{M} = \widetilde{\emptyset}$

Thus \widetilde{M} is a $\beta kIc.$

(2)) \Rightarrow (1). Let $\beta kcl(\widetilde{M}) \setminus \widetilde{M}$ be a βklc set and \widetilde{M} be $\beta kglc$. Then by Proposition 2.11,

 β kcl $(\widetilde{M}) \setminus \widetilde{M}$ does not contain any non-empty β kIc subset. Since β kcl $(\widetilde{M}) \setminus \widetilde{M}$ is β kIc and

 β kcl $(\widetilde{M}) \setminus \widetilde{M} = \widetilde{\emptyset}$, this shows that \widetilde{M} is β kIc.

Proposition 2.14 Let (X, μ) be an ITS. Then \widetilde{M} is α kgIc, then the following are equivalent:

1- \widetilde{M} is akIc.

2- $\alpha kcl(\widetilde{M}) \setminus \widetilde{M}$ is αkIc .

Proof. It's obvious .

Proposition 2.15 Let (X, μ) be an ITS. Then the following are equivalent: 1- each subset of X is β kgIc.

2- $\beta kOl(\widetilde{M}) = \beta kcl(\widetilde{M})$.

Proof. (1)) \Rightarrow (2). Let $\widetilde{M} \in \beta kOl(\widetilde{M})$. Then by hypothesis, \widetilde{M} is $\beta kgIc$, so $\beta kcl(\widetilde{M}) \subseteq \widetilde{M}$, hence $\beta kcl(\widetilde{M}) \subseteq \widetilde{M}$, therefore $\widetilde{M} \in \beta kOl(\widetilde{M})$. Also let $\widetilde{N} \in \beta kOl(\widetilde{N})$.

Then $X \setminus \widetilde{N} \in \beta kOl(\widetilde{M})$, so by hypothesis $X \setminus \widetilde{N}$ is $\beta kgIc$ and then $X \setminus \widetilde{N} \in \beta kOl(\widetilde{M})$,

thus $\widetilde{N} \in \beta kOl(\widetilde{M})$. Therefore $\beta kOl(\widetilde{M}) = \beta kcl(\widetilde{M})$.

(2)) \Rightarrow (1). If \widetilde{N} is a subset of (X, μ) s.t, $\widetilde{N} \subseteq \widetilde{M}$ where $\widetilde{N} \in \beta kOl(\widetilde{N})$, then $\widetilde{N} \in \beta kcl(\widetilde{N})$, and so $\beta kcl(\widetilde{N}) \subseteq \widetilde{N}$. Therefore \widetilde{N} is $\beta kgIc$.

Proposition 2.16 Let (X, μ) be an ITS. Then the following are equivalent: 1- each subset of X is α kgIc. 2- α kOl(\widetilde{M}) = α kcl(\widetilde{M}). **Proof.** It's obvious .

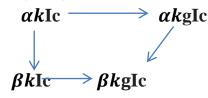
Proposition 2.17 Let (X, μ) be an ITS. Then the following are equivalent: 1- each subset of X is α kgIc. 2- α kOl(\widetilde{M}) $\subseteq \alpha$ kcl(\widetilde{M}). **Proof.** It's clear.

Section 3 The relations between βk generalized & αk generalized Closed Sets

We give this important proposition .

Proposition 3.1. Let (X, μ) be an ITS. Then The implication among some types are given by the

following diagram.



Proof. It is clear that every αk Ic set is αk gIc. Also every βk Ic set is βk gIc.

 $\alpha k gIc \longrightarrow \beta k gIc$

Let (X, μ) be an ITS. Since every α Ic is β Ic also every α gIc is β gIc. Therefore α kgIc is β kgIc.

Remark 3.2 by transitivity we get $\alpha k l c$ $\beta k g l c$ But the converse is not true in general as it is shown in the following example.

Example 3.3. Let $J = \{c, d, n\}$ with topology $\mu = \{\dot{J}, \dot{\emptyset}, \widetilde{M}, \widetilde{N}\}$, where \widetilde{M}

= $\langle j, \{c\}, \{d, n\} \rangle$, $\widetilde{N} = \langle j, \{c\}, \emptyset \rangle$. Then

1- (J, μ) is βk gIc, but not βk Ic.

2- (J, μ) is βk gIc, but not α kgIc.

3-(J, μ) is βk gIc, but not α kIc.

Example 3.4. Let $J = \{c, d, n\}$ with topology $\mu = \{\dot{J}, \dot{\emptyset}, \tilde{M}\}$, where $\tilde{M} = \langle j, \{c\}, \{d, n\} \rangle$. Then (J, μ) is $\beta k I c$, but not $\alpha k I c$.

Example 3.4. Let $J = \{c, d, n\}$ with topology $\mu = \{\dot{j}, \dot{\phi}, \widetilde{M}\}$, where $\widetilde{M} = \langle \dot{j}, \{c\}, \{d, n\} \rangle$. Then (J, μ) is βk Ic, but not αk Ic.

Remark 3-5. α kgIc and β kIc are independent notions. The following two examples

shows this two cases .

Example 3.6. Let $E = \{w, r, i\}$ with topology $\mu = \{\dot{E}, \dot{\emptyset}, \tilde{K}, \tilde{S}, \tilde{G}, \tilde{Z}, \tilde{I}\}$, where $\tilde{K} = \langle e, \{w\}, \{r, i\}\rangle$, $\tilde{S} = \langle e, \{w\}, \emptyset\rangle$, $\tilde{G} = \langle e, \{w, r\}, \{i\}\rangle$, $\tilde{Z} = \langle e, \{w\}, \{r\}\rangle$, $\tilde{I} = \langle e, \{w, r\}, \emptyset\rangle$ and

 $D = \{2,4,6\}$. Then (E, μ) is β kIc but not α kgIc.

Example 3.7. Let $E = \{o, p, u\}$ with topology $\mu = \{\dot{E}, \dot{\emptyset}, \widetilde{W}, \widetilde{R}, \widetilde{K}, \widetilde{P}, \widetilde{T}, \widetilde{H}, \widetilde{Z}\}$, where

$$\begin{split} \widetilde{W} &= \langle \ e, \{o\}, \{p, u\} \rangle \ , \ \widetilde{R} = \langle e, \{o\}, \{p\} \rangle, \ \widetilde{K} = \langle \ e, \{o\}, \emptyset \rangle, \ \widetilde{P} = \langle \ e, \{o, p\}, \emptyset \rangle, \ \widetilde{T} \\ &= \langle \ e, \emptyset, \emptyset \rangle \ , \end{split}$$

 $\widetilde{H} = \langle e, \emptyset, \{p, u\} \rangle, \widetilde{Z} = \langle e, \emptyset, \{p\} \rangle$. Then (E, μ) is α kgIc but not β kIc.

Proposition 3.8 Let (X, μ) be an ITS. Then \widetilde{M} is α kgIc, then the following are equivalent:

1- \widetilde{M} is αkIc .

2- $\beta kcl(\widetilde{M}) \setminus \widetilde{M}$ is βkIc .

Proof: by using the proposition 3-1 we get the result .

Proposition 3.9 Let (X, μ) be an ITS. Then the following are equivalent:

1- each subset of X is β kgIc.

2- $\alpha kOl(\widetilde{M}) \subseteq \beta kcl(\widetilde{M})$.

Proof: by using the proposition 3-1 we get the result .

Proposition 3.10 Let (X, μ) be an ITS. Then the following are equivalent: 1- each subset of X is α kgIc. 2- α kOl(\widetilde{M}) $\subseteq \alpha$ kcl(\widetilde{M}) $\subseteq \beta$ kcl(\widetilde{M}). **Proof.** It's clear.

Proposition 3.11 If IS \widetilde{M} of X is α kgIc and $\widetilde{M} \subseteq \widetilde{N} \subseteq \alpha$ kcl (\widetilde{M}) , then \widetilde{N} is β kgIC set in X.

Proof: by using the proposition 3-1 we get the result .

Proposition 3.12 If IS \widetilde{M} of X is α kIc and $\widetilde{M} \subseteq \widetilde{N} \subseteq \alpha$ kgcl(\widetilde{M}), then \widetilde{N} is α kgIC set in X.

Proof: by using the proposition 3-1 we get the result .

Proposition 3.13 If IS \widetilde{M} of X is αkIc and $\widetilde{M} \subseteq \widetilde{N} \subseteq \beta kcl(\widetilde{M})$, then \widetilde{N} is $\beta kgIC$ set in X.

Proof: by using the proposition 3-1 we get the result .

Proposition 3.14 The intersection of a α kgIc set and a α kIc set is α kgIc. **Proof:** it's obvious .

Proposition 3.15 If \widetilde{M} is α kIO and α kgIc then \widetilde{M} is β kIc.

Proof. Suppose that \widetilde{M} is αkIO and $\alpha kgIc$. Since \widetilde{M} is αkIO and $\widetilde{M} \subseteq \widetilde{M}$, we have $\alpha kcl(\widetilde{M}) \subseteq \beta kcl(\widetilde{M}) \subseteq \widetilde{M}$, also $\widetilde{M} \subseteq \alpha kcl(\widetilde{M}) \subseteq \beta kcl(\widetilde{M})$, thus $\beta kcl(\widetilde{M}) = \widetilde{M}$. Therefore \widetilde{M} is βkIc .

Proposition 3.16 If \widetilde{M} is α kIO and β kgIC then \widetilde{M} is β kIc.

Proof: It's clear.

Proposition 3.17 Let (X, μ) be an ITS. Then the following are equivalent:

1- each α kgIc is β kgIC.

2- $\alpha kOl(\widetilde{M}) \subseteq \beta kcl(\widetilde{M})$.

Proof: by using the proposition 3-1 we get the result .

References

- [1] D. Coker, "A note on intuitionistic sets and intuitionistic points" Turkish J .Math.
- 20, 1996 , 343-351.
- [2] D. Coker, An introduction to intuitionistic fuzzy topological space, Fuzzy Sets and

Systems, 88, 1997, 81-89.

[3] D. Coker, D. An introduction to intuitionistic topological spaces, BUSEFAL 81,

51-56, 2000.