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MESHFREE METHODS OF ELESITSTY PROPLEM 

A.L. Hajir Ali Shnawa 

Abstract 

The goal of this thesis is to use the generated local radial basis function (RBF). 

Finite difference (FD) method which is RBF-FD to solve some problems in solids 

Mechanics. This method possesses some advantages such as ease of 

implementation, Ability to work on scattered data rather than a connected network, 

and flexibility. Regarding the geometry and dimensions of the problem domain. On 

the other hand, global RBF methods suffer from dense and unconditional finality 

systems while the final matrix of the RBF-FD method is sparse and well adapted 

Keywords: Radial basis function (RBF), Finite difference (FD) method, 

Computational. stencil, Elasticity problems 

 ة من الشبكة لحل مسائل المرونةيطرق الخالال

 ةهاجز عهی شىاوو. و. 

 ثانتخصص: انزياضيا

 ملخص 

طزيمت انفزوق  ( RBF)  انهذف مه هذي الأطزوحت هى استخذاو دانت الأساس انشعاعي انمحهيت انمىنذة 

نحم بعض انمشاكم في ميكاويكا انمىاد انصهبت. تمتهك هذي انطزيمت بعض  RBF-FD( وهي FDانمحذودة )

انمزايا مثم سهىنت انتىفيذ، وانمذرة عهً انعمم عهً بياواث متىاثزة بذلاً مه شبكت متصهت، وانمزووت. فيما يتعهك 

يفت وغيز انعانميت مه أوظمت وهائيت كث RBFبهىذست وأبعاد مجال انمشكهت. مه واحيت أخزي، تعاوي طزق 

                                                                      .  متفزلت ومتكيفت بشكم جيذ RBF-FDمشزوطت بيىما تكىن انمصفىفت انىهائيت نطزيمت 

 .(، مشاكم انمزووتFD(، طزيمت انفزوق انمحذودة )RBFانكهماث انمفتاحيت: دانت الأساس انشعاعي )

Introduction 

In recent years, radial basis functions were first used by Hardy in 1971 to 

interpolate multivariate data. Then Kanza of interpolators of radial basis functions 

were designed to solve partial differential equations. Then, in 1993, Wu presented 

the advantages of these methods and in general the symmetric colocation method 

under radius basis functions [1]. In the 1990, in order to solve the problems of 

differential equations, Kanza (unsymmetric),4,7- and symmetric ,5,6-methods 

were designed. Finite difference method - Radial Baye function was designed by 

Feinberg and Flier in 2015 ,9- .The matrices of the unsymmetric and asymmetric 

interpolation method inherit the radial Basis function. For this purpose, we intend 

to solve this problem by using local methods based on radial Basis functions. 
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before speaking :In this thesis, we investigated the solution of elasticity problems 

using the finite difference method of the radial basis function (RBF−FⅮ) and we 

performed its numerical implementation in MATLAB software to solve some of 

these problems in two-dimensional space and obtained a good accuracy. The 

advantages of this method are ease of implementation and flexibility in choosing 

different basis functions, irregular points and complex calculation area to be. Also, 

the combination of this method with local stabilizing algorithms such as RBF-QR 

leads to acceptable numerical results, which can be considered as one of the 

important advantages of this method. We can also conclude that this method, as one 

of the meshless methods for solving elasticity problems, brings satisfactory results 

and it is possible to develop it for other solid mechanics problems such as dynamic 

elastic problem. 

Meshfree method: the field of numerical analysis, meshfree methods are those that 

do not require connection between nodes of the simulation domain, i.e., a mesh, but 

are rather based on interaction of each node with all its neighbors. As a 

consequence, original extensive properties such as mass or kinetic energy are no 

longer assigned to mesh elements but rather to the single nodes. Meshfree methods 

enable the simulation of some otherwise difficult types of problems, at the cost of 

extra computing time and programming effort. The absence of a mesh allows 

Lagrange  

simulations, in which the nodes can move according to the velocity field. 

A radial basis function (RBF): is a real-valued function whose value depends only 

on the distance between the input point and some fixed point, either the origin     so 

that, or some other fixed point, called a center, so that, 

 Any function that satisfies the property   is called radial basis function. 

conditional positive: Let 𝑅𝑑on q be a conditional positive semidefinite of order ϕ of 

even and continuous radial basis function and for each𝑧1𝑧2, , ..., 𝑧𝑛∈ 𝑅𝑑and for 

each set of distinct points n∈ N we say that if for each that 

 apply 

in the following side condition: 

∑ 𝑐𝑖
𝑛
𝑖=1  p(𝑧𝑖) =0,  ∀p∈ 𝑃𝑞−1

𝑑 , to have 

∑ ∑ 𝑐𝑖
𝑛
𝑗=1

𝑛
𝑖=1 𝑐𝑗∅(‖𝑧𝑖 − 𝑧𝑗‖)  ≥0   .               (1) 

ⅽ ∈ 𝑅𝑛vector 
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∅ is conditional positive definite from order q in 𝑅𝑑 say that if Mathematical 

formula (1)        ∀c∈ 𝑅𝑁\,0-be positive. 

 Internalization of the radial basis function: 

Let Ω ⊆ 𝑅𝑑 and distinct scattered points X=*𝑥1, 𝑥2, , … , 𝑥𝑛+ ⊆ Ω and 𝑓𝑗=f(𝑥𝑗) for 

1≤ j≤ n are given .  Internalization of the radial basis function f on X as:    S(x) = 

∑ 𝜆𝑗
𝑛
𝑗=1 ∅(‖𝑥𝑖 − 𝑥𝑗‖)  It is written that in those coefficients𝜆𝑗with internal 

conditions ,4,5- S (𝑥𝑖) = 𝑓𝑖 for 1≤i≤N by solving A𝜆=f    be the result: 

 

 

                                           

                                         figure (1-1) ( A square area containing regular points( 
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A=    [

∅(‖𝑥1 − 𝑥1‖) ∅(‖𝑥1 − 𝑥2‖) ⋯ ∅(‖𝑥1 − 𝑥𝑁‖)

∅(‖𝑥2 − 𝑥1‖) ∅(‖𝑥2 − 𝑥2‖) ⋯ ∅(‖𝑥2 − 𝑥𝑁‖)
⋮ ⋮ ⋯ ⋮

∅(‖𝑥𝑁 − 𝑥1‖) ∅(‖𝑥𝑁 − 𝑥2‖) ⋯ ∅(‖𝑥𝑁 − 𝑥𝑁‖)

] , 

 

𝜆      =[

𝜆1

𝜆2

⋮
𝜆𝑁

] ,      𝑓𝑥 = [

𝑓(𝑥1)
𝑓(𝑥2)

⋮
𝑓(𝑥𝑁)

] . 

Generalization of internal problem: 

S(x) = ∑ 𝛼𝑖
𝑁
𝑖=1 ∅(‖𝑥 − 𝑥𝑖‖) +∑ 𝛽𝑗

𝑚
𝑗=1 𝜌𝑗(𝑥) 

Internal conditions: S(x)= f (𝑥𝑖), i=1,2,⋯,N. 

Side conditions:  ∑ 𝛼𝑖𝛽𝑗(𝑥𝑖)
𝑁
𝑖=1  = 0, J = 1,⋯ ,𝑚. 

In this case, we reach to : 



 

1488 
 

   0
𝐴 𝑃
𝑃𝑇 0

1 0
𝛼
𝛽1 =0

𝐹𝑋

0
1, S.T   𝑃𝑖𝑗=𝑃𝑗(𝑥𝑖) and  𝐴𝑖𝑗=∅(‖𝑥𝑖 − 𝑥𝑗‖). 

 

Solvability of linear interpolation and generalized interpolation: 

 Differentiation of nodal points and their unique resolution. 

 Positive definiteness (conditional, unconditional) of radial basis functions. 

The above two conditions lead to the achievement of unique coefficients in linear 

systems of interpolation problems. And the interpolator function is obtained 

uniquely. 

matrix of devices corresponding to global radial basis functions with the number of 

interpolation points, In these functions, the accuracy of ϵbecomes large, full and ill-

positioned. In addition, by reducing the shape parameter increases, but the matrix 

of devices similar to them is in a bad position. And from a stage Later, it hinders 

the achievement of more accuracy. To overcome these problems of methods. 

We use local and stable RBF-FD as described in the next section in particular, we 

focus on solving two-dimensional elasticity problems. It is worth noting that to 

overcome. 

We can use stabilization algorithms such as RBF-QR and RBF-CP on the bad 

situation caused by the reduction of the shape parameter let's use. 

Definition: Suppose Ⅼ is differentiable with a linear operator, in this method the 

operator Ⅼ can be approximated at an arbitrary point like 

𝑥𝑐located on the domain of the problem is defined as follows by using the data 

values of nodal points located in the stencil attributed to the point 

𝑥𝑐 We define it as follows: Lu|𝑥𝑐 ≈ ∑ 𝑤𝑖
𝑁
𝑖=1 𝑢𝑖     (4)  

To approximate the operator Ⅼ, it is necessary to specify the weights in the above 

linear combination. 

Finite difference method based on radial basis function: 

In the classical finite difference method of weights with the effect of the fact that 

the linear combination (4) For polynomials to be exact up to high degrees, they are 

determined, now in the method RBF-FD, Weights with the effect of accuracy of 

linear combination)4) For the radial basis functions centered on points located in 

stencil 𝑥𝑐 i.e., 𝑋𝑘,We calculate from the solution of the following linear device: 



 

1489 
 

  

    [

∅(‖𝑥1 − 𝑥1‖) ∅(‖𝑥1 − 𝑥2‖) ⋯ ∅(‖𝑥1 − 𝑥𝑁‖)

∅(‖𝑥2 − 𝑥1‖) ∅(‖𝑥2 − 𝑥2‖) ⋯ ∅(‖𝑥2 − 𝑥𝑁‖)
⋮ ⋮ ⋯ ⋮

∅(‖𝑥𝑁 − 𝑥1‖) ∅(‖𝑥𝑁 − 𝑥2‖) ⋯ ∅(‖𝑥𝑁 − 𝑥𝑁‖)

] [

𝑤1

𝑤2

⋮
𝑤𝑁

]= 

[

𝐿∅(‖𝑥𝑐 − 𝑥1‖

𝐿∅(‖𝑥𝑐 − 𝑥2‖)
⋯

𝐿∅(‖𝑥𝑐 − 𝑥𝑁‖)

] 

 

In order to recover polynomials, add multivariable polynomials to the linear 

relationship 4and to calculate the weights, we solve the following linear system: 

[
 𝐴𝜙, 𝑘 𝑝

𝑝𝑡 0
] 0

𝑤
𝑣
1=[

𝐿∅

𝐿𝑃
]        (5) 

𝑃𝑚(𝑅𝑑)= span {p۱, . . ., pQ}... , ۱ ⩽ i ⩽ Q , xj ∈ Xk · P = (pi (xj)) 

Q=.
𝑚 + 𝑑

𝑑
/ , p=(𝑝𝑖(x)) 

 According to the way of choosing the points in the neighborhood of point X to 

form the corresponding stencil It (global and local), we divide this method into 

two types, global and local. 

 Positive semi definiteness of radial basis functions of order 1 + ⅿ in the space 

of 𝑅𝑑and 𝑃𝑚(𝑅𝑑) 

- The unique solvability of points is a sufficient condition for the solvability of the 

linear device 5. 

 In this method, we can control the ill-posed Ness of the coefficient’s matrix, 

caused by the selection of small values of the shape parameter 

Apply RBF-QR,10- 

          Elasticity problem:    

Elasticity: To the resistance of an object against changes in shape caused by the 

application of force and return to shape the initial size after removing the force is 

called "elasticity",8,9- 
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Tension: In general, stress means the force exerted on a unit area, and its unit is in 

the SI system Pascal (newton per square). Force is a vector quantity, that is, it has 

size and is the direction in the definition of stress, depending on the direction in 

which the force is applied to the surface, types different tensions are created. 

tensile stress: When the direction of the applied force is perpendicular to the 

desired surface and towards the outside of the part, tension is created It is called 

tensile stress. One of the important factors in calculating the strength of materials is 

their ability under It is tensile stress. 

Compressive stress: When the direction of the incoming force is perpendicular to 

the desired surface and towards the inside of the piece, tension is created It is called 

compressive stress. Usually, the tolerance of parts under compressive stress is more 

than tensile stress. 

Shear stress: Whenever the direction of the incoming force is parallel to the desired 

surface or in other words perpendicular to the normal vector of that surface is, shear 

stress is created in the object. The sign of shear stress in mechanics equations, tau τ 

(from Greek letters). 

Stress-strain: They are among the most basic and important concepts in the 

resistance of materials. When the force When a structure is loaded with a member 

of it, tension and strain are created. The tension can be It is defined as the force 

acting on an object per unit area. According to this definition, the stress equation 

will be as follows: 

σ = F/A 

σ, F, A respectively as stress, force and cross-sectional area on which the force is 

applied ،we will consider it. 

Body force: It is a force that acts on the entire volume of the body. Forces due to 

gravity, fields Electric and magnetic fields are examples of body forces. Body 

forces wit Contact forces are different from surface forces that are applied to the 

surface of an object. External forces and shear forces between objects as they are 

applied to the surface of an object are surface forces. All cohesive surface 

attractions and contact forces between Objects are also considered as surface 

forces. 

Fictitious forces such as centrifugal force, Euler force and Coriolis effect are also 

examples they are from the forces of the body. 
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Young's modulus: E Young's modulus or modulus of elasticity, is a mechanical 

property that measures the tensile stiffness of a solid material. This relationship 

between tensile stress σ (force per unit area) and axial strain ϵ(proportional 

deformation) in the linear elastic region of one 

It determines the substance and is determined using the following formula: 

E =  
𝜎

𝜀
      Young's moduli are usually so large that they are expressed not in pascals 

but in gigapascals (GPa). 

Poisson's radius: In material science and solid mechanics, Poisson's ratio and to 

measure Poisson's effect means deformation expansion with contraction of the 

material is used in the direction perpendicular to the specific direction. The 

negative Poisson's ratio value is the ratio of transverse strain to axial strain. For 

small values of these changes ν, the amount of transverse elongation is greater than 

the amount of axial compression. Most materials they have easy ratio values 

between 0.0 and 0.5. 

Introduction of two-dimensional elasticity problem: 

The problem of two-dimensional elasticity in a bounded area     Ω ⊆ 𝑅2       

with a border  𝛾 = 𝜕Ω     is defined as follows: 

 

σij,j + bi =0 , in Ω.       (6) 

where σij, j is the stress tensor corresponding to the displacement field u = [u1, 

u2]T and the kinetic force b = [b1, b2]T. 

σij are the components of the stress tensor matrix obtained from the following 

relationship: σ=Ⅾ Ⅼ u 

where the derivative operator matrix Ⅼ and the stress-strain matrix Ⅾ for spherical 

isomorphic materials are respectively as: 

 L = 

[
 
 
 
 

𝜕

𝜕𝑥
0

0
𝜕

𝜕𝑌
𝜕

𝜕𝑌

𝜕

𝜕𝑥]
 
 
 
 

 ,D =
Έ

1−𝑣2 [

1 𝑣 0
�̅� 1 0

0 0
(1−�̅�)

2

]. 
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Έ ={
Ε,      𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑒𝑠𝑠 

Ε

1−𝜈2
 ,    𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑎𝑖𝑛    

 

�̅�= {
𝑉, 𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑒𝑠𝑠 
𝑉

1−𝑉
, 𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑎𝑖𝑛

  

It is definable. 

Therefore, the problem of two-dimensional elasticity with boundary conditions can 

be written as follows: 

Έ
𝜕2𝑢1

𝜕𝑥2
 + Έ�̅�

𝜕2𝑢2

𝜕𝑥𝜕𝑦
 + Έ𝑣�̅�

𝜕2𝑢1

𝜕𝑦2
 + Έ�̅�

𝜕2𝑢2

𝜕𝑦𝜕𝑥
 = -𝑏1 

Έ�̅̃�
𝜕2𝑢1

𝜕𝑥𝜕𝑦
 + Έ�̃�

𝜕2𝑢2

𝜕𝑥2
 + Έ�̅�

𝜕2𝑢1

𝜕𝑥𝜕𝑦
 + Έ

𝜕2𝑢2

𝜕𝑦2
 = -𝑏2     (7) 

Έ =
�̅�

1−�̅�2
 ,     �̃� = 

1−�̅�

2
 . 

           Iu = �̅� ,                                                 (8) 

𝜕𝑢1

𝜕𝑥
𝑛1+ �̅�

𝜕𝑢2

𝜕𝑦
+ 𝑛1 + .

1−�̅�

2
/ 

𝜕𝑢1

𝜕𝑦
 𝑛2 + .

1−�̅�

2
/ 

𝜕𝑢2

𝜕𝑥
 𝑛2 =𝑡1̅, 

.
1−�̅�

2
/ 

𝜕𝑢1

𝜕𝑦
 𝑛1 + .

1−�̅�

2
/ 

𝜕𝑢2

𝜕𝑥
𝑛1 + �̅�

𝜕𝑢1

𝜕𝑥
 𝑛2 + 

𝜕𝑢2

𝜕𝑦
 𝑛2 = 𝑡2̅. 

where n2 and n1 are the components of the normal vector on the boundary of the 

region Ω. 

Implementation of RBF-FD method to solve 

    two-dimensional elasticity problem: 

To apply the method, RBF-FD set Z = {𝑧1, 𝑧2, ⋯ , 𝑧𝑛 }, and 𝑈𝑧space respectively as 

points for 

We consider a node (approximation) and an approximation space, and using the 

displacement field at these points in the form of ,𝑢𝑖(𝑧1), 𝑢𝑖(𝑧2),⋯ , 𝑢𝑖(𝑧𝑛)-𝑇 for 

i=1,2 , 

We expand the problem of elasticity. We assume that Ⅼ is one of the operators used 

in the elasticity problem, that is: 

L = Έ
𝜕2

𝜕𝑥2
 + Έ�̅�

𝜕2

𝜕𝑥𝜕𝑦
 + Έ𝑣�̅�

𝜕2

𝜕𝑦2
 + Έ�̅�

𝜕2

𝜕𝑦𝜕𝑥
 , 
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L = Έ�̅̃�
𝜕2

𝜕𝑥𝜕𝑦
 + Έ�̃�

𝜕2

𝜕𝑥2
 + Έ�̅�

𝜕2

𝜕𝑥𝜕𝑦
 + Έ

𝜕2

𝜕𝑦2
 , 

We assume for the boundary conditions: 

B =𝑛1 
𝜕

𝜕𝑥
+ �̅�𝑛1

𝜕𝑢2

𝜕𝑦
 + .

1−�̅�

2
/𝑛2  

𝜕

𝜕𝑦
 + .

1−�̅�

2
/ 𝑛2 

𝜕

𝜕𝑥
 , 

B = .
1−�̅�

2
/ 𝑛1 

𝜕

𝜕𝑦
  + .

1−�̅�

2
/ 𝑛1 

𝜕

𝜕𝑥
 + �̅�𝑛2

𝜕

𝜕𝑥
  +𝑛2 

𝜕

𝜕𝑦
 , 

We put it in Dirikele B = I 

Now sets X = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛𝑥
} and Y = 2𝑦1, 𝑦2, ⋯ , 𝑦𝑛𝑦

3 

Now set in order as test points We consider the interior and boundary and using the 

functions of the point finder δyk and δxj 

For internal and boundary test points, we discretize equation (7) and (8) similarly 

to these points : 

L(𝑢𝑖)(𝑥𝑗) = 𝛿𝑥𝑗 
𝜊𝐿(𝑢𝑖) = -𝑏𝑖,          i = 1,2, 

B(𝑢𝑖)(𝑦𝑘) = 𝛿𝑦𝑘
𝜊 B(𝑢𝑖) = {

𝑡�̅�
�̅�𝑖

        i = 1,2        (9) 

The right side of relation (9) is based on the Neumann or Dirichlet boundary 

conditions of titi or ui, where i = 1, 2 Authorizes. 

To reproduce the R BF−FⅮ method A favorite point 𝑥𝑘 ∈ 𝑋 𝑜𝑟 𝑦𝑘 ∈ 𝑌 we will 

consider and points 𝑧𝑗 In this neighborhood, we refer to the radius of the schema as 

a computational stencil We assume  

𝑍𝑘 = Z∩ B (𝑥𝑘, 𝛿) For interior points or 𝑍𝑘 = Z∩ B (𝑦𝑘 , 𝛿) For border points. Now 

we get the weights related to the K row of the RBF-FD matrix as follows: 

L(𝑢𝑖)(𝑥𝑘) ≈ ∑ 𝑤𝑗
𝑘𝑢𝑖(𝑧𝑗)𝑧𝑗∈𝑍𝑘

,    i = 1,2          (10) 

and 𝑤𝑗
𝑘under the condition that the approximation (10) is exact for all radial basis 

functions made by𝑍𝑘 points, in other words 

∑ 𝑤𝑗
𝑘∅(‖𝑧𝑙 − 𝑧𝑗‖)𝑧𝑗∈𝑍𝑘

 =L∅(‖𝑧𝑙 − 𝑥𝑘‖),        𝑧𝑙 ∈ 𝑍𝑘. 

We get that in the representation of the matrix of the linear device we will have the 

following: 
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𝐴𝐿𝑤
𝑘 = 𝐿∅𝑘 ,  

𝐴𝐿 = [∅(‖𝑧𝑙 − 𝑧𝑗‖)]|𝑧𝑙 , 𝑧𝑗 ∈ 𝑍𝑘,                     (11) 

L∅𝑘 =[𝐿∅(‖𝑥𝑘 − 𝑧𝑗‖)]|𝑧𝑗 ∈ 𝑍𝑘 , 

𝑤𝑐 = [𝑤1
𝑘 , 𝑤2

𝑘, ⋯ ,𝑤𝑛𝑘

𝑘]
𝑇
 . 

where 𝑛𝑘is the number of points𝑧𝑗 that are located in the molecule 𝑧𝑘. 

, if the radial basis function ϕ is positive, the mentioned linear system is 

monosyllable will be. If we want to get a more accurate answer, we can use the 

RBF-FD method Apply the condition of reproduction of polynomials. In this case, 

by choosing {p1, p2, ..., pQ} to A basic heading for the space of polynomials of 

certain degree and adding a linear combination of these. The bases in the molecules 

are similar to any arbitrary test point 𝑥𝑘 assuming that the weights are accurate For 

both radial functions and polynomials, we will reach the following system of linear 

equations: 

[
𝐴𝐿 𝑃

𝑃𝑇 0
] [

𝑤𝑘

𝛽𝑘 ] = [
𝐿∅𝐾

𝐿𝑝𝑘 ]                          (12) 

That: 

P = [𝑝𝑘(𝑧𝑗)]|𝑧𝑗 ∈ 𝑧𝑘   1≤ k ≤ Q = .
𝑞 + 1

2
/ , 𝑧𝑗 ∈ 𝑍𝑘 , 

𝐿∅𝐾 = [𝐿∅(‖𝑧𝑗 − 𝑧𝑘‖)] |𝑧𝑗 ∈ 𝑍𝑘, 

LP = ,𝐿𝑃𝑘(𝑥𝑘)-|1 ≤ 𝑘 ≤ 𝑄. 

If the radial basis function∅ is conditional positive definite of q order. And if the 

points of the 𝑍𝑘  molecule are unique solvers on the polynomial space of 

𝑃𝑞−1(𝑅
2)multivariables, the mentioned device will be solvable and the coefficients 

of 𝑤𝑗
𝑘will be uniquely obtained. Due to the fact that all points of approximation of 

Z in 𝑍𝑘molecule are not forced, when we consider the weight vector 𝑤𝑘as a row of 

k matrix RBF-FD, corresponding to the points of Z that are not in𝑍𝑘, zero is added 

to it. let's do. We solve this process for all internal and boundary test points and the 

matrices 𝐷𝐵  𝑎𝑛𝑑 𝐷𝐿similar to the boundary and internal operators in the problem. 

We get the elasticity that the weight vectors such as to each test point, the lines of 

this forms the matrices, in this case we have: 
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[
𝐷𝐿

𝐷𝐵
]  𝑢𝑖  = [

−𝑏𝑖

𝑔𝑖
] ,              i = 1,2              (13)  

Such that: 

𝑔𝑖  = 0𝑡�̅� ,                 𝑁𝑜𝑤𝑚𝑎𝑛 𝑐𝑜𝑛𝑑𝑡𝑖𝑜𝑛𝑠
 

 

        ,�̅�𝑖 ,              Derekleh condtions 

𝐷𝐿=
 

[
 
 
 
𝑤1

𝐼

𝑤2
𝐼

⋮
𝑤𝑛𝑥

𝐼]
 
 
 
  ,   𝐷𝐵= 

 
 
 
 
𝑤1

𝐵

𝑤2
𝐵

⋮
𝑤𝑛𝑦

𝐵
 
 
 
 

. 

Here, 𝑛𝑥and 𝑛𝑦show the number of internal and boundary test points, respectively. 

After that the displacement field u = 0
𝑢1

𝑢2
1 at the z-points was obtained by solving 

the device (13), we can calculate the stress and strain by using the RBF-FD method 

again for any other desired point. 

 

  Chapter 2: Numerical results and discussions: 

In order to obtain numerical results, we use Gaussian radial basis functions and 

consider the following hypotheses. 

 Shape parameter 𝜖 = 0.1  for Gaussian kernel. 

 𝛿 as the radius of each molecule in the form of a coefficient of the density 

distance h that is Ch = 𝛿   such that c≥ 1. 

Using RBF-QR stabilizer algorithm for Gaussian kernel, k=5 For the polynomial 

function 𝑟𝑘. 

Example: We consider a retaining beam with the tensile force P loaded at its free 

end as shown in (2-1), where Ⅼ is the length of the beam and Ⅾ is its width. 
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                                                         Figure (2-1):  

   

The exact answer of this example in reference [10] is as follows: 

U1  = 
−𝑃

𝜎¯𝐸𝐼
  (y −  

𝐷

2
 )(3 x(2Ⅼ − x) + (2+ ν¯) y(y − Ⅾ)), 

u2  =  σ¯EI 

𝑃

𝜎¯𝐸𝐼
(𝑋2 (3Ⅼ − x) + 3v ̅ (Ⅼ − x) (y − Ⅾ ) + 

2+5𝑣 ̅

4
𝐷2𝑋). 

Such that: I =
𝐷3

12
 , X = (x,y) ∈ 𝑅2. 

The exact stresses associated with the displacement field are u=,𝑢1, 𝑢2-
𝑇  also in  

obtained as:   

𝜎1 1 = 
−𝑃

𝐼
(L-x) (y- 

𝐷

2
) , 

𝜎2 2 = 0 , 

𝜎1 2 = 
−𝑃𝑦

2𝐼
 (y- D) , 

For a numerical example L as the length of the beam, be in amount 8 and D as the 

width of that value 1We choose. to the tensile force P, Young's modulus and 

Poisson's radius are assigned values of 1.1 and 0.25 respectively. 
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.                

                                   (2-2): How to arrange the points on the beam 

               

            

 

                                 Figure (2-3): boundary conditions 

 

        

      Figure (2-4): Numerical results of RBF-FD method with Gaussian function. 
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          Figure (2-5):  Gaussian RBF-FD method error for u function. 

and it is displayed under power function 𝑟5 in figure (2-6) and table (2-7). 

 

    figure (2-6):  The error of the RBF-FD method with multi-parallel kernel for         

function u. 
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         table (2-7): Numerical results of RBF-FD method with multi-coordinate 

function. 
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