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RESEARCH PAPER

Articulated Robot Path Planning Based on
Hybridization of Adaptive Dimensionality Algorithm
and Grey Wolf Optimizer in Dynamic Environments

Noor K. Ayoob*, Ali H. Hasan

Department of Software, College of Information Technology, University of Babylon, Babylon, Iraq

Abstract

A new method was developed to plan a path for a robotic articulated vehicle using the Grey Wolf Optimizer (GWO)
and Adaptive Dimensionality (AD). Existing studies in robotics path planning ignore the differences between robots in
terms of size and flexibility and allocate a single cell to the robot regardless of the mentioned factors. Since the artic-
ulated robotic vehicle is longer than obstacles moving in the environment, this study takes into account vehicle size and
flexibility in path planning by adapting the number of cells allocated to the robotic vehicle to contain the vehicle parts
while performing different movements. Considering the number of fixed obstacles during the environmental analysis
improves safety and reduces dangerous turns. In the moving stage, the sensing area is reduced by AD based on steering
angle range, and connectivity. The GWO leaders form the local path followed by the vehicle. Simulation results showed
that the proposed method finds an optimal, collision-free, and safer path. Compared to most related studies, the average
path cost and the number of iterations increased by (47.88 %) and (59.15 %) compared to the GSO-AD, because increasing
safety in the proposed method guided the vehicle through a higher-cost path and imposed more iterations. These metrics
decreased by (12.83 %) and (50.14 %) respectively compared to the Max-Min Ant because the latter uses complex cal-
culations to lead the robot through large free spaces. The average time of the proposed method decreased by (17.57 %)
and (72.94 %) compared to these methods which indicates the efficiency of the proposed method.

Keywords: Robot, Path planning, Grey Wolf Optimizer, Adaptive dimensionality, Dynamic environment, Articulated
vehicle

1. Introduction

T he primary task of path planning for a mobile
robot is to find a path through which the robot

can navigate from a starting point to a target point
safely, smoothly, and with minimal energy con-
sumption [1]. There are many techniques for route
planning, including [2] basic methods (cell decom-
position, road map, etc), heuristic (A*, D*, etc.), and
smart techniques (neural nets, swarms, etc), each of
which has its pros and cons. The choice of planning
approach depends on the robot's aptitudes, the na-
ture of the environment, and the requirements of
the application [3].
Swarm intelligence is a class of nature-inspired

algorithms that imitate the social organization of

species in nature through the interactions of in-
dividuals with each other and with the environment
[4]. These algorithms propose a set of solutions that
are organized into communities called swarms. The
solutions evolve during the execution of the algo-
rithm and thus the swarm shows high scalability,
flexibility, and adaptability to environmental
changes. All swarm algorithms start with an initial
swarm, define a function for solution evaluation,
update solutions (moving individuals), terminate at
a certain condition, and return the best-discovered
solution [5]. Swarm intelligence is an effective
approach to optimize solutions to many well-known
problems in computer science, for example, trav-
eling salesman [6], data clustering and analysis
[7e9], feature selection [10], and path planning [11].
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The adaptive dimensionality approach aims to
speed up the planning process in a dynamic envi-
ronment by planning in full dimensions if a risk of
clashing may occur and planning in low dimensions
elsewhere [12]. The advantage of AD is decreasing
time and complexity by reducing the number of
neighbors to be processed [13].
In 2020, Guanghui Xu et al. [14] showed that the

traditional version of the firefly swarm did not
succeed in overcoming the obstacles. The algorithm
was improved by formulating proposed equations
to update the step size and absorption coefficient.
These improvements made the algorithm more
efficient in finding a shorter path with fewer itera-
tions. Jianzhang and Zhihao Zhang [15] used a hy-
bridization of the simulated annealing and PSO to
reduce falling into the local optima by adding the
replacing probability for each particle. They pro-
posed a new equation for updating the speed. The
mutation concept was borrowed from the genetic
algorithm to enhance the planner. The results
showed that the cost function is minimized signifi-
cantly compared to the classical PSO with the same
complexities. Qasim R. et al. [12] presented the AD
principle with the Glowworm algorithm for path-
finding in dynamic workspaces. The cells of three
levels are filtered by AD which selects cells with
luciferin less than that of the current cell. By
comparing the results with other studies, it was
found that the proposed planner took less time and
fewer cycles. Xuezhen Cheng et al. [16] proposed a
method that combines PSO and GWO for efficient
path planning. The PSO algorithm finds the best
path and GWO ranks particles to choose the three
fittest particles to lead others. The method relied on
chaos to generate the initial population to get rid of
the local end by replacing a random particle. Ac-
cording to the results, the method was able to find
an optimal path in a shorter time compared to the
traditional methods. Fish swarm algorithms with
Bezier curves [17] were used to obtain a smooth
path. The fish algorithm has been improved by
examining 16 and 24 neighbors. A dynamic feed-
back horizon and adaptive step size were suggested
to overcome the poor performance in the advanced
stages. Dijkstra algorithm was also used to deter-
mine the step size. It was noted that the method
produced smooth, continuous paths with an
improvement in the performance of the fish flock
algorithm. Oussama H. et al. [18] proposed hunting
a moving target by multi-robots using GWO and
potential field (PF). Each robot represents a wolf
moving in the potential field. PF was used to plan
the path of the wolf (robot). The method found the
target with a safe and optimal path. Researchers in

[19] used the ant algorithm for multi-robot planning
where each robot has a priority, and the paths are
planned in descending order of priority, then a
collision-free path is found for each robot. They
represented the environment in the form of a 2.5
map consisting of two layers to store ground and
obstacle data respectively. The results showed that
the proposed method has remarkable improve-
ments in terms of energy saving. Zhen Yang et al.
[20] proposed using alternating jump point search
A* algorithm with two types of distance (Euclidean
and Chebyshev) in global planning and DWA with
an improved evaluation function method for local
planning. The results showed a higher possibility of
decreasing the number of neighbors and the
execution time. In [21], an improved minemax ant
algorithm is used to guide the robot away from
obstacles by computing a new parameter called
clean in the step of map analysis and using it to
modify the original probability formula. The
method was able to detect tight tunnels during
analysis. As a result, the robot became safer by
directing it towards wider areas. in [22], to obtain
near-optimal paths in 3D without collisions, an
improved RRT using three versions of GWO to
obtain the benefits of both methods while getting rid
of the drawbacks of each. The idea of these versions
is that updating the wolf's position does not depend
on the leaders only. In the extended version, the nth
wolf updates its position based on n-3 preceding
wolves, while the wolf depends on all n-1 preceding
wolves to receive the knowledge in the incremental
approach. The method eliminates the need for prior
knowledge maps by making efficient use of the
UAV's memory and does not suggest trajectories
with a limited number of locations but rather con-
structs them dynamically. The results showed that
the hybrid based on the extended version of the
gray wolf performed better in large environments,
while the hybrid based on the enhanced version
succeeded in small to medium-sized environments.
The standard gray wolf achieved a balanced per-
formance between the two methods. In [23], a new
method for path planning called Dhouib-Matrix-
SPP was proposed. It depends on representing the
environment as a grid that is converted into a graph
where each cell represents a node and the edges
between the nodes represent the possible move-
ments between the neighboring cells, assuming that
the robot can move in eight directions: up, down,
right, left, and four diagonal directions. The graph
can be easily represented as a matrix where the el-
ements represent the distances between the nodes.
At each step, the node closest to the goal is chosen
while avoiding obstacle nodes. The method was
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tested on environments of various sizes and distri-
butions of obstacles. The time complexity of the al-
gorithm is O (9 � n), which makes it faster than
algorithms such as Dijkstra or A*. By comparing the
algorithm with 12 other methods, the study
concluded that the proposed method was fast, flex-
ible, and accurate, but the experiment was limited to
applying the method in static environments only. A
summary of these studies, including the main con-
tributions and limitations, is shown in Table 1.
This paper aims to develop a method for finding a

path for an articulated robotic vehicle taking into
account the space required to implement the robotic
vehicle movement i.e. the planning algorithm does
not lead the robot to place.
That is too small for the robot body to pass

through. The main contributions of this study are:

1) Propose a hybridization of the AD algorithm with
the multi-objective function GWO to plan a safer
path for the articulated robotic vehicle. AD al-
gorithm reduces sensing space and determines
the candidate cells in proportion to the size of the
robot. The multi-objective GWO decides the best
three candidates considering the number of dy-
namic obstacles around each candidate as a
penalty to protect the two parts from colliding
with an obstacle while executing complex
movements. Two reasons can serve as motivation
for using GWO in the proposed planning
method. First, the simple mathematical model
and the small number of adaptable parameters
make this algorithm an effective choice for a
complex system such as robot path planning.
GWO planner reduces the computations and
time consumption compared to other swarms
such as ABC or ACO. Second, the inspiring
feature of being a class-based community algo-
rithm. GWO introduces three leaders (solutions)
which are perfectly consistent with the proposed
algorithm. The sensing area consists of three
layers, and GWO has three leaders, the proposed
idea is to assign a leader in each level to guide the
robot from its current position to the first level,
then the second level, and then the third level.

2) Considering the size of the robot as an influen-
tial factor in path planning, in contrast to pre-
vious studies that assumed that the robot is an
object that occupies only one cell to simplify the
planning process, ignoring the fact that robots
differ in size and flexibility, and therefore the
number of cells occupied by the robot varies
according to the size of the robot and the flexi-
bility of its body. Long vehicles cannot be equal

to small ones, and the presence or absence of a
joint affects the planning algorithm decisions
during movement. In this study, we propose to
use the multi-cell principle so that the number of
cells occupied by a robotic vehicle varies based
on the alignment of the tractor and trailer. Two
cells are needed for the robot if the tractor and
trailer are aligned horizontally or vertically,
which is the least number of cells occupied by
the articulated robotic vehicle, four cells if they
are placed diagonally, and three cells in the
turning due to the joint that facilitates rotation to
the maximum of 45⸰ to the right and left.

3) Improving the analysis process by taking into
account the number of fixed obstacles around
the cell to evaluate the cell in terms of cost and
safety, the fewer the obstacles, the lower the cost.
In this way, the analyzer ensures finding a path
away from fixed obstacles.

The paper is organized as follows: In Section 2, the
theoretical background of the grey wolf algorithm is
viewed. The proposed method is described in detail
in Section 3. The results and comparison are docu-
mented in Section 4. Finally, conclusions and future
works are stated in Section 5.

2. Basics of Grey Wolf Optimizer

GWO was designed to mimic the hunting style of
a grey wolf population [24]. The pack is subject to
the directions of three types of leaders: the supreme
leader (alpha), the assistant leader (beta), and the
protector leaders (delta), the remaining wolves
(omega) are ordinary individuals who maintain di-
versity, and accordingly, the wolf community is
organized into a hierarchy of four classes as shown
in Fig. 1. The alpha leader has a better perception of
the target (prey), so it represents the best solution
followed by the beta and delta leaders, who repre-
sent the second and third-best solutions, respec-
tively. The omega individuals update their positions
relative to the leaders' positions [25]. The GWO al-
gorithm begins by creating a random swarm and
evaluating each wolf (solution) to choose the best
three wolves: alpha, beta, and delta [26]. The algo-
rithm develops solutions through a set of cycles
where the wolf's position is updated according to
the leaders' positions using the equations [27]:

X1¼X delta�A½1� �AbsðC½1��X deltae XÞ ð1Þ

X2¼X beta�A½2� �AbsðC½2��X betae XÞ ð2Þ

X3¼X alpha�A½3� �Abs
�
C½3��X alphae X

� ð3Þ
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Table 1. The summary of the related studies.

Year Ref No. Methods Max no.
of robots

Map
size

Main contributions Limitations

2020 [14] Firefly 1 20*20 Adaptive strategies to update
key parameters: a and g.

Tested on static environ-
ments only and representing
the robot as a point without
considering the effect of size.

2021 [15] Simulated anneal-
ing and PSO

1 e Solving premature conver-
gence and falling into local
solutions, by introducing
simulated annealing proba-
bilities and mutation.

Tested on static environ-
ments with polygon obstacles
only and representing the
robot as a moving point
without considering the ef-
fect of size.

[12] AD and Glowworm 1 10*10
50*50

Improving the planning in
high-dimensional spaces by
reducing the number of cells
considered.

The robot is represented as a
point without taking into ac-
count the effect of robot size
on path planning.

[16] PSO and Grey wolf 1 20*20
30*30

PSO improving global explo-
ration, and GWO improving
local exploitation.

Tested on static environ-
ments only. The robot is
represented as a point
without taking into account
the effect of robot size on
path planning.

[22] RRT and Grey wolf 1 50*50*50
100*100*100
150*150*150

Optimize RRT paths using
the gray wolf to find obstacle-
free paths by specifying the
length and direction of each
move.

Treating robot (UAV) as a
moving point in the 3D space
without considering the ef-
fect of occupied space.

2022 [17] Fish swarm,
Dijkstra

1 10*10
20*20

Taking 24 neighbors into ac-
count to expand movement
options and improve plan-
ning accuracy by using
adaptive stepping.

Tested on static environ-
ments only. The robot is
represented as a point
without taking into account
the effect of robot size on
path planning.

[18] Wolf swarm and
potential field

4 20*20 Improving collaboration of
robots for dynamic target
detection using potential
fields for planning and
avoiding static and moving
obstacles.

The robot is represented as a
point without taking into ac-
count the effect of robot size
on path planning.

[19] Priority-free ant
colony

10 10*10
20*20

Use the scheduling concept
to start planning with the
highest priority robots, taking
into account the friction fac-
tors to get paths with the least
energy consumption.

The robot is represented as a
point without taking into ac-
count the effect of robot size
on path planning. The
behavior of the method in the
presence of dynamic obsta-
cles has not been studied.

[20] BAJPSA* and DWA 3 30*30
100*100

Generating a global path
through a two-way A*. Local
planning is done by
improved DWA with a new
evaluation function.

The robot is represented as a
point in a cell without taking
into account the effect of
robot size on path planning.

2023 [21] Max-min 1 10*10
50*50

Increase safety by guiding
the robot towards the wide
open spaces.

The robot is represented as a
point without taking into ac-
count the effect of robot size
on path planning.

[23] Dhouib-matrix-SPP 1 20*20
30*30
40*40

Find the optimal path in
static grid maps faster and
with less complexity than
other methods.

The robot is represented as a
point without taking into ac-
count the effect of robot size
on path planning. The
behavior of the method in the
presence of dynamic obsta-
cles has not been studied.
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X new¼ðX1þX2þX3Þ=3 ð4Þ
X_delta, X_beta, and X_alpha are the positions of

leaders delta, beta, and alpha respectively. X_ new is
the updated position of the wolf. X1, X2, and X3 are
the positions of the wolf according to the leaders.
Exploration and exploitation are controlled by vec-
tors A and C which are calculated using the
following equations [28]:

a¼2� 2� ðit = MÞ ð5Þ

A¼a� 2� rand1 � a ð6Þ

C¼2� rand2 ð7Þ
Where (it) is the number of current iterations, (M)

represents the maximum number of iterations.
Rand1 and rand2 are randomly generated values in
the range (0,1). After a predetermined number of
iterations or meeting stopping criteria, GWO is
terminated by presenting the position of alpha
leader as the best solution discovered.
Over time, researchers have developed the algo-

rithm by improving the strategy for updating wolf
locations [29], improving the generation of the initial
population, calculating control coefficients, and
even integrating with other swarm algorithms [30].
GWO is an effective solver for various problems
such as robot path planning [33], finding an optimal
path in a wireless network [31], selecting features
[32], and other applications.

3. The proposed method

In this study, a method is proposed for planning
the path of an articulated robotic vehicle based on
the stages shown in Fig. 2.

The environment is imported and analyzed
then the moving stage takes advantage of the anal-
ysis information to move the robot using hybrid
AD- GWO and finally, the method is evaluated in
terms of path cost, total time, and number of
iterations.

Fig. 1. The hierarchy of grey wolves' population according to fitness and responsibilities.

Fig. 2. The stages of the proposed method.
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3.1. Robot characteristics

The articulated robotic vehicle consists of two
parts: a tractor and a trailer with a joint connecting
them. The robot's capabilities and characteristics are
presented in Table 2.
Fig. 3 shows the multi-cell representation pro-

posed in this paper, which depends on the type of
movement. The articulated vehicle takes at least two
positions when both the tractor and the trailer are
horizontal or vertical. When the tractor is diagonal
to the trailer, i.e. straight diagonal movement, this

requires reserving 4 cells for the robot. We need
three cells to implement the turn, as one free corner
is enough to implement this turn due to the pres-
ence of the joint. This explains the high possibility of
this type of vehicle to turn around an obstacle if
necessary.
As shown in Fig. 4, the angle between the tractor

and the best cell within the sensing range is calcu-
lated. All cells whose angle to the tractor falls within
the range (angle-45, angleþ45) are chosen and
reduced based on back pointers and connectivity as
seen later in Section 3.3.

3.2. The analysis stage

The purpose of this stage is to gather data about
each cell using D* style. The analyzer discovers the
environment by expanding cells from the goal back
to the starting cell. A queue is used to store the cells
resulting from the expansion, arranged in ascending
order according to their cost. Each cell pulled from
the queue is expanded to discover new cells that can
be accessed through that cell. Besides the co-
ordinates (X, Y), the information recorded for each
cell is shown in Table 3.
In this paper, the performance of the analyzer is

improved by the following:

1) Detection of non-executable movement, by
closing inaccessible diagonal cells because both
corners are blocked.

2) Keep the robot away from a fixed obstacle to
increase safety degree by counting the number
of obstacles around each cell.

3) Reducing dangerous turns i.e. turns around an
obstacle as a result of staying away from obsta-
cles (explained in 2).Table 2. Robot characteristics.

Characteristic Value Explanation

Tractor e The leader part
Trailer e The follower part
No. of cells occupied

by the robot based
on the movement type

2 Horizontal/vertical
alignment as in Figs
3-a and 2-b

3 Turning as in Fig. 3-
d

4 Diagonal alignment
as in Fig. 3-c.

Range of sensor Three layers Scanning 7 � 7 of
cells centered on
the tractor as in
Fig. 4.

Steering angle range Angle ± 45⸰ “Angle”: angle from
tractor to best cell
in sensing range
�45: right, þ45: left
as in Fig. 4.

Articulation angle
range

± 45⸰ The angle between
the two parts.

Table 3. Cell information gathered by the analyzer.

Info Meaning Value/Calculation

Status What this cell represents. Free, fixed obstacle,
tractor, trailer, goal

Back The reference cell that,
upon expansion, led to the
cell.

Cell. Back ¼ Current cell
(cell to be expanded).

Safety The number of fixed ob-
stacles around the cell.

Min ¼ 0 (Safe from all di-
rections (Max ¼ 8 (inac-
cessible/blocked from all
directions)

Cost Cost of the cell. Current. Cost þ Euclidean
distance (cell, Current)

OBJ Cell evaluation from the
analyzer's point of view.

Current. Cost þ Current.
Safety.

Tag Cell state during analysis “New”: not expanded yet,
“open”: waiting for expan-
sion in the queue, “closed”:
already expanded.

Fig. 3. Space requirements according to possible movements. (a) Vertical
alignment (b) horizontal alignment (c) diagonal alignment (d) turning.

Fig. 4. Sensing range and the cells selected according to the steering
angle.
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The steps of the analyzer are explained in Algo-
rithm 1. The information of all cells is stored in the
array “Cells”. Bold lines represent the steps that led
to the improvements mentioned above.

Algorithm 1 begins the analysis from the goal to
the start. For each cell analyzed, the eight adjacent
neighbors are found. The cost of each neighboring
cell is calculated according to the steps of Algorithm
2. According to Equation 8, the cost (accumulated
distance) is the summation of the current cost and
the Euclidean distance between the cell and its
current. The Euclidean distance to the horizontal/
vertical neighbor is (1), and the distance of the di-
agonal neighbor is (1.4). The cost of the obstacle is
10,000 (a very high cost).

Cell:cost¼
8<
:
Current:Costþ 1:4 For diagonal cell
Current:Costþ 1 For vert:=hor: cell

10000 For obstacle cell

ð8Þ

As shown in line 19 in Algorithm 1, diagonal
neighbors with obstacle corners are detected and
their status is changed to a permanent obstacle of
cost equal to 10,000 because they are unreachable.
For each obstacle neighbor encountered, the safety
value is increased by one to indicate that the safety
level of the current node has decreased (lines 21 and
22). After working through all the neighbors, the
analyzer evaluation of the current cell is calculated
by summing the cost and the safety value and
storing the result in current. Obj (line 24) which is
very important because the GWO equations are
implemented using these values later in the move-
ment phase.

3.3. Moving stage

This stage consists of a set of iterations that end
with reaching the goal. The main steps of each
iteration are:

1) Sensing: checks all cells in the three layers sur-
rounding the tractor to get only free cells and
avoid the cells containing dynamic and fixed
obstacles.

2) Adaptive dimensionality: this step aims to find
the best cells to be candidates for GWO leaders
based on steering angle range and connectivity.
AD is started by determining the best cell
reached by the current tractor through the back
pointers and calculating the angle between them
using Equation 9. The angle between all scanned
cells and the tractor is also calculated using
Equation 9:
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angle¼ tan�1
�
y�Tractorx;x�Tractory

�

� ð180 = PIÞ ð9Þ

Where (Tractorx, Tractory) is the coordinate of the
tractor, (x, y) is the coordinate of the best cell or a
cell within the sensed area). The valid candidates for
leaders are the cells that fall within the range (angle
to best ± 45⸰). The candidates are further reduced
according to the connectivity to cells in the previous
layer. The resulting candidates are organized ac-
cording to their layer. If the cell is connected to all
cells in the previous layer, it is considered a valid
candidate. AD steps are explained in detail in Al-
gorithm 3 and Fig. 5.

3) Finding local path by GWO: this step aims to get
the local path from the tractor to the outer layer.
The leader of each layer is determined by
choosing the cells with the least (Obj) values in
each layer which represent the best cell in terms
of safety and cost from the analyzer's point of
view. The control parameters A and C are
calculated using Equations 6 and 7. The GWO
computing is applied to each candidate cell
using Equations 1e4 to get the first part of cell
fitness. Table 4 shows the values that are
substituted into these equations and how to
calculate them where the “parameter” column

refers to the coefficients mentioned in these
equations, while the “value” column describes
the values that are substituted into the co-
efficients. The final fitness value of each candi-
date (Candidate[i]. fitness) is calculated by
adding the number of dynamic obstacles as a
penalty. The algorithm updates the leadership
by selecting minimum-fitness cells in each layer
to lead the robot to delta, beta, and alpha
respectively. The total path cost is modified by
adding the cost of leaders. Fig. 6 explains this
step.

4) Displaying local path: the movement in each
iteration is displayed on environments.

Finally, after reaching the goal, the path, path cost,
total time consumed, and no. of iterations are dis-
played to evaluate the performance. Details of these
steps are documented in Algorithm 4. Fig. 7 shows
the hybridization between AD and GWO at one
iteration.

Fig. 6. Finding local path using GWO.

Fig. 5. Steps of adaptive dimensionality.

Table 4. Values substituted into Equations 1e4.

Parameter Value/calculation Role

X_delta Leader [3].obj Leader of level 1
X_beta Leader [2].obj Leader of level 2
X_alpha Leader [1].obj Leader of level 3
A, C Calculated by

Equations 6 and 7
Control parameters

X Candidate[i]. Obj Candidate (wolf)
Note Obj is calculated in the analysis stage by adding

the cost and safety of the cell as explained in
Table 3.
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4. Simulation results

In this section, practical details about the proposed
system are documented, such as the environments
used for implementation and criteria for evaluating
the performance of the proposed method. The re-
sults are also presented and comparisons are made
to show the improvement in the analysis phase, in
addition to comparisons of the results of the pro-
posed method with those presented in [12,21].

4.1. The experimental environments

Six environments with a dimension of 50 � 50
pixels were used in the experiments as shown in
Fig. 8. These environments contain large areas of
static, complex-shaped obstacles with many curves

and narrow passages. The complexity of the envi-
ronments increases by adding 3 to 18 dynamic
obstacles.

4.2. Evaluation measurements

The performance measurements used in each test
are:

� Total time from starting analysis to reaching goal
in moving phase (in seconds and milliseconds).

� The number of iterations.
� Path cost (length)to reach the goal.

The values of these metrics are affected by the
path length and the number of dynamic objects in
the robot's path.

Fig. 7. Hybrid AD and GWO.

Fig. 8. The environments represented as grid maps.
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4.3. A case study of the proposed method

In this section, a small-sized environment
(20 � 20) is used to illustrate how the proposed
method plans the path of the robotic vehicle while
performing movements and turns and how dynamic
obstacles are avoided.
The analyzer converts the environment into a

20 � 20 matrix of nodes where each cell node con-
tains the information shown in Table 3.
The vehicle is located at (16, 8) and (16,9) as the

starting point to reach the goal (2,18) through eight
iterations.
In the first iteration, the sensing area contains 30

free cells, which is a large number of cells that leads
to calculating a large number of possible local paths,
most of these paths are not feasible because they do
not match the steering angle range condition or the
connectivity condition or violate both of them, so the
cells that do not match these two conditions are
ignored by AD. AD reduces the number of free cells
in the sensing area to only 11 cells according to the
steering angle, then it selects only 4 cells that match
the connectivity condition. For each candidate cell,
the equations of GWO are applied to the OBJ values
of the candidate, and the result is summed to the
number of dynamic obstacles around each candi-
date to find the multi-objective fitness value. The
GWO chooses the fittest candidates to be the
leaders (cells of the local path). In the following it-
erations, the same scenario is repeated. The number
of cells resulting from AD differs from one iteration
to another according to the available free space and

the distribution of obstacles in the sensing area for
that iteration.
Table 5 shows the details of the eight iterations

including the vehicle coordinates, the total number
of sensed cells, the number of cells selected by AD
based on angle range and connectivity, the appli-
cation of the GWO calculations, and the selected
leaders.
The resulting path is shown in Fig. 9. The blue

cells represent the cells within the path (the leaders)
while the Numbers in these cells indicate the
number of iterations at which they became part of
the path.
The complete path of the vehicle to reach the goal

consists of the following locations: (15,7)/ (156)/
(14,5)/ (13,5)/ (12,5)/ (11,6)/ (10,5)/ (9,5)/
(8,5)/ (7,5)/ (6,6)/ (5,7)/ (4,8)/ (3,9)/ (2,10)/
(2,11)/ (2,12)/ (2,13)/ (2,14)/ (1,15)/ (1,16)/
(1,17)/ (2,18) (the goal).
The important thing is the number of cells

reserved for the vehicle at each step. In iterations 1,
2, and 5, the vehicle moves in a straight line so the
robot only needs two cells, one for the tractor and
the other for the trailer. In turning cases, the algo-
rithm verifies the availability of a free corner cell in
addition to two cells for the tractor and trailer. As
shown in Fig. 9, the path contains five turns three of
which the vehicle goes around an obstacle.
Table 6 documents the details of all turns on the

path shown in Fig. 9 in terms of the coordinates of
the tractor, trailer, and corner, turn type: normal or
dangerous (turns around obstacle).
In the third and fourth iterations, the vehicle

moves in a straight diagonal line, and in this type of
movement, it is necessary to have free corners to
execute this movement. The details of these move-
ments are shown in Table 7.

4.4. Results of improved safety in analysis

To demonstrate the effect of the improvements
made to the analyzer, the performance before and
after the improvements were compared and docu-
mented in Table 8 in terms of number of turns and
dangerous turns (Dturns), time, path cost, and
number of iterations. The percentage change be-
tween the metrics of the two versions was calculated
using the following formula:

percentage change¼Avafter-AVbefore

AVbefore
� 100% ð10Þ

From Table 8, Although the average total number
of turns has increased, it is clear that the number of
dangerous turns (Dturns) was significantly reduced

Fig. 9. A case study to implement the proposed method on an envi-
ronment 20* 20 grid map.
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by (70.73 %), as the average number of these turns
was (3.17) for the improved analyzer compared to
(10.83) for the analyzer before enhancement. The
average time is reduced by (91.52 %) for the benefit
of the improved approach. It is also noted that the
number of iterations was close for the two ap-
proaches, the average number of iterations for the

improved analysis was increased by (5.92 %). Ac-
cording to Equation 10, the path cost is increased by
7.77 % in the updated analyzer, because the old
version of the analyzer gives priority to the accu-
mulated distance at the expense of safety, therefore,
the robot passes adjacent to the obstacles since
those cells have lower distances. In the updated
analyzer, the distance and safety are balanced, so
the path cost may increase to provide more safety.
Fig. 10 clarifies a sample of the effect of the

improvement on the resulting path for an experi-
ment conducted on Environment 3. It is noticeable
that the path resulting from the improved analyzer
moved away from fixed obstacles, and thus the
number of dangerous turns (marked in green) was
reduced from 14 to only 5. However, the improved
analyzer needed more iterations with an increase in
cost due to passing through high-cost cells
compared to those adjacent to the obstacle used by
the old version (before enhancement). The numeric
details of this experiment are shown in the row
devoted to Environment 3 in Table 8.

Table 5. Detailed Results of the hybridization between AD and GWO in the eight iterations to find the path in Fig. 9.

i Tractor Trailer Adaptive dimensionality Multi-objective Grey wolf

All
candidates

Reducing the No. of candidate
locations based on

Coordinates of
final candidate
locations

Obj
(input)

GWO
value

ND Multi-objective
Fitness

Coordinate of
Leaders
(local path)Angle Connectivity

0 (16,8) (16,9) 30 11 4 (15,7) 40.2 11.66 0 35.09 d: (15,7)
b: (15,6)
a: (14,5)

(16,7) 41.6 13.72 0 37.144
(15,6) 36.2 9.26 0 37.224
(14,5) 33.8 8.2 0 25.704

1 (14,5) (15,6) 28 11 3 (13,5) 32.8 38.50 0 38.50 d: (13,5)
b: (12,5)
a: (11,5)

(12,5) 31.8 37.56 1 38.56
(11,5) 30.8 36.63 1 37.63

2 (11,5) (12,5) 30 10 3 (10,5) 29.8 21.24 0 21.24 d: (10,5)
b: (9,5)
a: (8,5)

(9,5) 28.8 20.17 0 20.17
(8,5) 27.8 19.11 1 20.11

3 (8,5) (9,5) 32 10 3 (5,7) 24 54.28 0 54.28 d: (7,5)
b: (6,6)
a: (5,7)

(6,6) 25.4 51.86 0 51.86
(7,5) 26.8 49.43 1 50.43

4 (5,7) (6,6) 38 12 4 (4,8) 22.6 16.37 0 16.37 d: (4,8)
b: (3,9)
a: (2,10)

(3,9) 21.2 15.06 0 15.06
(2,10) 19.8 13.76 0 13.76
(3,10) 20.2 14.13 0 14.13

5 (2,10) (3,9) 37 12 7 (1,11) 22.2 21.22 0 21.22 d: (2,11)
b: (2,12)
a: (2,13)

(2,11) 18.8 18.04 0 18.04
(3,11) 19.2 18.42 0 18.42
(2,12) 17.8 17.11 0 17.11
(1,13) 19.2 18.42 0 18.42
(2,13) 16.8 16.18 0 16.18
(3,13) 17.2 16.55 0 16.55

6 (2,3) (2,12) 32 7 4 (2,14) 15.8 33.03 0 33.03 a: (2,14)
b: (1,15)
a: (1,16)

(1,15) 14.4 31.53 0 31.53
(2,15) 14.8 31.96 0 31.96
(1,16) 11.4 28.33 0 28.33

7 (1,16) (1,15) 21 7 2 (1,17) 6.4 5.22 0 5.22 d: (1,17)
b: (2,18)(2,18) 0 �3.71 0 �3.71

Table 6. Details of the turns in Fig. 9.

Iteration Tractor Trailer Corner Type

0 (15,7) (16,8) (16,7) Dangerous
0 (14,5) (15,6) (15,5) Normal
3 (6,6) (7,7) (6,5) Dangerous
6 (1,15) (2,14) (2,15) Normal
7 (2,18) (1,17) (1,18) Dangerous
Note All these turns require 3 free cells to be executed.

Table 7. Diagonal movements that need four cells in Fig. 9.

Iteration Tractor Trailer Corner 1 Corner 2

3 (5,7) (6,6) (5,6) (6,7)
4 (4,8) (5,7) (4,7) (5,8)
4 (3,9) (4,8) (3,8) (4,9)
4 (2,10) (3,9) (2,9) (3,10)
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4.5. Performance of the proposed method

Further experiments to verify the performance of
the method in the presence of dynamic obstacles
were conducted on the environments in Fig. 8. The
number of moving obstacles ranges from 3 to 18.
The details of these experiences are documented in
Table 9.
For each environment, six experiments were

conducted, in each experiment, the coordinates of
the starting (tractor, trailer, and corners) and the
goal were documented, as well as the number of
dynamic obstacles (Dobs), in addition to the outputs
in terms of the path cost, total time, number of it-
erations, and the number of total turns and
dangerous turns. Fig. 11 shows the resulting path for
a selected experiment for each environment which
explains that the proposed method leads the robotic
vehicle to the goal via a smooth and safe path with
the ability to avoid a different number of obstacles
successfully.

4.6. Comparison results

The results of the proposed method are compared
with the results in [12,21] using the same

environments. Table 10 summarizes the properties
of planners in these approaches.
The trailer in this paper is equivalent to the start

cell in [12,21]. Three experiments were implemented
for each environment using the same coordinates
and the results were documented in Table 11.
Fig. 12 shows the difference in the path shape

resulting from the implementation of the methods
to be compared. The first experiment on Environ-
ment 3 was chosen as an example. All the details of
this experiment are documented in Table 11. In the
proposed study, the articulated vehicle in this
experiment started at locations (25,23) and (24,24),
while the robot was located at (24,24) in the other
two studies to be compared.
The goal in the three experiments is located at

(35,38). The path shape in the proposed method was
smooth, far from the obstacles, and slightly longer
compared to the path resulting in [12] which was
shorter but less safe because it was close to the
obstacles.
Compared to [21], the resulting path was shorter

since the articulated vehicle can pass through nar-
row passages, in contrast [21], provided more safety
by closing such passages, consequently, the robot in
[21] took a longer path to reach the destination. In
conclusion, the planning approach proposed in this
paper produces a path that balances path length and
safety compared to other works.
Table 12 shows the average values of the path cost,

total time, and number of iterations for the experi-
ments recorded in Table 11.
As shown in Table 12, the method in [12] had the

least average cost because it aimed to find the
shortest path without considering safety. The
method [21] had the highest cost due to giving
higher priority to navigating in a safe wide area. Our
proposed method had a reasonable cost compared

Table 8. Result comparison before and after enhancement of the analysis stage.

Environment no. Analyzer Tractor Trailer Corner1 Corner2 Goal No. of
turns

No. of
Dturns

Time No. of
iterations

Total
Cost

1 Before (18,38) (17,38) e e (41,30) 8 8 1:18 15 395.8
After e e 7 4 0:99 14 399.4

2 Before (23,39) (24,39) e e (23,17) 10 9 1:13 23 1042.8
After (23,38) (23,39) (24,38) 14 4 1:16 24 1078

3 Before (26,36) (25,35) (25,36) (26,35) (23,24) 14 14 1:12 26 1443.4
After (26,35) e e 13 5 1:11 29 1567.4

4 Before (33,5) (32,4) (32,5) e (30,40) 8 8 1:12 25 1346.4
After (33,5) (32,5) e 9 2 1:12 27 1475.8

5 Before (44,12) (45,11) (44,11) (45,12) (10,33) 4 4 1:11 19 741.9
After (44,12) (44,11) (45,12) 10 3 1:12 19 792

6 Before (43,18) (43,19) e e (19,24) 22 22 1:15 44 4221.8
After (44,18) e e 19 1 1:16 48 4593.6

Average Before 11 10.83 1:14 25.33 1532.02
After 12 3.17 0:86 26.83 1651.03

Percentage change 9.09 % 70.73 % 91.52 % 5.92 % 7.77 %

Fig. 10. Sample of resulting paths for the experiment of Environment 3
before and after analyzer enhancement.
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to the two methods because it balances path length
and safety.
The total cost in the proposed method is increased

by 69.92 %, 38.59 %, 54.85 %, 31.52 %, 45.78 %, and
46.62 % for the six environments compared with that
of [12]. Compared with [21], the cost of the proposed
method decreased by 17.17 %, 11.53 %, 34.28 %,
2.19 %, 7.57 %, and 4.22 % for the six environments.
It is clear that the proposed method is the best in

terms of time then method [12] and lastly method
[21]. The superiority of our method in terms of time
is due to the efficiency of AD in reducing the
number of cells being processed. The average time
in the proposed method decreased for the six exper-
iments by 49.58 %, 49.38 %, 1.07 %, 1.36 %, 1.08 %,
and 2.97 % compared to [12] and also decreased by
79.74 %, 74.97 %, 74.96 %, 66.83 %, 66.46 %, and
74.69 % comparing with method [21].
In terms of the number of iterations, the method

in [12] is the best, followed by the proposed method

with a slight difference, then the method in [21]
comes in third place, which consumes a large
number of iterations as a result of the complex
search for narrow tunnels. The number of iterations
in the proposed methods significantly increased by
72.61 %, 57.14 %, 63.80 %, 52.38 %, 52.94 %, and
56.04 % compared to [12] and significantly decreased
by 53.04 %, 49.23 %,55.61 %, 47.28 %, 46.94 %, and
48.73 % comparing to that of [21].
To summarize the results of the comparison

above, in the proposed method, there is an increase
in the cost by 47.88 % compared to that of [12] but
it decreased by 12.83 % compared to that of [21].
The number of iterations increased by 59.15 %
compared to that of [12] but it decreased by 50.14 %
compared to the method adopted in [21]. The
proposed method is the least time-consuming to
find the path. It was noted that the time decreased
by 17.57 % and 72.94 % compared to that of [12,21].
The reason for the balanced performance between

Table 9. Results of the proposed method on 50*50 environments in terms of cost, number of iterations, and time .

Environment no. Start Goal # of
Dobs

Total
Time

# of
Iterations

Path
cost

# of Total
turns

# of
DturnsTractor Trailer Corner1 Corner2

1 (18,38) (17,38) e e (41,30) 3 1:10 14 399.4 9 5
(18,4) (17,5) (17,4) (18,5) (32,36) 6 1:15 28 1601.8 14 8
(33,48) (32,49) e (33,49) (38,17) 9 0:91 21 813 10 5
(4,40) (3,39) e (4,39) (41,4) 12 1:14 34 2343.2 19 12
(25,46) (46,47) e (46,46) (8,13) 15 1:12 34 2327.6 17 8
(19,35) (18,34) (18,35) e (48,31) 18 1:11 17 518.6 8 3

2 (44,31) (45,32) (44,32) (45,31) (21,28) 3 1:16 23 1076.8 18 8
(23,38) (24,39) (23,39) (24,38) (23,17) 6 1:14 24 1078.8 10 2
(40,45) (41,46) (40,46) (41,45) (32,23) 9 1:12 19 746 12 4
(33,30) (34,31) (33,31) (34,30) (32,8) 12 1:15 27 1344 9 2
(24,38) (25,39) (24,39) (25,38) (33,17) 15 2:22 35 2418 20 9
(43,32) (42,33) (42,32) (43,33) (10,7) 18 2:21 32 2043.8 13 3

3 (34,29) (34,30) (33,9) 3 1:13 29 1677.8 17 4
(18,33) (17,34) (17,33) (18,34) (33,30) 6 0:92 21 760.6 11 2
(26,35) (25,35) e e (23,24) 9 1:13 29 1567 15 9
(46,31) (45,32) (45,31) (46,32) (13,7) 12 0:96 24 1246.6 14 6
(32,17) (33,18) (33,17) (32,18) (1,48) 15 0:99 37 2840.8 17 7
(43,19) (43,18) e e (28,42) 18 0:82 16 518.2 4 1

4 (36,45) (35,44) (36,46) (35,45) (2,13) 3 0:94 24 1251.4 12 6
(19,33) (18,32) (18,33) e (40,5) 6 1:10 26 1376.2 10 1
(30,23) (31,22) (30,22) (31,23) (21,40) 9 0:88 18 566 7 1
(33,5) (32,4) (32,5) e (30,40) 12 1:12 27 1475.8 9 3
(49,47) (49,48) (4,9) 15 1:12 28 1723.8 8 3
(6,8) (6,7) e e (17,32) 18 1:10 17 529.2 8 1

5 (20,49) (19,49) e e (29,1) 3 1:12 26 1391.6 9 3
(48,13) (47,12) (47,13) (48,12) (11,41) 6 0:99 27 1442.2 9 0
(10,34) (10,33) e e (25,11) 9 0:99 16 441.6 7 3
(3,22) (2,22) e e (12,44) 12 0:96 18 565.4 8 3
(44,12) (45,11) (44,11) (45,12) (10,33) 15 1:12 20 813.20 7 1
(38,42) (39,41) (38,41) (39,42) (0,9) 18 1:13 23 1202.2 9 3

6 (24,42) (23,41) (23,42) (24,41) (40,19) 3 0:99 13 348.8 5 0
(19,35) (18,34) (18,35) (19,34) (40,42) 6 1:10 34 2178.8 13 2
(7,39) (8,38) e (8,39) (39,19) 9 1:12 34 2460.8 10 1
(5,25) (5,26) e e (12,42) 12 0:92 17 495.8 8 1
(18,22) (18,23) e e (18,33) 15 1:16 54 5774.6 16 0
(43,18) (43,19) e e (19,24) 18 1:10 49 4671.2 16 2
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the two methods in terms of cost and number of
iterations is that the method takes into account
obtaining a short path with a reasonable degree of
safety, while the other methods pay biased atten-
tion to a certain criterion. The method in [12]
cared about the length of the path, thus guiding
the robot adjacent to obstacles, so it achieves a
lower cost and takes fewer iterations. In complete
contrast, the method in [21] paid utmost attention
to safety in an attempt to guide the robot to
navigate in wide open spaces, thus increasing the
length of the path, which means the need for more
cycles and cost.

4.7. Limitations

In this paper, the results were obtained by simu-
lation. It should be noted that some limitations may
affect the accuracy of these results:

1) In the experiments reported in this paper, the
number of dynamic obstacles ranged from 3 to
18 in environments of size 20 � 20 and 50 � 50.
Increasing the number of dynamic obstacles in
such a limited-size environment may consume
more time and the number of iterations needed
to reach the goal.

Fig. 11. Paths discovered by the proposed method in dynamic environments for selected experiments from Table 9.

Table 10. Summary of the methods to be compared.

Property Proposed method [12] [21]

Robot type Articulated robotic vehicle Traditional moving object Traditional moving object
No. of cells 2 to 4 1 1
No. of sensed layers 3 3 1
Reduction approach AD AD e
Reducing condition Steering angle range,

connectivity, and back
pointers

The Luciferin of the
candidate is lower than
that of the current cell

e

Swarm method Grey wolf Glow warm Min-max ant colony
Safety Approach Calculating no. of obsta-

cles as a penalty
e Closing narrow tunnel

Processor Intel Core i5 Intel Core i7 Intel Core i7
Software C# 2022 C# 2017 C# 2019
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2) The sensing area is limited to three layers which
is consistent with the hierarchical nature of the
GWO pack which finds three leaders (solutions),

and therefore, a leader is appointed at each layer
to guide the robotic vehicle through the three
layers.

Table 11. Comparison of the proposed method [12,21], in terms of cost, no. of iterations, and time.

Environment no. Method Start Goal Total
cost

No. of
iterations

Time

Tractor Trailer

1 [12] e 0,42 6,2 3254.2 30 2:53
e 3,2 2,48 3190.2 29 2:34
e 45,6 19,41 1139 17 0:84

[21] 0,42 6,2 6400.4 103 5:12
3,2 2,48 6124.4 103 5:92
45,6 19,41 3031.8 73 4.17

Proposed method 1,41 0,42 6,2 5357.2 49 1:19
4,3 3,2 2,48 6060 54 1:19
45,1 45,6 19,41 1468.2 28 1:13

2 [12] e 14,48 33,16 1235.8 18 1:39
e 8,0 48,46 1467 21 2:05
e 48,24 1,24 2005.4 24 1:92

[21] 14,48 33,16 1628.2 53 3:74
8,0 48,46 2295 62 5.56
48,24 1,24 3452 80 4:37

Proposed method 13,47 14,48 33,16 1562.6 29 1:14
8,1 8,0 48,46 2217.8 33 1:15
47,24 48,24 1,24 2744.6 37 1:16

3 [12] e 24,24 35,38 1035 18 1:34
e 33,18 25,35 1124 19 1:45
e 42,3 0,37 1420.8 19 0:53

[21] 24,24 35,38 2988.2 73 4:28
33,18 25,35 1685.8 54 3:99
42,3 0,37 3761.2 80 4:71

Proposed method 25,23 24,24 35,38 1928.8 31 1:14
32,14 33,18 25,35 1633.6 29 1:14
41,4 42,3 0,37 1981.2 31 1:12

4 [12] e 0,0 49,49 1931 23 0:99
e 39,2 15,37 1259.4 18 0:94
e 0,49 49,0 1769.8 22 1:09

[21] 0,0 49,49 2442.8 64 3:69
39,2 15,37 1796 54 3:57
0,49 49,0 2431.2 64 3:38

Proposed method 1,1 0,0 49,49 2560.4 35 1:12
40,2 39,2 15,37 1651.2 28 1:13
1,48 0,49 49,0 2312 33 1:14

5 [12] e 41,1 2,3 839 17 1:86
e 3,6 47,14 1400 21 1:16
e 25,22 47,14 594.2 13 0:25

[21] 41,1 2,3 1597.6 51 3:38
3,6 47,14 2073.2 59 3:66
25,22 47,14 797.8 37 2:00

Proposed method 40,2 41,1 2,3 1263.2 24 1:12
4,7 3,6 47,14 2112 34 1:13
26,23 25,22 47,14 754.8 20 1:10

6 [12] e 33,36 22,12 875.2 16 0:40
e 1,48 49,1 2044.2 25 1:62
e 22,13 27,17 1641.4 21 1:91

[21] 33,36 22,12 1405 51 2:84
1,48 49,1 3069.2 71 4.10
22,13 27,17 2507.6 67 4:34

Proposed method 34,35 33,36 22,12 1267.8 26 1:12
1,47 1,48 49,1 3066 38 1:15
23,12 22,13 27,17 2353.4 33 1:13
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5. Conclusions and future works

In this study, path planning is developed for an
articulated robotic vehicle navigating in a dynamic
environment using hybrid AD-GWO. The results
showed that the proposed method succeeds in
keeping the vehicle away from fixed obstacles and
avoiding moving objects in less time with a
reasonable number of iterations and total cost to
enhance the degree of safety. From this work we can
conclude:

1) Using an adaptive number of cells to represent
the robot during its different movements is a
more efficient and realistic representation
because it simulates the size of the robot and its
capabilities (such as the presence of a joint) un-
like the single-cell representation that treats ro-
bots equally without giving importance to these
individual differences.

2) Improving analysis by the calculation of the
number of fixed obstacles in the analysis phase
resulted in a decrease in dangerous turns and
average time by (70.73 %) and (91.52 %) respec-
tively with an increase in the average number of
iterations and path cost by (5.92 %) and (7.77 %)
respectively.

3) Using AD to reduce the sensing area by selecting
an adaptive number of cells that match the size

and movement constraints of the articulated
vehicle saves time and reduces the computa-
tional complexity spent on processing cells that
cannot be reached due to the presence of dy-
namic obstacles or articulated constraints.

4) Using GWO to lead the robotic vehicle is an
effective choice because the hierarchy of the
GWO community fits the three layers of the
sensing area. The GWO leads the vehicle from
the current location through the three layers of
sensing by assigning a leader at each layer. The
layer leader is the best-evaluated cell according
to multi-objective Grey Wolf's calculations.

5) Increasing safety generally leads to an increase
in the cost and number of iterations due to
moving through higher-cost but safer cells. For
this reason, there was an increase in the path
cost and number of iterations by (47.88 %) and
(59.15 %) compared to the results of [12], while
the cost and the number of iterations decreased
by (12.83 %) and (50.14 %) compared to [21]
because the latter increases safety in a way that
leads to a longer path and thus more costly.

6) The average total time in the proposed method
decreased by (17.57 %) and (72.94 %) compared
to [12,21] respectively, which indicates the effi-
ciency of the proposed method despite the
complexities imposed by the size of the robot

Fig. 12. Comparison between the paths obtained from the three planers for environment 3.

Table 12. The average of cost, time, and no. of iterations for the experiments in Table 11.

Measure Method Environment number

1 2 3 4 5 6

Cost [12] 2527.8 1569.4 1193.3 1653.4 944.4 1520.3
[21] 5185.5 2458.4 2811.7 2223.3 1489.5 2327.3
Proposed 4295.13 2175 1847.867 2174.5 1376.7 2229.1

Time [12] 2:17 2:05 1:24 1:27 1:22 1:44
[21] 5:20 4:55 4:46 3:54 3:14 4:02
Proposed 1:17 1:15 1:13 1:13 1:11 1:13

No. of iterations [12] 25.3 21 18.7 21 17 20.7
[21] 93 65 69 60.7 49 63
Proposed 43.67 33 30.63 32 26 32.3
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and the number of cells needed to represent the
robot compared to these methods that assume
that the robot needs one free cell for each step,
ignoring its size and flexibility. For future works,
we suggest the following improvements:

1) The method can be adapted to work on double-
trailer robotic vehicles.

2) The method can also be developed to plan paths
of multiple robotic articulated vehicles.

3) The vehicle speed should be taken into consid-
eration in the planning process, especially when
executing a turn. The speed should be calculated
based on the turning angle, i.e. the speed must
be reduced when the turning angle is large so
that the robotic vehicle does not roll over.
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