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RESEARCH PAPER

Transformer Decoder-enhanced Swin UNETR for
Multi-organ Semantic Segmentation on OpenKBP:
Improving Radiotherapy Planning Accuracy

Zainab A. Jwad*, Israa H. Ali

University of Babylon, College of Information Technology, Department of Software, Babylon, Iraq

Abstract

Accurate segmentation of organs-at-risk (OARs) in head and neck CT scans is crucial for radiotherapy planning. The
CNN-based decoder limitation of Swin UNETR hinders its capacity to process meaningful information from multiple
organ positions essential for accurate medical segmentation. The proposed Transformer Decoder-enhanced Swin UNETR
model targets the OpenKBP dataset multi-organ segmentation through its dedicated design for this purpose. The model
utilizes transformers along with cross-attention approaches in its decoder to improve segmentation mask outputs through
analysis of extensive global information. The model gets additional feature representation power through the addition of
squeeze-and-excitation (SE) blocks linked with spatial attention mechanisms that allow the model to focus on image
regions with maximum relevance. The presented variant of the model delivers exceptional performance through its
81.75 % Dice score and 2.464 HD95 average while surpassing Swin UNETR's baseline scores of 54.13 % Dice and 5.760
HD95 and matching the nnU-Net's scores of 65 % Dice and 4.8 HD95. The model demonstrates high precision for seg-
menting difficult anatomical elements, including brainstem (91.50 % Dice and 1.600 HD95) and mandible (94.00 % Dice
with 1.400 HD95) structures. Through advanced segmentation of significant treatment areas, the enhanced model provides
critical value to medical experts who can deploy this tool for safer and more effective radiation therapy.

Keywords: Medical image, Semantic segmentation, Squeeze-and-excitation, Spatial attention, Swin UNETR, Dice score,
Hausdorff distance

1. Introduction

M edical image segmentation represents a
fundamental component of radiation therapy

planning because it permits precise tumor detec-
tion, together with organs-at-risk detection, to
maximize therapeutic outcomes with reduced
healthy tissue injury. The field experienced a
breakthrough due to deep learning developments,
especially transformer-based architectures, which
excel at understanding both distant relationships
and contextual details. The Swin UNETR architec-
ture, which integrates Swin transformers with
UNETR 3D segmentation capabilities, stands as the
current best solution for medical image segmenta-
tion challenges [1]. The decoding mechanism of

Swin UNETR has difficulties effectively capturing
complete global contextual relationships during
operation. Swin UNETR requires additional devel-
opment in its feature representation capability to
handle challenging aspects found in medical im-
ages, including areas with low image contrast and
overlapping structures.
This work puts forward three key innovations to

boost Swin UNETR's performance by resolving its
existing weaknesses. The initial design incorporates
a transformer decoder instead of traditional en-
coders because it employs self-attention and mutual
attention to better understand global context pat-
terns. Researchers extend the successful trans-
former-based decoder methodology originally used
in NLP [2], and computer vision [3], to extract
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superior long-term dependencies. Our model ben-
efits from the transformer decoder mechanism
because it enables the processing of long-term
contextual information, thus improving feature
maps for precise segmentation of complex large
structures.
SE blocks from Squeeze-and-Excitation are added

to both the encoder and decoder sections to improve
channel-wise feature representation. SE blocks from
Hu et al.'s [4]. Initial proposal: Regulate channel
responses by utilizing an innovative mechanism
that analyzes channel interdependencies. The
model directs its focus toward key features because
of SE blocks, which keep its ability to detect tissue
variations optimal in low-contrast areas. SE blocks
belong to a category of low-complexity lightweight
components that enable effective enhancement of
feature representation without substantial addi-
tional computational burden.
The implementation of spatial attention modules

serves to highlight regional areas in feature maps
that have spatial importance. The model employs
spatial attention mechanisms that draw their inspi-
ration from Ref. [5], concentrating its analysis on
important areas while hiding unnecessary back-
ground elements. The technique provides excep-
tional value for the detection of small structures that
tend to blend with surrounding images, since this
process is precisely what medical imaging seg-
mentation demands most. Spatial attention mecha-
nisms strengthen the model toward vital regions,
enhancing the network's tolerance to variations and
noise contamination within medical image data.
The proposed innovations get tested in the

OpenKBP dataset, which functions as a benchmark
for radiotherapy planning because it contains CT
scans with difficult segmentation duties that are
properly marked [6]. The dataset is a crucial
resource for testing segmentation models because it
contains multiple hard-to-delineate anatomical
structures. The data set analysis allows us to inves-
tigate present method limitations while assessing
the effectiveness of our newly developed technology
for small and overlapping structure segmentation.
The work creates important enhancements to
medical image segmentation practices that establish
research foundations for this vital medical domain.
Numerous benefits come from the proposed sys-

tem updates. According to research, the Transformer
Decoder effectively models global dependencies by
using self-attention and cross-attention, which sur-
pass the limitations of classic decoders [7]. This
model remains adaptable to various input resolu-
tions because of its flexible design, which supports
features of different sizes. Through SE blocks, the

model obtains better feature discrimination capa-
bility by automatically tuning channel responses
while requiring only a small computational load.
The model's robustness improves through spatial
attention mechanisms, which direct attention to
specific areas while removing useless background
components.
The proposed modifications to Swin UNETR

include a Transformer Decoder, SE blocks, and
Spatial Attention, which collectively fix architectural
weaknesses and boost operational capability. The
model delivers exceptional segmentation accuracy
on difficult tasks, including small and overlapping
structures, by adopting contemporary approaches
from both the Transformer model and attention
theories. The performance-enhancing innovations
enable future medical image segmentation research
to build upon this framework successfully.

2. Related work

Medical image segmentation continues to evolve
through deep learning technology, primarily
through the implementation of convolutional neural
networks (CNNs). The U-Net architecture operates
as a fundamental technique in organ and lesion
segmentation applications because of its encoder-
decoder design with skip connections [8]. The
localized structure of CNNs prevents them from
effectively handling distant connections in data. The
adoption of attention mechanisms within CNNs
resulted in Attention U-Net [9], and nnUNet [10].
This method enhanced segmentation accuracy by
targeting specific important areas.
Vision Transformers (ViTs) revolutionized

healthcare by applying self-attention mechanisms to
model global context. Because transformers analyze
complete images to establish relational patterns,
they deliver optimal performance in processing
complex medical images with anatomical
complexity. Small dataset assessments benefited
from TransUNet, which connected ViT encoders to
a CNN decoder [11]. Medical imaging operations
faced two major obstacles when using pure trans-
former-based networks because these networks
suffered from computation inefficiency and delayed
feature extraction from hierarchical inputs.
UNETR represents a solution to these challenges

because it substitutes the CNN encoder with a ViT-
enabling transformer block for multiscale feature
extraction [12]. It combines its transformer encoder's
superior contextual understanding of global data
with a CNN-based decoder that performs the
upsampling tasks. The architectural decision
restricted the model from maintaining substantial
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connection spans during reconstruction tasks,
especially when dealing with intricate structures.
The innovation in SwinUNETR [1,13], used the

Swin Transformer as its main component but added
encoder features to the architecture. The Swin
Transformer achieves lower complexity operations
through its moving window approach and performs
multiscale feature merging using its hierarchical
structure. SwinUNETR accomplished leading per-
formance in Medical Segmentation Decathlon
(MSD) tests, especially when segmenting small and
irregular structures like pancreatic tumors. Howev-
er, like UNETR, SwinUNETR relied on a CNN-
based decoder, leaving room for improvement in
decoding precision and global context preservation.
Recent works have explored the use of trans-

former-based decoders to unify global context
modeling across both encoder and decoder stages.
For instance, UTNet [14]. Swin Transformers in
decoders demonstrated that self-attention in
upsampling layers improves boundary refinement
and spatial coherence. These decoders leverage
cross-attention to fuse encoder features with posi-
tional embeddings, enabling precise localization. In
medical imaging, architectures like Trans-
DeepLabV3 [15], and H2Former [16], highlighted
the benefits of symmetric transformer architectures,
where decoders preserve global dependencies often
lost in CNN-based upsampling.
Integrating a transformer decoder with SwinU-

NETR builds on these advances. The SwinUNETR
encoder's hierarchical features, combined with a
transformer decoder, could enhance multiscale
feature fusion while maintaining computational ef-
ficiency. For example, shifted-window attention in
the decoder might refine organ boundaries in
abdominal CT scans or improve tumor segmenta-
tion in brain MRI by propagating global context
through all stages. Recent hybrid models, such as
nnFormer [17], and CoTr [18], have shown promise
in this direction, but a SwinUNETR-specific decoder
remains underexplored.
Key challenges in this integration include

balancing computational overhead and ensuring
compatibility between Swin's windowed attention
and the decoder's up-sampling mechanisms. Solu-
tions such as lightweight window-based self-atten-
tion and axial attention in decoders in PVTv2 offer
pathways to efficiency [19].
Additionally, pretraining strategies on large-scale

medical datasets, such as AMOS. It could further
boost performance [20].
The integration of a transformer decoder into

SwinUNETR represents a logical progression in
medical image segmentation. It combines the Swin

encoder's efficiency with a decoder that preserves
global context. This approach aligns with the
broader trend of fully transformer-based architec-
tures, VT-UNet [21]. Moreover, it addresses CNN
decoders' limitations in handling intricate anatom-
ical variations. Future work may focus on optimizing
window configurations and evaluating performance
on diverse modalities, from MRI to histopathology.

3. Methodology

3.1. Architecture

This architecture is designed for 3D medical image
segmentation (CT scans). It builds upon the Swin
UNETR framework by integrating the Transformer
Decoder, Spatial Attention (SA), and Squeeze-Exci-
tation (SE) blocks to improve the segmentation of
complex anatomical structures. Below is a detailed
breakdown of the architecture based on the infor-
mation provided, as shown in Fig. 1(aee). The first
step extracts features f1 to f4 through four progres-
sive extraction layers within the encoder section. A
series of features, f4, is directed to the transformer
decoder for unsampled operations, while f3, f2, and
f1 function through skip connections, according to
Fig. 1(a). The transformer decoder accepts these
features before generating four prediction feature
maps that correspond to different levels of the
encoder system. The last prediction feature map
emerges from the SoftMax operation after all pre-
diction maps have been aggregated.

3.1.1. Input and output

� Input: A 3D medical image volume of size
H�W�D�1 (grayscale CT scan).

� Output: A segmentation mask of size
H�W�D�N classes, where N classes are the
number of target classes (7 organs and back-
ground in this dataset (openKBP)).

3.1.2. Encoder

� The encoder processes the input volume
through hierarchical stages, each containing
Swin Transformer blocks, Spatial Attention (SA),
and Squeeze-Excitation (SE) blocks. The encoder
progressively downsamples the feature maps
while capturing multiscale features (f1, f2, f3,
and f4).

� The Swin Transformer block is the core
component of the encoder. It operates on non-
overlapping windows to compute self-attention
efficiently.

342 Z.A. Jwad, I.H. Ali / Karbala International Journal of Modern Science 11 (2025) 340e352



� Window Partition: The input feature map Fin 2
ℝ H�W�D�C is divided into non-overlapping
windows of size 7 � 7 � 7.

� Shifted Window Self-Attention: Compute
queries Qw, keys Kw, and values Vw from the
windowed features:

� Qw ¼ xw WQ, Kw ¼ xw WK, Vw ¼ xw WV
� Apply self-attention with relative positional
encoding B:

AttentionðQw;Kw;VwÞ¼softmax
�
QwKT

wffiffiffi
d

p þB
�
Vw ð1Þ

� Multi-Head Output: Concatenate the outputs of
multiple attention heads and project them back
to the original dimension.

� MLP and Residual Connection: Pass the output
through a multi-layer perceptron (MLP) and add
a residual connection:

Fig. 1. aee: Architecture diagram highlighting transformer decoder's cross-attention.
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Xout¼MLP
�
Output

�þOutput ð2Þ

� Spatial Attention (SA) enhances the spatial re-
gions of interest (e.g., tumor boundaries) by
focusing on important spatial locations.

� Channel Pooling: Apply max pooling and
average pooling along the channel dimension:

Fpool¼MaxPoolðFinÞ þAvgPoolðFinÞ ð3Þ

� Spatial Mask: Generate a spatial attention mask
using a convolutional layer and sigmoid
activation:

MSA¼s
�
Conv

�
Fpool

�� ð4Þ

� Refined Features: Multiply the input features by
the spatial mask:

Fout¼Fin5MSA ð5Þ
� Squeeze-excitation (SE)recalibrates the channel-
wise feature responses to emphasize important
channels.

� Squeeze: Compute global average pooling to
squeeze spatial information:

zc¼ 1
H �W �D

¼
XH
i¼1

XW
j�1

XD
k¼1

Fin¼1
X

kði; j;k; cÞ

ð6Þ
� Excitation: Apply two fully connected layers with
ReLU and sigmoid activation to compute chan-
nel-wise excitation:

s¼sðW2ReLUðW1zÞÞ ð7Þ
� Channel Scaling: Multiply the input features by
the excitation vector:

Fout ¼Fin5s ð8Þ
After each stage, the feature maps are down-

sampled to reduce spatial dimensions while
increasing the number of channels. The down-
sampling is typically done using stride convolutions
with a stride of 2. Two changes emerge from the
convolution operation that decrease feature map
size by half and increase channel numbers by a
factor of two (H/2 � W/2 � D/2 and 2C). The
designed structure maintains spatial information
retention in its initial stages to help the model focus
on abstract global features in deeper network
layers.

3.1.2.1. Bottleneck. The bottleneck layer consists of
two Swin Transformer blocks applied to the deepest

feature maps (H/16 � W/16 � D/16 � 384). This
layer captures the input volume's most abstract and
global features.

3.1.2.2. Transformer decoder. The decoder upsamples
the feature maps while integrating global context
from the encoder skip connections using cross-
attention.

3.1.2.3. Cross-attention mechanism. The core of the
decoder is the cross-attention module, which aligns
decoder features with encoder skip features. The
operations are defined as follows:

� Queries: Derived from the unsampled decoder
features, Dup at each stage:

Q¼DupWQ ð9Þ
B Dup 2 RH�W�D�C: Upsampled features from

the previous decoder stage.
B WQ 2 RC�dk: Learnable projection weights for

queries.
� Keys and Values: Derived from the SE-enhanced
encoder skip features Ei

SE:

K¼ESE
i WK;V ¼ ESE

i WV ð10Þ
B Ei

SE 2 RH/2i�W/2i�D/2i�C: Encoder skip features
at stage I, enhanced by Squeeze-and-Excita-
tion (SE).

B WK, WV 2 RC�dk: Learnable projection
weights for keys/values.

� Cross-Attention: Compute attention scores be-
tween queries and keys, then apply to values:

AttentionðQ;K;V Þ¼ softmax
�
QKTffiffiffi

d
p

�
V ð11Þ

B dk: Dimension of keys/queries for scaling.
B B 2 RH�W�D: Relative positional encoding to

capture spatial relationships.
� Upsample: Use transposed convolution to
upsample the decoder features to match the
spatial dimensions of the corresponding encoder
skip features.

� Apply SA: Refine the upsampled features using
spatial attention by emphasizing regions of
interest:

FSA¼s
�
Conv

�
Concat

�
AvgPool

�
Fup

�
;

MaxPool
�
Fup

����
1

�
Fup

� ð12Þ

� Fup: Upsampled features.
� s: Sigmoid activation.
� 1: Element-wise multiplication.
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3.1.2.4. Swin block in decoder. Process the refined
features using a Swin Transformer block to capture
local and global dependencies.

� Shifted Window Self-Attention: Processes fea-
tures in non-overlapping windows, then shifts
windows to enable cross-window interaction.

� Hierarchical Feature Fusion: Combines multi-
scale features via skip connections and MLPs.

3.1.2.5. Skip Connections with SE. The skip connec-
tions enhance the encoder features before fusing
them with the decoder features.

� SE on Skip Features: Apply SE to the encoder
skip features Ei:

ESE
i ¼Ei : sðW2 $ReLUðW1 $GAPðEiÞÞÞ ð13Þ

B GAP: Global average pooling.
B W1, W2: Weights of fully connected layers.
� Concatenation: Concatenate the SE-enhanced
encoder features with the decoder features:

Fconcat¼Concat
�
Di;ESE

i

� ð14Þ

� Channel Reduction: Reduce the number of
channels using a 1 � 1 � 1 convolution:

Dout
i ¼Conv1�1�1ðFconcatÞ ð15Þ

3.1.3. Output head
The output head predicts the segmentation mask

using a 1 � 1 � 1 convolution followed by a SoftMax
activation:

Output¼Softmax
�
Conv1�1�1

�
Dout

1

�� ð16Þ

This architecture leverages the strengths of Swin
Transformers, Spatial Attention, and Squeeze-Exci-
tation to achieve state-of-the-art results in 3D
medical image segmentation. The encoder captures
multiscale features, the bottleneck extracts global
context, and the decoder integrates skip connections
using cross-attention to refine the segmentation
mask. The use of SA and SE enhances the model's
ability to focus on important spatial and channel-
wise features, making it highly effective for complex
medical imaging tasks.

3.2. Loss function

The loss function combines Dice Loss and Cross-
Entropy Loss to optimize the model:

L¼lLDice þ ð1�lÞLCE ð17Þ

� Dice Loss: Measures the overlap between pre-
dicted and ground truth masks:

L Dice ¼1� 2
PN

i¼1pi giPN
i¼1pi þ

PN
i¼1gi

ð18Þ

Cross-Entropy Loss: Measures the pixel-wise
classification error:

LCE¼ �
XN

i¼1
gI log

�
pi

� ð19Þ

4. Experiments

4.1. Dataset

The OpenKBP dataset represents a comprehen-
sive and openly accessible resource tailored for
advancing research in knowledge-based planning
(KBP) for radiotherapy, specifically focusing on
head-and-neck cancer cases treated with intensity-
modulated radiation therapy (IMRT). The OpenKBP
dataset comprises 340 patient cases that use a
training group of 200 patients, a validation group of
40 patients, and a testing group of 100 patients to
provide a detailed model assessment. Each record of
patient data contains high-definition 3D CT imaging
with targeted volume and OAR structure annota-
tions (Fig. 2 illustrates this format), as well as
achievable dose planning and delivery parameters
and resolution details. A complete anatomical
framework and dosimetric framework exist together
to provide a necessary foundation for radiotherapy
planning algorithm development and testing. The
database addresses important complications found

Fig. 2. Annotated structure masks for organs-at-risk (OARs) in the
OpenKBP dataset [22].
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in CT images through poor tissue visualization, as
well as complex anatomical structure relations, and
precise control of radiation doses. The valuable na-
ture of the resource applies to activities involving
semantic segmentation, dose prediction, and treat-
ment planning tasks. The OpenKBP dataset func-
tions as a standardized platform available to all
researchers who together advance personalized and
knowledge-based radiotherapy through collabora-
tion and innovation.

4.2. Preprocessing

The systematic manner of converting OpenKBP
data into NIfTI format.
OpenKBP provides its head and neck cancer pa-

tient radiation therapy planning data through CT
images and dose distributions, together with struc-
ture masks delivered in CSV format files. The CSV
files show sparse matrices that show complete non-
zero values combined with the specific index posi-
tions. The data gets converted into NIfTI (Neuro-
informatics Initiative) format because this platform
represents volumetric medical imaging data and
enables easy processing alongside medical imaging
tools. This part presents a step-by-step method for
converting OpenKBP data into NIfTI format.
During conversion, the algorithm rebuilds dense

3D index matrices alongside sparse value arrays
from OpenKBP CSV files until it develops NIfTI
format files. The program uses CSV files to repre-
sent sparse matrices containing CT (C), dose (D),
and structure masks (Sk) with a 128 � 128 � 128
voxel grid dimension. The first step consists of
loading sparse matrices that connect flat index i with
its numerical value v. The information gets con-
verted to 3D coordinates through the unravel_index
function that uses the calculation i ¼ x þ y,Nx þ
z,Nx,Ny. A dense matrix C and D with Sk are
generated through the process of linking v values to
their associated x, y, and z coordinates. The NIfTI
files storage process utilizes the identity matrix
A ¼ I4 as an affine transformation for proper voxel-
to-world mapping during matrix saving. The NIfTI
files become part of patient-specific directories for
data organizing purposes. The conversion technique
transforms various medical imaging datasets into
standardized files that are ready for future data
evaluation.

4.3. Implementation details

The proposed Swin UNETR architecture shows its
configuration parameters alongside FLOPs and the
number of parameters within Table 1. The choice of
window size (7 � 7 � 7) balances computational
efficiency and receptive field coverage, following
Swin Transformer practices [1,13]. Smaller windows
reduce memory overhead while retaining local-
global interaction. The progressive number of heads
[3,6,12,24] aligns with hierarchical feature learning:
shallow layers (3e6 heads) focus on local details,
while deeper layers (12e24 heads) capture broader
context [13]. The MONAI framework served as the
implementation platform that utilizes PyTorch ca-
pabilities to execute medical imaging tasks. The
training took place on 4 � NVIDIA A100 GPUs for
optimal computational performance. To reach
global convergence, the model received 200 epochs
of training with an AdamW optimizer operating at a
3e�4 learning rate. Keeping performance metrics in
balance with memory usage, the research team
selected a batch size of 4. Several data augmentation
techniques improved both the robustness and
generalization of the model. Random rotations (±15�

on all axes), fixed random crop (128 � 128 � 128
voxels), intensity scaling (±20 %), and Gaussian
noise (s ¼ 0.1) were applied. Cutoff augmentation
masked random regions to enhance robustness. A
cutoff augmentation method was used for random
image region masking, which forced the model to
learn more resilient features. A single multi-class
mask incorporated the merged results from all
separate category segmentation outputs. When
specific clinical imaging structures lacked their
associated masks, the model used blank masks filled
with zeros to preserve input data coordination. The
model configuration allowed it to process partial
input data while keeping high levels of performance
for multi-class segmentation tasks. Different boost-
ing approaches, together with precise mask
handling systems, enabled the model to adapt to
various medical imaging cases efficiently.

4.4. Evaluation metrics

For our experiments, we employ DICE and 95 %
Hausdorff Distance (HD95) as the evaluation criteria
based on the openKBP multi-organ dataset. The land

Table 1. Proposed model configurations.

Embed Dimension Feature Size Number of Blocks Window Size Number of Heads Parameters FLOPs

768 48 [2, 2, 2, 2] [7, 7, 7] [3, 6, 12, 24] 65.98 M 434.84G
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DICE metric shows the resemblance of the
segmented image and the ground truth images for the
regions. It is calculated using the following formula:

Dice¼ 2jX∩Yj
jXj þ jYj ð20Þ

Where: X is the set of points from the segmented
image, and Y is the set of points from the ground
truth.
However, the 95 % Hausdorff distance, repre-

sented as HD95, is a metric used to identify the
dissimilarity surface of predicted labels with the
ground-truth labels.

HD95¼max ðd ðP;QÞÞ ð21Þ
Where P represents the set of points from the pre-
dicted masks, Q represents the set of points from the
ground truth masks, and D (P, Q) is the distance
function measuring the distance between points in
the two sets.
The lower the HD95 values, the better the seg-

mentation outcome, indicating a closer match be-
tween predicted and true labels.

4.5. Results and discussion

The proposed Enhanced SwinUNETR (Trans-
former Decoder) framework demonstrates superior
performance in medical organ segmentation
compared to state-of-the-art (SOTA) models, as

evidenced by the quantitative results in Tables 2aeb
and Table 3. Rigorously evaluated on the OpenKBP
dataset (Table 2a), our model achieves a Dice score
of 0.817 ± 0.015 and an HD95 of 2.464 ± 0.20 mm,
surpassing existing benchmarks in accuracy and
precision. Notably, the framework exhibits signifi-
cant architectural efficiency: it reduces trainable
parameters by 37 % (65.98 M vs. 105.4 M) compared
to TransUNet while improving Dice by 8.7 % and
lowering HD95 by 1.64 mm. Similarly, against
nnFormer, it attains a 3.7 % higher Dice with 28 %
fewer parameters (65.98 M vs. 92.1 M).
The hybrid designdintegrating hierarchical Swin

Transformer blocks, cross-attention mechanisms,
and spatial-channel recalibration modulesd
enhances 3D feature representation, enabling robust
localization of anatomical structures. As shown in
Table 3, the model also maintains computational
efficiency, balancing reduced FLOPs and training
loss with competitive Dice performance.
Furthermore, Table 2b illustrates the framework's

superiority over prior methodologies, including
nnUnet, particularly in multi-organ segmentation
tasks. Additionally, Table 4 shows the proposed
model's superiority compared to previous studies,
specifically TranSeg and 3D ResU-Net. The low
standard deviations (s) across repeated training
runs (Table 2b) underscore its clinical reliability,
indicating consistent generalizability and minimal
variability in real-world deployment. For instance,
the model achieved a Dice score of 0.9400 for the
Mandible, highlighting its exceptional segmentation
accuracy for well-defined structures. However,

Table 2a. Summary comparing our model with recent SOTA methods.

Model Overall
Dice ± s

HD95 ± s Parameters
(M)

TransUNet [11]. 0.73 ± 0.05 4.1 ± 0.50 105.4
nnFormer [17]. 0.78 ± 0.02 3.2 ± 0.3 92.1
Ours 0.817 ± 0.015 2.464 ± 0.20 65.98

The bold indicating superior performance, key findings, or
noteworthy comparisons across different methods or
experiments.

Table 2b. Per-organ Dice scores across all models.

Organ Swin UNETR nnU-Net
(3D)

TransUNet [11]. nnFormer [17]. Proposed SwinUNETR

Dice HD95 Dice HD95 Dice HD95 Dice ± s HD95 ± s Dice HD95

Brainstem 0.6373 4.601 0.75 3.5 0.82 ± 0.04 2.8 ± 0.30 0.85 ± 0.02 3.2 ± 0.3 0.9150 ± 0.012 1.600 ± 0.15
Spinal Cord 0.5418 5.752 0.65 5.0 0.72 ± 0.06 4.2 ± 0.45 0.78 ± 0.03 3.5 ± 0.4 0.8200 ± 0.018 2.800 ± 0.25
Right Parotid 0.56 5.539 0.70 4.5 0.77 ± 0.05 3.8 ± 0.35 0.80 ± 0.02 2.5 ± 0.2 0.8350 ± 0.015 1.400 ± 0.10
Left Parotid 0.5519 5.642 0.69 4.6 0.76 ± 0.05 3.9 ± 0.40 0.79 ± 0.02 2.7 ± 0.3 0.8250 ± 0.017 1.500 ± 0.12
Esophagus 0.4555 6.788 0.55 6.0 0.62 ± 0.07 5.3 ± 0.60 0.68 ± 0.04 4.5 ± 0.5 0.7300 ± 0.025 4.800 ± 0.35
Larynx 0.3797 7.694 0.50 6.5 0.57 ± 0.08 5.8 ± 0.65 0.63 ± 0.05 5.0 ± 0.6 0.6550 ± 0.030 3.900 ± 0.40
Mandible 0.6625 4.305 0.75 3.5 0.82 ± 0.03 2.8 ± 0.25 0.88 ± 0.01 1.9 ± 0.2 0.9400 ± 0.010 1.400 ± 0.10

Overall 0.5413 5.760 0.65 4.8 0.73 ± 0.05 4.1 ± 0.50 0.78 ± 0.02 3.2 ± 0.3 0.8175 ± 0.015 2.464 ± 0.20

The bold indicating superior performance, key findings, or noteworthy comparisons across different methods or experiments.

Table 3. Configuration comparison of the proposed model with the base
model.

Model Parameters FLOPs Dice Train
loss

Base Model
(Swin UNETR)

61.98 M 394.84G 0.5413 0.884

Proposed Model 65.98 M 434.84G 0.8175 0.286
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smaller and more complex organs, such as the
Larynx (Dice: 0.6550, HD95: 3.9) and Esophagus
(Dice: 0.7300, HD95: 4.800), presented greater chal-
lenges, indicating room for further improvement in
segmenting intricate anatomical regions. Qualita-
tively, the Enhanced SwinUNETR exhibited fewer
false positives in small organs, such as the Esoph-
agus, and improved boundary precision for over-
lapping structures, such as the parotid and
submandibular glands. These qualitative improve-
ments are critical for clinical applications, as they
reduce the risk of misdiagnosis and enhance the
accuracy of treatment planning, particularly in
radiotherapy and surgical guidance. The trans-
former-based decoder in the model achieves excel-
lent performance by identifying spatial features
while enhancing boundary precision. The current
advancements still need to solve segmentation
challenges when dealing with small and low-
contrast organs, which require additional architec-
tural development and bigger, diverse datasets.
Future researchers should work toward developing
multiscale approaches along with improved data
augmentation methods to resolve identified limita-
tions. The Enhanced SwinUNETR delivers major
progress in medical image segmentation by
providing a dependable segmentation tool suitable
for precise and accurate medical applications.
Fig. 3(a-c) shows the prediction samples of the
segmentation networks.
The proposed model achieves qualitative seg-

mentation of critical organs-at-risk (OARs) within
head-and-neck CT scans, as shown in Fig. 3.
Brainstem segmentation from the model yields su-
perior results, which present clear boundaries while
achieving Dice scores of 0.9150 ± 0.012 and HD95
values of 1.600 ± 0.15 mm compared to baseline
methods (panel (a) axial view). The model achieves

precise mandibular definition (Dice: 0.9400 ± 0.010,
HD95 1.400 ± 0.10 mm) while working in high-
contrast areas, as seen in the sagittal view. Panels in
the figure demonstrate that the model performed
well at segmenting esophagus tissue (Dice:
0.7300 ± 0.025, HD95: 4.800 ± 0.35 mm), thus
reducing unnecessary radiation exposure. The
model demonstrates reliable clinical performance in
radiotherapy planning because it produces precise
OAR segmentations that both qualify and quantify
the process to optimize patient security and thera-
peutic outcomes.
The Transformer-based architectures, especially

Enhanced SwinUNETR, emerged as popular
choices in medical image segmentation because
they tackle significant problems in the domain.
Their mutual attention strategies proved superior at
identifying boundaries where low-contrast regions,
such as soft tissues, occur. Since transformers
analyze extensive dependencies and comprehensive
context, they can recognize distinct structures that
display equivalent intensity characteristics. This
presents significant value to medical imaging
research, where background tissue details remain
faint. Swin Transformers achieve both computa-
tional effectiveness and performance outcomes
through their divided attention approach. These
models divide their analysis into sequential win-
dows to lower their memory requirements without
giving up their ability to maintain long-range re-
lationships, which makes their application to high-
resolution 3D medical images feasible. The
enhanced segmentation precision of transformer-
based systems creates important medical impacts.
These models enable better clinical practices by
correctly segmenting organs-at-risk when imple-
mented into dose prediction systems, particularly in
the OpenKBP Challenge. The reduced risk of
treatment becomes more effective in regions like the
Esophagus and larynx because precise segmenta-
tion enables it. The segmentation accuracy of the
Esophagus and larynx (73.00 % Dice, 65.50 % Dice)
remains below optimal standards because of issues
with low-contrast boundaries, together with
anatomical variability and partial volume effects.
The machine's structural distinction capabilities for
overlapping areas (parotid vs. submandibular
glands) enable both surgical planning systems and
diagnostic imaging while creating better patient
care pathways.
Transformer-based models demonstrate useful

abilities, although they have significant perfor-
mance restrictions. Models utilizing transformer-
based architecture need expert-generated high-
quality annotations as input for their training

Table 4. Comparison of our proposed model with other deep models in
previous studies on OpenKBP multi-organ semantic segmentation.

Organ TRANSEG [22] 3D ResU-Net
[23]

Proposed
SwinUNETR

Dice HD95 Dice HD95 Dice HD95

Brainstem 0.7744 2.3391 0.80 3.94 0.9150 1.600
Spinal Cord 0.7631 3.9108 0.75 5.97 0.8200 2.800
Right Parotid 0.7683 2.7243 0.76 2.31 0.8350 1.400
Left Parotid 0.7613 3.4235 0.75 2.28 0.8250 1.500
Esophagus 0.6152 5.8140 e e 0.7300 4.800
Larynx 0.6247 4.5748 e e 0.6550 3.900
Mandible 0.8767 1.9029 0.86 1.78 0.9400 1.400

Overall 0.7405 3.5271 0.75 5.97 0.8175 2.464

The bold indicating superior performance, key findings, or
noteworthy comparisons across different methods or
experiments.
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process, but this production demands extensive
labor efforts and specialized medical expertise. The
performance of these systems becomes limited by
heterogeneous annotation techniques, particularly
when identifying challenging small and complicated
structures. The execution speed of ~30 s per volume
prevents transformers from being suitable for real-
time operational requirements, including intra-
operative imaging. While the proposed model's
higher parameter count (65.98 M) and FLOPs
(434.84G) prioritize accuracy for radiotherapy plan-
ning, we acknowledge the need for efficiency in
real-time settings. Future work will explore model
pruning to reduce parameters by 20e30 % and
8-bit quantization, which is projected to decrease
inference time from 30s to <10s per volume on
an NVIDIA T4 GPU. Techniques like dynamic
window attention Could further lower

computational overhead by 40 %, making real-time
intraoperative use feasible. Additionally, we will
develop a Docker-based deployment pipeline
compatible with hospital DICOM systems to
streamline clinical integration. Improving these
constraints becomes essential for wider clinical
acceptance of this technology.

4.6. Ablation study

Results in Table 5 show how individual elements
affect the total performance of the SWIN UNETR
approach according to the ablation test. All three
components in the spatial Attention, Squeeze and
Excitation, and cross-attention mechanisms work
together to improve model performance through
higher Dice scores and decreased HD95 values ob-
tained from including all parameters. Performance

Fig. 3 a: Segmentation comparison for challenging OARs. Predicted mask, Ground truth, axial. Improved brainstem segmentation (Dice:
0.9150 ± 0.012) with sharp boundaries compared to blurred baseline results. b: Segmentation comparison for challenging OARs. Predicted mask,
Ground truth, sagittal. This result shows accurate mandible delineation (Dice: 0.9400 ± 0.010), demonstrating the model's robustness in high-contrast
regions. c: Sample of results segmentation for Proposed SwinUNETR OARs results. Reduced false positives in the Esophagus (Dice: 0.7300 ± 0.025),
critical for minimizing radiation overdosing.
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drops steadily as each component is removed from
the system until the worst decline happens when all
components are fully deleted. All elements establish
independent functions that optimize both spatial
attention and feature representation inside the
model framework. The spatial attention mechanism
shows significant effectiveness in feature refinement,
yet cross-attention enables the decoder to establish a
better understanding of context. The research dem-
onstrates why experts should use these integrated
mechanisms for the best segmentation results in
complex medical imaging tasks. Additional investi-
gation would examine how these model components
work together and affect the processing of anatom-
ical elements and different imaging approaches.

5. Conclusion

The Transformer Decoder-enhanced Swin
UNETR model stands as a vital innovation for multi-
organ semantic segmentation of radiotherapy
planning data, especially when performing head

and neck CT scans. The model integrates three el-
ements: a Transformer Decoder, Squeeze-and-
Excitation (SE) blocks, and Spatial Attention, which
expands the capabilities of traditional CNN-based
decoders through better global context under-
standing and feature representation. This updated
model delivers top-tier results on the OpenKBP
dataset through its enhanced performance. It shows
remarkable performance when segmenting difficult
structures, including the brainstem and the
Mandible, thus offering the potential to enhance
radiotherapy planning precision. The cross-atten-
tion mechanisms present in the decoder and the use
of SE blocks together with spatial attention enable
detailed discrimination of features, which localizes
critical areas regardless of structure contrast or
overlapping elements. The recent developments
present essential contributions toward minimizing
radiation effects on essential healthy tissues, which
ultimately results in better therapeutic outcomes.
The Transformer Decoder-enhanced Swin

UNETR model creates a new standard for medical

Fig. 3b (Continued).
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image segmentation, which provides healthcare
professionals with an advanced tool for delivering
accurate and secure radiotherapy planning. The
clinical application of this model will change medi-
cal imaging treatment quality and healthcare de-
livery systems to unlock new possibilities in deep
learning research.
Current research needs to tackle two challenges

with the model: increasing the quality of training
data while reducing its computational needs.
Despite its success in medical image segmentation,
the model requires additional annotation methods
through semi-supervised learning, along with
hardware optimizations or transformer optimiza-
tions to support real-time clinical utilization.
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