Dominating Sets and Domination Polynomial of k_r -gluingof Graphs

Sahib Sh. Kahat Department of Professional Supervision <u>The General Director of Education Al-Najaf Al-Ashraf,</u> A. M. Khalaf Department of Mathematics University of Kufa, Najaf, IRAQ.

E-mail: sgehet@gmail.com

<u>Abstract</u>

Let G = (V, E) be a simple graph. Aset $D \subseteq V$ is a dominating set of G, if every vertex in V - D is adjacent to at least one vertex in D. Let G be k_r -gluing of G_1 and G_2 and denote by $C[G_1 \cup_r G_2]$ the family of all k_r -gluing of G_1 and G_2 . Let K_t be complete graph with order t and K_m be complete graph with order m and let G be k_r -gluing of K_t and K_m with order n = m + t - r. Let G_n^i be the family of dominating sets of G_n with cardinality i, and let $d(G_n, i) = |G_n^i|$. In this paper, we construct G_n^i , and obtain a recursive formula for $d(G_n, i)$. Using this recursive formula, we consider the polynomial $D(G_n, x) = \sum_{i=1}^n d(G_n, i)x_i$, which we call domination polynomial of k_r gluing of graphs and obtain some properties of this polynomial

Keywords: Dominating sets, domination polynomial, k_r -gluing of graphs

 $\frac{|hht{ht{black}}}{|h_{i}|} = G = (V,E) = G$

إذا كان G = (V,E) = G بيان بسيط وكانت G مجموعة جزئية من *V*فأن *G*تسمى مجموعة مهيمنة للبيان *G*، إذا كان كل رأس في *D*-*V* يجاور على الأقل رأس واحد في *D* وليكن G بيان مكون من بيانين تامين من الدرجة r ، لذلك تكون درجة البيان G بيانين تامين من الدرجة r ، لذلك تكون درجة البيان G بيانين تامين من الدرجة r ، لذلك تكون درجة البيان G مي البيان G من الدرجة r ، لذلك تكون درجة البيان G بيانين تامين من الدرجة r ، لذلك تكون درجة البيان G مي البيان G بيانين تامين من الدرجة r ، لذلك تكون درجة البيان G مي البيان G من الدرجة r ، لذلك تكون درجة البيان G مي البيان G من الدرجة r ، لذلك تكون درجة البيان G مي مع مد كل المجموعات المهمنة التي عدد عناصرها f وان متعددة الحدود G_n تكون G_n, i مي عدد كل المجموعات المهمنة التي عدد عناصرها f وان G_n, i متعددة الحدود G_n تكون G_n, i مي عدد كل المجموعات المهمنة التي الحدق وجدنا علاقة لإيجاد متعددة الحدود G_n, i وبعض الخواص فيها واستخدامها في ايجاد متعددة الحدود المهيمنة $D(G_n, x) = \sum_{i=1}^n d(G_n, i)$

الكلمات مفتاحية: المجموعات المهيمنة، متعددات الحدود المهيمنة، البيانات المتحدة ببيان تام من الدرجة r

1 Introduction

Suppose G = (V, E) a simple graph. A set D subset of V is a dominating set of G, if each point in V-D is connects to at least one point in D. The domination number (G) is the minimum number of vertices that meets the definition of D. For a detailed treatment of this parameter, the reader is referred to [7]. It is known and generally accepted that the problem of identifying the dominant groups on an arbitrary graph is a difficult one (see [6]). Alikhani and Peng found the dominating set and domination polynomial of cycles, certain graph and non P4-free [1], [2], [3]. Dod, Kotek, Preen and Tittmann found Bipartition Polynomials, the Ising Model, and Domination in Graphs [4]. Kahat and Khalaf found the dominating set and domination polynomial of stars, wheels, complete graph with missing and k_r -gluing of Graphs see [8], [9], [10]. Kotek, JPreen and Tittmann found Domination Polynomials of Graph Products [11]. Let G_n be graph with order n and let the family of dominant sets G_n^i in a graph G_n have cardinality i and let $d(G_n, i) = |G_n^i|$. $D(G_n, x) = \sum_{i=r(G)}^n d(G_n, i)x_i$ is called domination polynomial of graph G [2]. Let G be k_r -gluing of G_n and G_n and denote by $C[G_1 \cup_r G_2]$ the family of all k_r -gluing of G_1 and $G_2[5]$. Let K_t be complete graph with order t and K_m be complete graph with order m and let G be k_r -gluing of K_t and K_m with order n = m + t - r. Use $\binom{n}{i}$ for the combination *n* to *i*.

2 Dominating sets of k_1 -gluing of K_t and K_m

We shall investigate dominating sets of Let G_n be k_1 -gluing of K_t and K_m . To prove our main results we need the following lemmas:

Lemma 1 [8].

These properties apply to all graphs G. (i) $|G_n^n| = 1$ (ii) $|G_n^{n-}| = n$ (iii) $|G_n^i| = 0$ if i > n (iv) $|G_n^0| = 0$

Theorem 1.

Let K_t be complete graph with order t and K_m be complete graph with order m and let G_n be K_1 - gluing of K_t and K_m with order n = m + t - 1, then $d(G_n, i) = \binom{n}{i} - \binom{m-1}{i} - \binom{t-1}{i}$, $\forall n, m, t \in Z^+$, and i = 1, 2, ..., n.

Proof.

Let $K_1 = \{v\}$. Since every vertex $u_t \in K_t$ it is not adjacent with every other vertex $u_m \in K_m$ such that $u_t \neq v \neq u_m$, then every subset of $K_t - v$ with cardinality i is not dominating sets of G_n , and every subset of $K_t - v$ with cardinality i is not dominating sets of G_n therefore $d(G_n, i) = {n \choose i} - {t-1 \choose i}$.

Theorem 2.

Let K_t be complete graph with order t and K_m be complete graph with order m and let G_n be K_r -gluing of K_t and K_m with order n = m + t - 1, then $d(G_n, i) = \binom{n}{i} - \binom{m-r}{i} - \binom{t-r}{i}, \forall n, m, r, t \in Z^+$, and i = 1, 2, ..., n

Proof.

The proof is similar to the proof of (Theorem 1).

Let G_n be k_1 -gluing of K_2 and K_m with order n = m + 1. In Table 1, we obtain the coefficients of $D(G_n, x)$ for $2 \le n \le 15$ based on Theorem 1. Let $d(G_n, i) = |G_n^i|$. It is possible to get important relationships between numbers $d(G_n, i)(1 \le i \le n)$ in the table.

مجلة دراسات تربويةملحق العدد (٥٦)/ ٢٠٢١

i			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
n	m	t															
2	2	1	2	1													
3	2	2	1	3	1												
4	2	3	1	5	4	1											
5	2	4	1	7	9	5	1										
6	2	5	1	9	16	14	6	1									
7	2	6	1	11	25	30	20	7	1								
8	2	7	1	13	36	55	50	27	8	1							
9	2	8	1	15	49	91	105	77	35	9	1						
10	2	9	1	17	64	140	196	182	112	44	10	1					
11	2	10	1	19	81	204	236	378	294	156	54	11	1				
12	2	11	1	21	100	285	440	614	672	450	210	65	12	1			
13	2	12	1	23	121	385	725	1054	1286	1122	660	275	77	13	1		
14	2	13	1	25	144	506	1110	1779	2340	2408	1782	935	352	90	14	1	
15	2	14	1	27	169	650	1616	2889	4119	4748	4190	2717	1287	442	104	15	1

Table 1. $d(G_n, i)$ The number of dominating sets of G_n with cardinality i sech that G_n be $k_1 - gluing$ of K_2 and K_m

 $d(G_n, i)$ has some properties as we prove the following theorem

Theorem 3.

For every $n \in Z^+$, The following properties achieved of $d(G_n, i)$: (i) $d(G_n, 1) = 1 \forall n \ge 3$. (ii) $d(G_n, 2) = d(G_{n-1}, 2) + 2$. (iii) $d(G_n, i) = d(G_{n-1}, i) + d(G_{n-1}, i - 1) \forall i \ge 2$ (iv) $d(G_n, n - 1) = n$. (v) $d(G_n, n) = 1$. (vi) $\gamma(G_n) = 1 \forall n \ge 3$ (vii) $d(G_n, i) = d(K_n, i)$ for n = 2

Proof.

Let G_n be k_3 -gluing of K_2 and K_m with order n = m + 1, then (i) By Theorem 1 d(G_n , 1)= $\binom{n}{1} - \binom{m-1}{1} - \binom{1}{1}$, since n = m + 1 hencem = n - 1, therefore $d(G_n, 1) = \binom{n}{1} - \binom{n-2}{1} - \binom{1}{1} = 1$ (ii) By Theorem 1 $d(G_n, 2) = \binom{n}{2} - \binom{n-1}{2} - \binom{1}{2} = \binom{n}{2} - \binom{n-2}{2} = 2n - 3$, and $d(G_{n-1}, 2) + 2 = \binom{n-1}{2} - \binom{n-2}{2} - \binom{0}{2} + 2 = 2n - 3$, then $d(G_n, 2) = d(G_{n-1}, 2) + 2$. (iii) By Theorem 1 Let $\omega = \frac{(n-1)(n-2)\dots(n-i+1)}{\binom{n}{2}} d(G_n, i) = \binom{n}{i} - \binom{n-2}{i} = \frac{n(n-1)\dots(n-i+1)(n-i)!}{i!(n-i)!} - \frac{(n-2)(n-3)\dots(n-i-1)(n-2-i)!}{i!(n-2-i)!} = \omega n - \omega \frac{(n-i)(n-i-1)}{(n-1)},$

and
$$d(G_{n-1}, i) + d(G_{n-1}, i-1) = \binom{n-1}{i} - \binom{n-3}{i} + \binom{n-1}{i-1} - \binom{n-3}{i-1} = \omega(n-i) - \omega \frac{(n-i)(n-i-1)(n-i-2)}{(n-1)(n-2)} + \omega i - \omega \frac{(n-i)(n-i-1)}{(n-1)(n-2)} i = \omega \left[\frac{n(n-1)-(n-i)(n-i-1)}{(n-1)}\right] = \omega n - \omega \frac{(n-i)(n-i-1)}{(n-1)}, \text{ then } d(G_n, i) = d(G_{n-1}, i) + d(G_{n-1}, i-1)$$

(iv) By Theorem 1 $d(G_n, n-1) = \binom{n}{n-1} - \binom{n-2}{n-1} = \binom{n}{n-1} = n$
(v) By Theorem 1 we have $d(G_n, n) = \binom{n}{n} - \binom{n-2}{n} = \binom{n}{n} = 1.$
(vi) Since $K_1 = \{v\}$ is dominating set of (G_n) , then $\gamma(G_n) = 1$.
(vii) $d(G_2, i) = \binom{2}{i} - \binom{0}{i} = \binom{2}{i} = d(K_2, i)$ by Lemma 1 (iii)

Let G_n be k_1 -gluing of K_3 and K_m with order n = m + 2. Obtain the coefficients of $D(G_n, x)$ for $1 \le n \le 12$ in Table 2 based on Theorem 2. Let $d(G_n, i) = |G_n^i|$. It is possible to get important relationships between numbers $d(G_n, i)(1 \le i \le n)$ in the table.

i			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
n	m	t															
3	3	1	3	3	1												
4	3	2	1	5	4	1											
5	3	3	1	8	10	5	1										
6	3	4	1	11	19	15	6	1									
7	3	5	1	14	31	34	21	7	1								
8	3	6	1	17	46	65	55	28	8	1							
9	3	7	1	20	64	111	120	83	36	9	1						
10	3	8	1	23	85	175	231	203	119	45	10	1					
11	3	9	1	26	109	260	406	434	322	164	55	11	1				
12	3	10	1	29	136	369	666	840	756	486	219	66	12	1			
13	3	11	1	32	166	505	1035	1054	1596	1242	705	285	78	13	1		
14	3	12	1	35	199	671	1540	2089	3650	2838	1947	990	363	91	14	1	
15	3	13	1	38	235	870	1616	3629	5739	6488	4785	2937	1353	454	105	15	1

Table 2. d(G_n, i) The number of dominating sets of G_n with cardinality i sech that G_n be $k_1 - gluing$ of K_3 and K_m

The following theorem, obtain some results of $d(G_n, i):G_n$ be k_1 -gluing of K_3 and K_m

Theorem 4.

The following results achieved of $d(G_n, i)$, for all $n \in Z^+$: (i) $d(G_n, 1) = 1 \forall n \ge 4$. (ii) $d(G_n, 2) = {n \choose 2} - {m-1 \choose 2} - 1$

(iii) $d(G_n, 2) = d(G_{n-1}, 2) + 3.$ (iv) $d(G_n, 3) = d(G_{n-1}, 3) + d(G_{n-1}, 2) + 1.$ (v) $d(G_n, i) = d(G_{n-1}, i) + d(G_{n-1}, i - 1) \forall i \ge 3.$ (vi) $d(G_n, n - 1) = n$ (vii) $d(G_n, n) = 1$ (viii) $\gamma(G_n) = 1 \forall n \ge 7$ (ix) $d(G_3, i) = d(K_3, i)$

Proof.

The proof is similar to the proof of (Theorem 2). Let G_n be k_1 -gluing of K_3 and K_m with order n = m + 3 - 1 = m + 2, then (i)By Theorem 1 $d(G_n, 1) = \binom{n}{1} - \binom{m-1}{1} - \binom{2}{1}$, since n = m + 2 then m = n - 2, therefore $d(G_n, 1) = \binom{n}{1} - \binom{n-3}{1} - \binom{2}{1} = n - n + 3 - 2 = 1$ (ii) By Theorem 1 $d(G_n, 2) = \binom{n}{2} - \binom{m-1}{2} - \binom{2}{2} = \binom{n}{2} - \binom{m-1}{2} - 1$ (iii) By Theorem 1 $d(G_n, 2) = \binom{n}{2} - \binom{m-1}{2} - 1 = 3n - 7$, and $d(G_{n-1}, 2) + 3 = \binom{n-1}{2} - \binom{m-2}{2} - 1 + 3 = \binom{n-1}{2} - \binom{n-4}{2} + 2 = 3n - 9 + 2 = 3n - 7$, then $d(G_n, 2) = d(G_{n-1}, 2) + 3$ (iv)- (ix) The proof is the same way in the (Theorem 3) in (ii)- (vii)

By the following theorem, we prove some properties of $d(G_n, i): G_n$ be k_1 -gluing of K_t and K_m such that (t) is constant $\forall 1 \leq m \leq n - t + r$.

Theorem 5.

For all $n \in Z^+$, $d(G_n, i)$ has the following properties : (i) $d(G_n, 1) = 1 \forall n \ge t$. (ii) $d(G_n, i) = d(G_{n-1}, i) + d(G_{n-1}, i-1) + {t-1 \choose i-1} \forall n > t$. (iii) $d(G_n, i) = d(G_{n-1}, i) + d(G_{n-1}, i-1) \quad \forall i > t$. (iv) $(G_n, n-1) = n$ (v) $d(G_n, n) = 1$. (vi) $\gamma(G_n) = 1 \quad \forall n > t$ (vii) $d(G_n, i) = d(K_n, i) \forall n = t$

Proof.

The proof is similar to the proof of (Theorem 3) and (Theorem 4)

3 Domination Polynomial of *K*₁-gluing of Graphs

In this section we introduce and investigate the domination polynomial of K_1 -gluing of K_m and K_t such that (t) is constant $\forall 1 \leq m \leq n-t + 1$.

Definition.

Let G_n^i be the family of dominating sets of a graph $G_n(K_1$ -gluing of K_m and K_t) When cardinality is considered i, and let $d(G_n, i) = |G_n^i|$, and since $\gamma(G_n) = 1$. Then $D(G_n, x)$ of G_n (domination polynomial) is defend as $D(G_n, x) = \sum_{i=1}^n d(G_n, i) x^i \forall n > t$

In the following corollary, we obtain some properties of $(G_n, x) : G_n$ be K_1 -gluing of K_m and K_t such that (t) is constant $\forall 1 \leq m \leq n - t + 1$.

Corollary 1.

The following properties hold for all $D(G_n, x) \forall n > t$

- (i) $D(G_n, x) = \sum_{i=1}^n \binom{n}{i} x^i \sum_{i=1}^{m-1} \binom{m-1}{i} x^i \sum_{i=1}^{t-1} \binom{t-1}{i} x^i$
- (ii) $D(G_n, x) = D(G_{n-1}, x) + xD(G_{n-1}, x) + \sum_{i=1}^{t-1} {t-1 \choose i} x^{i+1}$

Proof.

(i) From Theorem 1 and definition in above, we get $D(G_n, x) = \sum_{i=1}^n d(G_n, i) x^i = \sum_{i=1}^n \left[\binom{n}{i} - \binom{m-1}{i} - \binom{t-1}{i}\right] x^i = \sum_{i=1}^n \binom{n}{i} x^i - \sum_{i=1}^n \binom{m-1}{i} x^i - \sum_{i=1}^n \binom{t-1}{i} x^i = \sum_{i=1}^n \binom{n}{i} x^i - \sum_{i=1}^{m-1} \binom{m-1}{i} x^i - \sum_{i=1}^{t-1} \binom{t-1}{i} x^i$ (by Lemma1) $\binom{n}{i} = 0$ if i > n

(ii) From definition of the domination polynomial and Theorem 5, we have $D(G_n, x) = \sum_{i=1}^n d(G_n, i) x^i = \sum_{i=1}^n [d(G_{n-1}, i) + d(G_{n-1}, i-1) + {\binom{t-1}{i-1}} x^i = \sum_{i=1}^n d(G_{n-1}, i) x^i + \sum_{i=1}^n d(G_{n-1}, i-1) x^i + \sum_{i=1}^n {\binom{t-1}{i-1}} x^i$, we have $d(G_n, i)$ = 0 if i > n or i = 0 (Lemma1), then $\sum_{i=1}^n d(G_{n-1}, i) x^i = \sum_{i=1}^{n-1} d(G_{n-1}, i) x^i = D(G_{n-1}, x)$

and $\sum_{i=1}^{n} d(G_{n-1}, i-1)x^{i} = x \sum_{i=1}^{n} d(G_{n-1}, i-1)x^{i-1} = x [\sum_{i=1}^{n-1} d(G_{n-1}, i)x^{i}] = x D(G_{n-1}, x) \text{ and } \sum_{i=1}^{n} {t-1 \choose i-1} x^{i} = \sum_{i=1}^{n} {t-1 \choose i} x^{i+1}$ then $D(G_{n}, x) = D(G_{n-1}, x) + x D(G_{n-1}, x) + \sum_{i=1}^{t-1} {t-1 \choose i} x^{i+1}$.

Example 1

The following properties hold for all $D(G_n, x)$: G_n be k_1 -gluing of tow complete graphs K_m and K_2 , $\forall n > 2$ by Corollary 1

- (i) $D(G_n, x) = \sum_{i=1}^n \binom{n}{i} x^i \sum_{i=1}^{n-3} \binom{n-3}{i} x^i x$
- (ii) $D(G_n, x) = D(G_{n-1}, x) + xD(G_{n-1}, x) + x^2$

Example 2.

The following properties hold for all $D(G_n, x)$: G_n be k_1 -gluing of tow complete graphs K_m and K_3 , $\forall n > 3$ by Corollary 1

(i) $D(G_n, x) = \sum_{i=1}^n \binom{n}{i} x^i - \sum_{i=1}^{n-3} \binom{n-3}{i} x^i - 2x \cdot x^2$

(ii)
$$D(G_n, x) = D(G_{n-1}, x) + xD(G_{n-1}, x) + 2x^2 + x^3$$

Example 3.

Let G_7 be K_1 -gluing of two complete graphs K_5 and K_3 with order 7, we can get on $D(G_7, x)$ without the table. We have

 $D(G_7, x) = \sum_{i=1}^{7} {7 \choose i} x^i - \sum_{i=1}^{4} {4 \choose i} x^i - \sum_{i=1}^{2} {2 \choose i} x^i = (7x + 21x^2 + 35x^3 + 35x^4 + 21x^5 + 7x^6 + x^7) - (4x + 6x^2 + 4x^3 + x^4) - (2x + x^2) = x + 14x^2 + 31x^3 + 34x^4 + 21x^5 + 7x^6 + x^7 (by Corollary 1).$ (see Fig-1).

Fig-1: G_7 be K_1 -gluing of two complete graphs K_5 and K_3

References

[1] Alikhani, S.Y. H. Pengb, Dominating Sets and Domination Polynomial of Cycles, Global Journal of Pure and Applied Mathematics, 42: 151-162, (2008).

[2] Alikhani, S.Y.H. Peng, Dominating Sets and Domination Polynomial of Certain Graphs, II, Opuscula Mathematica 30 (1): 37-51, (2010).

[3] Alikhani, S. ,On the domination polynomials of non P4-free graphs, Iranian Journal of Mathematical Sciences and Informatics Vol. 8, No. 2, pp 49-55, (2013)

[4] M. Dod, T. Kotek, J. Preen, P. Tittmann, Bipartition Polynomials, the Ising Model, andDomination in Graphs, DiscussionesMathematicae Graph Theory. Volume 35, Issue 2, Pages 335-353, ISSN (Online) 2083-5892, DOI: 10.7151/dmgt.1808, April (2015).

[5] F.M. Dong, K.M. Koh and K.L. Teo, Chromatic Polynomials and Chromaticity of graphs, Ukoffce: 57 Shelton Sueet, Covent London WC2H 9HE, (2005).

[6] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theoreyof NP-Completness. Freeman, New York, (1979).

[7] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, NewYork, (1998).

[8] S. Sh. Kahat, A. M. Khalaf, R. Hasni, Dominating Sets and Domination Polynomials of Stars, Australian Journal of Basic and Applied Sciences, 8(6), Pages: 383-386, (June 2014).

[9] S. Sh. Kahat, A. M. Khalaf, Dominating Sets and Domination polynomial of Complete Graphs with Missing Edges, Journal of Kufa for Mathematics and Computer Vol.2, No.1, 64-68, (may 2014).

[10] S. Sh. Kahat, A. M. Khalaf, R. Hasni, Dominating Sets and Domination Polynomial of Wheels, Asian Journal of Applied Sciences, Volume 02 - Issue 03, 287-290, June (2014).

[11] T. Kotek, J. Preen, P. Tittmann, Domination Polynomials of Graph Products, arXiv.org (math) arXiv:1305.1475v2, (Submitted on 7 May 2013 (v1), last revised 23 Dec (2013) (this version, v2)).