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Alzheimer's disease (AD) is one of the common neurodegenerative disorders presenting 

with progressive cognitive decline and synaptic impairment. The need for accurate and 

accessible diagnostic methods is especially pressing in resource-limited regions. This 

study presents the first open electroencephalography (EEG) dataset for Alzheimer's 

Disease (AD) in Iraq, recording electrophysiological activity in four stages of cognition, 

namely, Healthy, Mild, Moderate, and Severe. The dataset comprised recordings from 

53 participants and was recorded using a 40-channel EEG device based on the 10-20 

electrode placement standard. Considering this EEG dataset, advanced preprocessing, 

such as the removal of artifacts, Independent Component Analysis (ICA), and 

Automatic Subspace Reconstruction (ASR), was performed to ensure high signal quality 

suitable for all state-of-the-art Machine Learning (ML) and Deep Learning (DL) 

analyses. Benchmark classification was conducted with a wide variety of ML and DL 

models, including Random Forest (RF), Gradient Boosting methods, Support Vector 

Machines (SVM), Convolutional Neural Networks (CNNs), and Long Short-Term 

Memory networks (LSTMs), showing promising results-a maximum of 96.85% by 

Random Forest within ML techniques and a maximum of 96.05% by DNNs in DL 

techniques. This dataset fills a critical gap in regional AD research and moves toward 

developing low-cost, noninvasive diagnostic tools. Future work may be performed on 

more extended and more diverse datasets with more sophisticated multimodal 

approaches for improving AD diagnosis and early intervention. The dataset can be 

downloaded from https://shorturl.at/Z0b8D. 
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1. Introduction  

Alzheimer's is a serious and growing global 

health concern. This common 

neurodegenerative disorder is characterized by 

synaptic dysfunction along with loss of learning 

and cognitive abilities, consequently leading to 
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a progressive decline in mental and cognitive 

functions. The eventual development of 

Alzheimer's may result in death [1]. 

It is befitting to note that early diagnosis of 

AD has shifted the paradigm in the stages of 

disease intervention and improved the efficacy 

of treatment. Several diagnostic tools and 
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technologies were employed in diagnosing AD, 

including neuroimaging and cerebrospinal fluid 

markers, PET, MRI, and EEG [2]. 

EEG has become essential in the clinical 

and scientific study of neurological disorders. It 

is a non-invasive method that transposes 

electrical activity generated in the cerebral 

hemispheres into signals that may provide 

changes in the cortex and even in deeper tissues. 

Given its portability, cost, and non-invasive 

advantages, EEG has been employed to analyse 

different brain diseases, including Alzheimer's 

disease [3]. 

The normal resting-state EEG still shows 

rather significant intrasubject variability 

because of interference from various sources, as 

well as the current state of the brain. The major 

challenges that can be found with the use of 

EEGs in diagnosing Alzheimer's disease are 

noise, the non-ergodic nature of the signal, a 

nonlinear underlying process, and the inter-

individual variability regarding gender, age 

group, stress, and other health conditions of the 

patients. These factors can complicate the 

interpretation and analysis of the EEG record 

and may lead to diagnostic inaccuracies, hence 

complicating the differentiation of Alzheimer's 

disease from other neurological disorders [4]. 

Consequently, research now focuses on 

devising and enhancing sophisticated methods 

of processing and analyzing EEG data to 

achieve higher accuracy and reliability in 

diagnosing Alzheimer's disease. It, therefore, 

involves applying signal processing methods, 

machine learning, and deep learning techniques, 

among others, with statistical methods to 

excavate informative features from such 

complex, time-varying EEG signals. In Iraq, 

Alzheimer's disease is a rapidly increasing 

disorder among aged people, with many yet 

undiagnosed. Neurologists widely use either 

neuroimaging or morphological tests, which 

depend either on radiation exposure or are 

costly. These tests also bear high potential risks 

or side effects to the patients depending on the 

test used to detect Alzheimer's [5]. 

Therefore, the primary motivation for this 

study was to collect EEG recordings from 

elderly patients with Alzheimer's disease across 

different stages (Mild, Moderate, and Severe) as 

well as healthy age-matched controls during the 

resting state. We present the first publicly 

available EEG dataset for AD diagnosis in Iraq, 

aiming to enhance the understanding of 

Alzheimer's disease, particularly in its early 

stages. This dataset serves as a benchmark for 

identifying EEG-based biomarkers for 

diagnostic and prognostic purposes. By 

providing a high-quality dataset and 

demonstrating its effectiveness in ML and DL 

models, this work contributes to the 

development of noninvasive, cost-effective 

diagnostic tools for AD, particularly in regions 

with limited access to advanced neuroimaging 

techniques. 

This study makes many important 

contributions: 

1. The first Alzheimer’s disease EEG dataset 

in Iraq: The paper outlines the publicly 

available dataset fills a serious gap in local 

research. The database consists of 53 

recordings from subjects that capture a 

range of cognitive states. 

2. Comprehensive Preprocessing Pipeline: 

The dataset undergoes extensive 

preprocessing using Independent 

Component Analysis (ICA) and Automatic 

Subspace Reconstruction (ASR) to remove 

noise and artifacts, ensuring high-quality 

signals for analysis. 

3. Benchmarking with ML/DL Methods: The 

data is evaluated with a variety of machine 

learning (ML) and deep learning (DL) 

models, hence determining benchmark 

classification performances. In the case of 

ML models, Random Forest achieves a 

96.85% accuracy, with Deep Neural 

Networks having a 96.05% accuracy in the 

DL methods. 

4. Advancing EEG Based AD Classification: 

The results demonstrate that EEG signals 

contain distinctive patterns across AD 

stages, highlighting the potential of EEG-

based biomarkers for reliable early 

diagnosis. 

This dataset paves the way for developing 

innovative methods for achieving a definitive 

diagnosis of Alzheimer's within the regions 

where the traditional methods remain costly or 

not accessible. 
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2. Related work 

This section provides an overview of EEG 

research datasets used for classifying 

Alzheimer's disease and sets the background in 

which this work is situated. Most publicly 

available EEG datasets focus on specific 

dimensions of research, such as the state of rest, 

olfactory stimulation, or tests through cognitive 

tasks. Such datasets are of utmost importance 

during the training and testing of machine 

learning models for diagnosing AD, enhancing 

reproducibility, and supporting comparative 

research in computational neuroscience. 

The dataset of EEG by [5] includes 36 AD 

patients, 23 FTD patients, and 29 healthy 

control subjects. In the recording, 19 scalp 

electrodes were positioned according to the 10-

20 system, and the data was digitized at a 

sampling frequency of 500 Hz. The dataset 

contains raw and preprocessed EEG signals; the 

preprocessing includes band-pass filtering from 

0.5 to 45 Hz, artifact removal, and ICA. It is 

unique in providing BIDS-format EEG 

recordings specific to dementia conditions and 

hence finds great importance in machine 

learning and the analysis of brain activity. 

The current study by [6] introduces a 

significant dataset on the electrophysiological 

processing of the brain to olfactory stimuli in 

AD and MCI. The dataset comprises recordings 

from 13 patients diagnosed with AD, 7 patients 

diagnosed with MCI, and 15 healthy elderly 

participants. EEG recordings were made with 

Fp1, Fz, Cz, and Pz channels over 120 trials of 

olfactory stimulation with rose and lemon 

odorants. Further filtering was done between 

0.5-40Hz, ICA-based eye blink removal, 

followed by removing epochs containing those 

artifacts by hand. The dataset provided here is 

unique in its investigation of smell dysfunction 

and neurodegenerative disease linkage, giving 

insights into the potential early biomarkers of 

AD. 

However, Authors in [7] proposed a casual 

EEG data set to illustrate the capability of QGs 

as a potential new diagnostic tool for 

Alzheimer's disease. The abovementioned data 

included EEG records from the 19 scalp 

electrode positions of 24 AD patients and 24 

healthy elderly controls; 8-second segments 

sampled at 128 Hz. This dataset is valuable in 

assessing various network metrics, based on 

QG, to discriminate EEG activity in healthy 

individuals from AD patients, providing a 

valuable benchmark for signal processing and 

classification studies. 

Another EEG dataset presented by[8] 

includes three different EEG datasets used for 

phase-based functional connectivity analysis in 

studying Alzheimer's disease and other 

cognitive conditions. 

First, the data for resting-state EEG with 

open and closed eyes are recorded of 16 healthy 

volunteer record-ings-channel EEGs. Then, 

continuous EEG data will be down-sampled to 

200 Hz, referenced to an average reference, and 

alpha-filtered within the 8-13 Hz range. Clean 

5-second segments for each subject—precisely 

1000 to 2000 samples—will be extracted since 

such segments have always proved reliable for 

studying resting-state brain connectivity.  

The other is the VSTM binding task data, 

which consists of EEG recordings from 19 

healthy young volunteers using a 30-channel 

EEG setup. Continuous EEG signals were 

sampled at 250 Hz and filtered between 0.01-40 

Hz with a band-pass filter, resulting in 1-second 

epochs that yielded, on average,65.7 ± 9.27 

trials per subject. The connectivity analysis 

focused on the beta band (13–32 Hz), using PLI 

to estimate functional connectivity during the 

VSTM task.  

The third dataset deals with Alzheimer's 

disease. In that, EEG records were taken from 

12 Alzheimer's disease patients aged 72.8 ± 8.0 

years, along with 11 healthy control subjects. 

Recordings were obtained with a 16-channel 

EEG device accordinRecordings0-20 system, 

and the data acquisition was performed at the 

University Hospital of Valladolid in Spain. 

Artifact removal was done by visual inspection, 

and clean 5-second epochs were extracted-28.8 

± 15.5 per subject for further processing. The 

EEG signals were filtered separately for the 

alpha and beta bands: 8-13 Hz and 13-32 Hz, 

respectively. The EEG PLI adjacency matrices 

comprising MATLAB functions and scripts 

concerning network analysis are included in this 

dataset, with the raw EEG data, thus allowing 
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further studies relating to Alzheimer's disease 

and connectivity network analysis.  

Another EEG data is contributed by [9] that 

involves EEG activity recorded for 59 patients 

suffering from AD (MMSE score = 10–19), 7 

patients suffering from MCI, and 102 healthy 

control participants. For the recording of EEG 

activity, a 21-channel EEG system was used: 

Walter EEG PL-231, Germany - 256 Hz and 

another 21-channel configuration: “TruScan” 

32, Alien Technik Ltd., Czech Republic - 128 

Hz. Data recorded at 256 Hz were down-

sampled to 128 Hz. All electrodes were placed 

according to the 10-20 international system. 

EEG pre-processing consisted of detrending, 

notch filtering at 50 Hz, removal of all myogenic 

potentials, eye movements, ECG artifacts, and 

electrode artifacts by an experimenter, and 

segmentation into nonoverlapping 7.8125-s 

segments (1000-time samples). It has been used 

to test the performance of a novelty detection 

approach for diagnosing AD and MCI using 

features extracted by adaptive filtration with a 

linear neural unit. This dataset could support 

multi-device analyses and robustness against 

de-vice-specific variability. 

Another EEG dataset was also presented in 

the research by[10] for recordings conducted on 

160 probable AD patients and 24 healthy 

participants. The whole dataset involves four 

groups of subjects: (A) 12 healthy elderly with 

eyes open, (B) 12 healthy elderly with eyes 

closed, (C) 80 probable AD patients with eyes 

open, and (D) 80 probable AD patients with eyes 

closed. EEG was recorded using 19 scalp 

electrodes according to the international 10-20 

system, namely, Fp1, Fp2, F3, F4, F7, F8, Fz, 

C3, C4, Cz, P3, P4, Pz, T3, T4, T5, T6, O1, O2. 

Each segment of ongoing EEG was 8 seconds 

and was sampled at 128 Hz frequency. A signal 

was filtered within a frequency range of 0.5-30 

Hz. Those signals resulting from movements 

were removed. This dataset was generously 

provided free of cost by Dr. Dennis Duke, and it 

finds extensive use in the computational 

analysis of EEG signals related to the 

classification of Alzheimer's disease using 

various time-series analysis techniques such as 

wavelet coherence, fractal dimension, quadratic 

entropy, wavelet energy, quantile graphs, and 

visibility graphs. 

To the best of our knowledge, no EEG 

dataset on AD classification exists in Iraq. This 

research will, therefore, propose a pioneering 

effort to establish the first publicly available 

EEG dataset for AD classification in Iraq, 

contribute to the global research community, 

and, by doing so, develop diagnostic tools for 

this region. 
 
3. Experimental design  

The following figure depicts the general 

structure that the experimental design has taken 

in the present work. The basic steps comprising 

the creation and analysis of the EEG dataset on 

Alzheimer's Disease are depicted: data 

collection, preprocessing, feature extraction, 

model selection, and evaluation. Each of these 

individual steps has a significance of its own in 

order to insure the integrity, accuracy, and 

effectiveness of the classification models 

elaborated in the current work. 

 

Figure 1. EEG data Collection and analysis for AD 

3.1 Data description  

This dataset contains the EEG resting state-

open and closed eyes recordings from 53 

subjects in total. A total of 8 of them were 

diagnosed with Alzheimer’s disease (Mild 

group), 12 were diagnosed with (Moderate 

group), 10 were diagnosed with (Severe group), 

and 23 were Normal cases.  
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3.2 Participants 

Participants were recruited from individuals 

who sought treatment for memory complaints at 

the memory clinic at “Shar Hospital,” “Shorsh 

Hospital,” “Anwar Shekha Private Hospital,” 

“Dr. Abbas Nariman” Clinics, and “Dr. Sarwer 

Jamal Al-Bajalan” Clinics, Sulaymaniyah, 

Kurdistan region, Iraq. There were 53 

participants aged 56 to 85, including 2 in their 

50s, 9 in their 60s, 32 in their 70s, and 10 in their 

80s. Further, there were 9 male participants and 

44 female participants. Additional information, 

such as gender and disease stage, is contained in 

Table 1. 

Table 1: Participant Description. In the Gender column, 

F indicates female and M indicates male 

 Participant Gender Age Group 

1 Mild1 F 65 Mild 

2 Mild2 F 70 Mild 

3 Mild3 M 81 Mild 

4 Mild4 F 71 Mild 

5 Mild5 F 70 Mild 

6 Mild6 F 75 Mild 

7 Mild7 F 71 Mild 

8 Mild8 F 77 Mild 

9 Mod1 F 74 Moderate 

10 Mod2 F 72 Moderate 

11 Mod3 F 82 Moderate 

12 Mod4 F 70 Moderate 

13 Mod5 F 74 Moderate 

14 Mod6 F 74 Moderate 

15 Mod7 F 72 Moderate 

16 Mod8 M 82 Moderate 

17 Mod9 F 70 Moderate 

18 Mod10 F 82 Moderate 

19 Mod11 F 79 Moderate 

20 Mod12 F 60 Moderate 

21 Sv1 F 56 Severe 

22 Sv2 F 74 Severe 

23 Sv3 F 72 Severe 

24 Sv4 F 85 Severe 

25 Sv5 M 79 Severe 

26 Sv6 F 74 Severe 

27 Sv7 F 70 Severe 

28 Sv8 F 72 Severe 

29 Sv9 F 70 Severe 

30 Sv10 F 79 Severe 

31 CN1 M 66 Cognitive Normal 

32 CN2 F 88 Cognitive Normal 

33 CN3 M 77 Cognitive Normal 

34 CN4 F 81 Cognitive Normal 

35 CN5 F 62 Cognitive Normal 

36 CN6 F 77 Cognitive Normal 

37 CN7 F 83 Cognitive Normal 

38 CN8 M 75 Cognitive Normal 

39 CN9 F 59 Cognitive Normal 

40 CN10 F 66 Cognitive Normal 

41 CN11 F 69 Cognitive Normal 

42 CN12 M 81 Cognitive Normal 

43 CN13 F 62 Cognitive Normal 

44 CN14 F 71 Cognitive Normal 

45 CN15 M 67 Cognitive Normal 

46 CN16 F 74 Cognitive Normal 

47 CN17 F 76 Cognitive Normal 

48 CN18 F 62 Cognitive Normal 

49 CN19 M 71 Cognitive Normal 

50 CN20 F 74 Cognitive Normal 

51 CN21 F 70 Cognitive Normal 

52 CN22 F 83 Cognitive Normal 

53 CN23 F 68 Cognitive Normal 
     

3.3 EEG Recordings 

In the present study, EEG recordings were 

made on patients with AD to extend the dataset 

and enable in-depth analysis. For the research 

study, strict adherence to EEG recording 

standards was always followed to ensure that the 

data gathered was valid and that the 

methodology outlined a plan for acquiring 

reliable EEG signals. 

EEG activity was recorded utilizing a 

"Compumedics Profusion" EEG system coupled 

with a saline-based EEG cap; electrode 

placement followed the International 10–20 

System. Saline electrodes have advantages over 

other types in clinical studies: they are easy to 

operate, their placement is reliable, and they 

cause less discomfort to the subjects. The scalp 

was mildly chemically abraded before recording 

to ensure good electrode-to-skin conductivity, 

ensuring optimal impedance levels. After fitting 

the cap, connection cables were checked for 

stability, and subjects were allowed a rest period 

of 15-30 minutes to adapt to the setup, which is 

essential to minimize movement artifacts and 

ensure relaxed brain activity [11]. 

We employed a 40-channel EEG system 

comprising standard 10-20 electrodes and 

additional custom-made electrodes to provide 

complete scalp coverage. This results in a wider 
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recording of the brain activity and greater spatial 

detail than that provided by the standard 

configuration. The electrode array consisted of 

19 conventional 10-20 scalp electrodes 

positioned at the following locations [10]: 

• Frontal electrodes: Fp1, Fp2, F7, F3, Fz, 

F4, and F8. 

• Temporal electrodes: T3, T4, T5, T6 

• Central electrodes: C3, Cz, C4 

• Parietal electrodes: P3, Pz, P4 

• Occipital electrodes: O1, O2 

Besides these standard positions, 21 

additional reference electrodes were placed to 

increase the spatial resolution and informational 

richness. This allows data to be captured from 

the standard and custom electrodes for high-

resolution EEG in a broader range of scalp 

regions. Therefore, the subtler, more localized 

neural activity that might be an early sign of 

Alzheimer's disease would be more easily 

detected. Enhanced spatial resolution can allow 

a better investigation of more complex waves, 

especially in frequency bands related to 

cognitive decline, hence enabling the possibility 

of an earlier diagnosis [12]. With wider spacing, 

there is reduced noise and increased signal 

clarity, hence reliable data for clinical and 

analytic purposes. These extra electrodes 

provide excellent coverage over the brain, 

particularly extending over scalp areas that were 

previously poorly represented. This allows the 

precise mapping of changes that involve 

Alzheimer's disease concerning the posterior 

parietal and temporal lobes[13]. 

This setting provides several advantages in 

investigating Alzheimer's disease and many 

other neurodegenerative disorders; thus, it is a 

handy tool for future research. Recordings were 

made at a sampling rate of 250 Hz with an 

amplitude resolution of 10 µV/mm, and sessions 

were about 30 minutes long. This careful setup 

provides one example of how the study of the 

detailed EEG biomarkers of Alzheimer's disease 

may enable model improvements for the 

diagnosis of neurodegenerative disorders. 

3.4 Dataset Structure  

This dataset is collected and prepared for 

EEG-based Diagnosis-related research on 

Alzheimer's Disease. It includes four categories: 

Healthy, Mild, Moderate, and severe AD. The 

dataset is provided in four separate folders. Each 

folder represents one category, and several 

subject EEGs are recorded within that specific 

folder. The dataset consists of 15,820,760 

samples, thus offering broad coverage for 

different tasks in machine learning and deep 

learning. 

The recordings were exported to. edf 

(European Data Format) for the standardization 

of neuroimaging; after that, these signals needed 

to be filtered and prepared for analysis in CSV 

format. 

The data was further refined into a 

structured format and saved in a file named 

“HMMS”, which is very helpful in machine 

learning and deep learning processes. This 

unified structure permits higher consistencies 

along many categories, making integrating the 

data into the machine and deep learning 

pipelines relatively easy. 

The dataset is organized in the following 

structure: 

1. Healthy Folder: Data from 23 subjects 

representing cognitively normal controls. 

2. Mild Folder: Recordings from 8 subjects’ 

representatives of Mild AD. 

3. Moderate Folder: These are data from 12 

subjects, representing those with Moderate 

AD. 

4. Severe Folder: Recordings from 10 

subjects’ representative of subjects with 

Severe AD. 

The data for every subject consists of the EEG 

recordings already preprocessed into a uniform 

format readily usable for classification. 

The HMMS file provided to be used to study 

brain activity patterns across the stages of AD. 

It has become a valuable resource for various 

applications, ranging from identifying EEG 

biomarkers of AD to creating diagnostic 

models. The availability of structured HMMS 

file allows for easy integration with machine 

learning and deep learning pipelines. 

 

4. Methods 
4.1. Preprocessing  

This work applies a proper preprocessing 

and analysis pipeline to the extracted EEG 

signals to guarantee high-quality, clean, and 
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well-structured data for machine learning and 

deep learning models. A structured overview of 

the EEG preprocessing workflow is illustrated 

in Figure 2. 

Preprocessing first included artifact 

removal and signal conditioning, which had 

already been performed directly on the 

recording EEG device. The FIR filter was used 

with cutoff frequencies of 1 Hz and 30 Hz, 

allowing neural activity to be in focus within 

this range. This was followed by a 50 Hz notch 

filter to remove power-line interference. For 

further enhancement of signal clarity, RMS 

windowing was used to measure the signal's 

average power in small, sliding windows, 

thereby helping reduce noise and hence offering 

a greater clarity signal. For visualization, the 

temporal scale was set to 10 seconds per page so 

that a detailed analysis of specific segments of 

interest in the EEG was possible, and the 

required uniform epoch windows were provided 

throughout the complete analysis [10]. These 

are hardware-oriented preprocessing steps, thus 

serving as a basis for subsequent software-

oriented preprocessing. 

The total samples for the entire dataset were 

15,820,760, taken from a total of four 

categories: Healthy, Mild, Moderate, and Severe 

AD. First, the preprocessed signals were 

exported in the “.edf ” file format and then in 

CSV format for further processing. 

Afterward, cleansing and column alignment 

were done with the obtained EEG signals. Each 

was checked to confirm whether they had the 

same structure: each file should contain 40 

features. Those EEG files with less than 40 

columns were padded with columns of zeros to 

make them reach the predefined dimensionality. 

Further, index columns, duplicate entries, and 

samples containing missing values were filtered 

out to keep the data clean. Label encoding was 

performed for categorical labels "Healthy," 

"Mild," "Moderate," and "Severe" into their 

numerical labels 0, 1, 2, and 3, respectively.  

Following the preprocessing steps above, 

Actual ICA was performed using the following 

steps using the "fastICA" algorithm from the 

sci-kit-learn library [14]: EEG signals were 

analysed without the label column to extract 40 

independent components using the "fastICA" 

model with a fixed random state for 

reproducibility, set as 42. This was the step to 

segregate the electrical and mechanical artifacts 

like eye blinks and muscle movements from 

neural activity. The first five features were 

plotted against the first five ICA components, 

which would give a good visual inspection of 

the original signals and their corresponding 

ICA-transformed components, as clear in  

Figure 3. This transformation helps separate 

neural activity from artifacts such as eye blinks 

and muscle movements, ensuring cleaner EEG 

signals for analysis. Further, to compare the 

structure of the original EEG signals and the 

ICA-transformed components, some insight into 

the spatial distribution of independent 

components has been obtained by creating 

circular polar plots for visualization. The shape 

of the original EEG data and the ICA-

transformed data has been printed to validate the 

correctness of the decomposition process. 

Figure 4 illustrates how ICA decomposition 

captures distinct spatial patterns across EEG 

electrodes, helping differentiate between neural 

activity and noise sources. 

After the ICA step, ASR was applied to 

refine the EEG signals further and remove 

persistent artifacts [15]. First, the ASR process 

normalizes the EEG signals with 

"StandardScaler" to have zero mean and unit 

variance. Then, the covariance matrix is 

computed on the first window of clean EEG 

data, and the eigenvalues and corresponding 

eigenvectors are calculated to build the spatial 

filter. Afterward, the EEG data were processed 

in sliding windows, each projected into the 

subspace defined by the eigenvectors. Then, Z-

scores were calculated for each component, and 

components with a Z-score higher than 20 were 

considered artifacts and assigned a value of 

zero. To smooth transitions across windows, the 

overlapping segments were linearly interpolated 

to ensure coherence in the reconstruction of the 

EEG signal. 

Then, the cleaned data was converted back 

to the original format of the EEG, and the 

"StandardScaler" inverse transformation was 

applied to bring it to its actual scale. This step 

also involved removing duplicate entries and 

filling in missing values to clean and quality the 
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final EEG signals. The cleaned EEG data was 

further used in machine learning and deep 

learning analysis. 

The EEG signals were preprocessed, 

followed by further segmentation and storage of 

the data in a file named "HMMS." Each record 

of the individual was structured so that the label 

column was kept separate and distinct from the 

input features. For the HMMS file, specific 

sample ranges, such as rows 15,000 to 30,000, 

were chosen to have equal representation across 

all the other three classes except "Healthy." 

there will be an equal amount of samples so that 

problems concerning class imbalance can be 

minimal. The final HMMS file was maintained 

to easily be integrated into various machine 

learning workflows and deep learning 

architectures.  

Finally, a correlation matrix was performed 

on the preprocessed dataset to check feature 

relationships. The heatmap representation in the 

Seaborn library was used, which highlights 

potential associations between EEG features. As 

shown in Figure 5, this correlation matrix helps 

in understanding how different EEG channels 

interact, which is crucial for feature selection. 

Identifying strongly correlated features can 

reduce redundancy and improve classification 

performance in machine learning models, 

leading to more efficient EEG-based AD 

diagnosis [16]. 

This whole pipeline for preprocessing and 

preparation involved device-level filtering, 

RMS windowing, structuring into epochs, data 

alignment, ICA decomposition, ASR-based 

artifact removal, feature engineering, and 

correlation analysis. It prepared a clean, 

structured, and high-quality EEG dataset. Such 

standardized data is critical to developing 

sophisticated classification models that aspire to 

differentiate between the healthy, mild, 

moderate, and severe stages of Alzheimer's 

disease. 

 
Figure 2. EEG processing workflow 

4.2. Benchmark Classification 

Different simple classification techniques 

are used here that any other researcher can 

reproduce, verify, or extend quite easily to set a 

classification benchmark for the dataset. Thus, 

other, more advanced approaches might turn out 

even better. Of course, the substantial interest 

here was to provide an easily observable and 

reproducible baseline. 

In this work, we have experimented with 20 

different ML/DL models to classify the subjects 

belonging to four classes-Mild, Moderate, and 

Severe AD and CN subjects. 

This work evaluates ten different baseline 

ML models. Some of these baseline models are 

RF, Gradient Boosting, AdaBoost, XGBoost, 

CatBoost, LightGBM, Naive Bayes, Decision 

Tree, SVM, and KNN, whereas from another 

side, the DL techniques comprise DNN, LSTM, 

CNN, GRU, Bi-LSTM, VGG16, LSTM-

XGBoost, CNN-LSTM, CNN-SVM, and CNN-

DT. These are selected as they have been proven 

to work effectively in disease diagnosis. 

Accordingly, all the aforementioned baseline 

models were exploited in this paper as a TL 

model by modifying the last output layer to be 

suitable for the number of classes being used in 

the experiment [17]. As a result, all models 

undertook 10-fold cross-validation training and 

testing processes to assure the robustness of the 

obtained models . 
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4.3 Model Selection and Justification 

This research implements a broad range of 

Machine Learning and Deep Learning models 

for the classification of EEG signals to predict 

the stages of AD. These models have been 

chosen because they handle the complexity of 

EEG data well and are proven to perform well 

in similar classifications. These models perform 

better with many dependencies on parameters 

and hyperparameters. Further model 

performance improvements are made based on 

the results from hyperparameter tuning. Table 2 

and Table 3 elaborately overview the different 

parameters and hyperparameters used in any 

ML/DL model. These elements must be 

properly tuned and selected to enhance model 

accuracy and efficiency. 

4.3.1 Machine Learning Models: 

 

 Following are some of the Machine 

Learning methods utilized to classify EEG 

signals into AD stages effectively: 

• Random Forest (RF) that makes 

multiple decision trees for better 

performance and improved 

generalization. RF handles the variations 

in EEG signals to maintain the 

consistency of the classification. 

• K-Nearest Neighbours (K-NN) - a non-

parametric algorithm that uses proximity 

among the features to classify EEG data. 

K-NN is well-known for its simplicity 

and interpretability. 

• Support Vector Machine (SVM) - This 

is well-known to extract optimal 

hyperplanes to separate classes in multi-

dimensional feature spaces, which is 

very effective in the classification of 

EEG signals [18]. 

• XGBoost - Optimized the gradient 

boosting framework by reducing 

overfitting and speeding up the training. 

• LightGBM - This is a gradient boosting 

algorithm designed for handling large-

scale data with superior efficiency and 

accuracy. 

• CatBoost: Particularly able to handle 

categorical features and thus more 

convenient for EEG data with a mix of 

feature types. 

• AdaBoost: It aims to improve the 

classification for the misclassified 

instances when creating an ensemble of 

weighted weak classifiers. 

• Naive Bayes: Probabilistic model with 

an assumption of independence among 

the EEG features, and therefore useful 

for comparisons of baselines. 

Decision Tree: Simple and easy-to-

interpret method for classifying EEG 

signals based on predefined criteria. 

 

4.3.2 Deep Learning Models: 

Several DL techniques applied attempt to 

exploit the complexities of EEG data at both 

sequential and spatial levels [19]: 

• Deep Neural Network(DNN): Multi-

layer perceptron that mines complex 

patterns of EEG signals to classify them 

as accurately as possible. 

• CNN: Attempts to exploit the 

convolutional layers in the extraction of 

the spatial features from EEG data and 

identify crucial biomarkers of AD. 

• LSTM: A type of recurrent network that 

tries to model temporal dependencies in 

EEG sequences that are significant to the 

differentiation between AD stages. 

For LSTM-based models, the EEG data 

is structured as a 3D tensor with 

dimensions (samples, time steps, 

features), where each sequence 

maintains temporal dependencies 

essential for deep learning models to 

learn from EEG patterns over time [17]. 

• Bi-LSTM: An extension of LSTMs by 

including past and future dependencies 

and thus modeling temporal 

relationships and improving the subtle 

variations in EEG. 

• GRU: A simplified architecture of 

RNNs that processes the EEG sequential 

data using fewer parameters than the 

LSTMs. 

• CNN-LSTM: This integrates CNN 

feature extraction with LSTM modeling 
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to capture effectively the spatial 

temporal relationships in EEG. 

• CNN-SVM: It uses CNN for feature 

extraction, but the classification is done 

by SVM, thus increasing the 

performance with simultaneous 

interpretability. 

• LSTM-XGBoost: Couples LSTM 

learning with gradient boosts from 

XGBoost to provide a strong and robust 

classification. 

• CNN-DT: Integrates CNN feature 

extraction with the rule-based 

classification of DT for interpretability. 

• VGG16: This is the deep CNN adapted 

to this work to allow hierarchical feature 

extraction for the diagnosis of AD using 

EEG signals [20].

 

 

 

 

 

Figure 3. The original signals and their corresponding ICA-transformed components 
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Figure 4. Circular polar plots of the original signals and ICA-transformed components 

 

Figure 5. Correlation matrix for the data 
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Table 2: The parameters and values of the various implemented ML models 

Model Parameter Value(s) 

RF 
Max Depth 

Number of Trees 

8 

4000 

LightGBM 
Max Depth 

Number of Trees 

8 

100 

AdaBoost 
Max Depth 

Learning Rate 

8 

0.01 

SVM 

Cost factor (C) 

Cache_size 

Max_iter 

25 

200 

-1 

DT Max Depth 8 

Logistic Regression Max Iter 100 

K-NN N-neighbors 10 

Naive Bayes N/A N/A 

XGBoost 

Max Depth 

Number of Trees 

Learning Rate 

8 

100 

0.01 

CatBoost 

Max Depth 

Number of Trees 

Learning Rate 

8 

100 

0.01 

Table 3: The parameters and values of the various implemented DL models 

Model 
No. of 

Layers 
No. of Units Loss Function Optimizer LR 

No. of 

Epochs 

DNN 6 
64, 128, 256, 

512, 256, 128 
MAP Adam 0.001 15 

LSTM 6 
64, 128, 256, 

128, 64, 32 
MSE Adam 0.001 15 

GRU 5 
64, 128, 256, 

128, 64 
MSE Adam 0.001 15 

CNN 5 32, 64, 128 MAP Adam 0.001 15 

VGG16-like 16 
Configured 

based on layers 

MAP or 

Categorical 

Crossentropy 

Adam 0.001 15 

Bi-LSTM 7 

64, 128, 256, 

512, 256, 128, 

64 

MSE Adam 0.001 15 

CNN-

LSTM 

5 (CNN) + 1 

(LSTM) 

32, 64, 128 

(CNN), 64, 128, 

256 (LSTM) 

MSE Adam 0.001 15 

LSTM-

XGBoost 

6 (LSTM) + 

1 (XGBoost) 

64, 128, 256, 

128, 64, 32 

(LSTM) + 

XGBoost 

hyperparameters 

MSE Adam 0.001 15 

CNN-SVM 
5 (CNN) + 1 

(SVM) 

32, 64, 128 

(CNN) 

 

MAP (CNN), 

Hinge loss 

(SVM) 

Adam 

(CNN) 
0.001 15 

CNN-DT 
5 (CNN) + 1 

(DT) 

32, 64, 128 

(CNN) 

MAP (CNN), 

Gini Index or 

Entropy (DT) 

Adam 

(CNN) 
0.001 15 
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5. Model evaluation  

5.1 Experimental Setup 

The experiments have been conducted using 

Google Colab - a Google cloud-based platform 

with GPUs, which provide an efficient 

environment for operating Machine Learning 

and Deep Learning techniques. The appropriate 

computing capabilities of the platform have 

allowed the usage and training of different 

models without the need for a dedicated local 

setup. 

Due to the diversity of the ML and DL models 

used in this work, some of the training 

parameters-such as the mini-batch size, the 

learning rate, and the number of epochs-change 

depending on the model requirements. In any 

case, these parameters were optimized during 

training to reach the best results for each model. 

This flexible approach would ensure the models 

are tuned enough to cope with such a 

challenging task of EEG and to classify the 

different stages of Alzheimer's Disease 

accurately. 

 

5.2 Confusion Matrix 

The confusion matrix employed to assess 

the performance of the proposed network 

architectures, as it is one of the most critical 

tools summarizing the outcome of classification 

tasks. It is an ideal tool to have in terms of 

counting correct predictions against incorrect 

predictions for highlighting the model's real 

performance [21]. 

The confusion matrix classifies predictions into 

four key components: 

True Positive (TP): Both predicted and actual 

outcome are positive. 

False Positive (FP): The Predicted has come 

out to be positive and actual outcome as 

Negative. 

True Negative (TN): When prediction has 

come out as negative along with the actual 

outcome as negative. 

False Negative (FN): When prediction has 

come out as negative, and actual outcome as 

Positive. 

The confusion matrix enables a clear 

visualization for the accuracy of classification 

by the model. In addition, distinguishing 

capability for AD stages v/s Cognitively Normal 

has been shown to be useful to help in deciding 

upon strengths and weaknesses of the 

model[22]. 

5.3 Performance Evaluation Metrics 

The models' performance was assessed 

using four key metrics: accuracy, precision, 

recall, and F1 score[23]: 

 

• Accuracy: provides the overall correctness 

of the classification.  

 

Accuracy =
TP+TN

TP+TN+FP+FN
                             (1) 

 

• Precision: expresses the proportion of true 

positives to the overall number of positive 

predictions, showing the model’s ability to 

avoid false positives. 

 Precision =
TP

TP+FP
                                        (2) 

• Recall: The proportion of true positives 

among all actual positive cases correctly 

identified measured the models' sensitivity in 

detecting AD stages. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP+FN
                                             (3) 

 

• MAE is calculated by averaging the 

individual differences between true and 

predicted values. It gives a straight idea about 

the predicting performance. 

 

𝑀𝐴𝐸 =
1

𝑈
∑ |𝐹𝑡 − 𝐴𝑡|𝑈

𝑡=1                                 (4)      

                                        

• MSE - represents the averaged squared 

differences between the prediction and real 

values, representing an emphasis on large 

errors [24]. 

                                  

6. Results and discussion  

This section debates the performance of the 

implemented ML and DL models for EEG 

signals classification and predicting of AD 

stages. For this work, the dataset used consisted 

of EEG recordings for different cognitive states, 
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namely Healthy, Mild, Moderate, and Severe 

AD. These were further tested using the metrics 

such as Accuracy, Precision, Recall, MAE, and 

MSE. 

6.1 Comparative Analysis 

Among the running ML models, the RF 

model was the best performer. It gave the best 

accuracy of 96.85% and precision of 97.08%, 

hence showing its skill at handling these 

complex interdependencies in the EEG data. RF 

can generalize to different AD stages without 

falling into overfitting or underfitting because of 

its ensemble learning nature.  

Gradient Boosting Models such as XGBoost, 

CatBoost, and LightGBM do feature rather good 

performance since they can handle 

nonlinearities of data. These models achieved 

accuracies of 89.50%, 89.70%, and 89.30%, 

respectively. On the contrary, Naive Bayes and 

Logistic Regression showed low performances 

recorded at 63.60% and 65.90%, respectively, 

proving that such algorithms are not capable of 

describing the complexity behind EEG signals. 

Results regarding machine learning models 

are shown in Table 4. Comparing the actual 

values to the predicted ones is represented in 

Figure 6, where the confusion matrix is shown, 

and in Figure 7, where ROC curves are depicted. 

 

Table 4: The results obtained using ML Models 

Models Accuracy Precision Recall MAE MSE 

RF 0.9685 0.9708 0.9685 0.0315 0.0315 

AdaBoost 0.7130 0.7145 0.7130 0.4585 0.9065 

XGBoost 0.8950 0.8956 0.8950 0.1655 0.3135 

CatBoost 0.8970 0.8974 0.8970 0.1550 0.2850 

LightGBM 0.8930 0.8936 0.8930 0.1680 0.3210 

Naive Bayes 0.6360 0.6377 0.6360 0.5845 1.1485 

Decision Tree 0.6645 0.6656 0.6645 0.5430 1.0760 

SVM 0.9050 0.9057 0.9050 0.1500 0.2900 

K-NN 0.7850 0.7920 0.7850 0.3460 0.6820 

Logistic Regression 0.6590 0.6589 0.6590 0.5260 0.9890 

 
Table 5: The results obtained using DL Models 

 

Models Accuracy Precision Recall MAE MSE 

DNN 0.9605 0.9606 0.9605 0.0645 0.1255 

LSTM 0.9240 0.9246 0.9240 0.1195 0.2245 

GRU 0.9275 0.9281 0.9275 0.1100 0.2020 

CNN 0.8270 0.8274 0.8270 0.2690 0.5100 

VGG16-like 0.5815 0.5932 0.5815 0.6595 1.2575 

Bi-LSTM 0.9360 0.9362 0.9360 0.1010 0.1930 

CNN-LSTM 0.7720 0.7772 0.7720 0.3535 0.6625 

LSTM-XGBoost 0.6615 0.6625 0.6615 0.5455 1.0645 

CNN-SVM 0.8395 0.8401 0.8395 0.2495 0.4775 

CNN-DT 0.8655 0.8657 0.8655 0.2195 0.4365 

 

Out of these, while some of the DL models 

performed with varied efficiencies, DNN was 

able to capture intricate spatial features from 

EEG data and gave an accuracy of 96.05%. 

However, the consideration of temporal 

dependencies from input data allowed both Bi-

LSTM and GRU to outperform most of the 

considered DL architectures by achieving 

classification accuracies of 93.60% and 92.75%, 

respectively. Among different hybrid models, 

CNN-SVM and CNN-DT reported competitive 

performances and yielded accuracies of 83.95% 

and 86.55%, respectively, proving that 
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combining feature extraction and classification 

steps enhances efficiency. 

Performances of the implemented DL 

models are given in Table 5. Further, the details 

are shown in the confusion matrix presented in 

Figure 8, ROC curves in Figure 9 and training 

loss curves in Figure 10. Among these models, 

the DNN has a high capacity of spatial learning 

but it does not learn the temporal dependencies 

as much as the LSTM-based models. 

Therefore, all these results indicate that both 

the ML and DL methods were quite effective for 

the classification of AD at different stages using 

EEG data. A reproducible classification 

benchmark is thus formed, allowing further 

studies of EEG-based classification for AD and 

establishing a basis of more advanced 

algorithms with the aim of increasing the 

accuracy of diagnosis.  

6.2. Limitations and considerations 

This work introduces a new dataset on AD 

in Iraq. However, there are several limitations 

that must be considered when interpreting these 

results to help guide future studies better. Major 

limitations of this dataset include regional and 

demographic specificity, where the AD dataset 

is mainly composed of people from the 

Kurdistan region in Iraq. This situation may 

affect the generalizability of models developed 

on this dataset to other regions or populations 

due to different lifestyle factors, genetic 

predisposition, or the healthcare environment. 

The dataset is dominantly based on resting-state 

EEG recordings and may fail to capture 

dynamic neural processes associated with 

cognitive decline. The inclusion of task-based 

EEG paradigms or other neuroimaging modality 

together with clinical biomarkers may further 

help improve our understanding of brain 

changes associated with AD. 

Other considerations include the possibility 

of model overfitting. Powerful, advanced 

architectures like CNNs and LSTMs may learn 

to recognize dataset-specific patterns rather than 

generalizable features. This limitation 

underscores the need for further rigorous cross-

validation and testing on external datasets to 

confirm the robustness of such models. 

Finally, ICA and ASR are two 

preprocessing steps applied to the EEG signals, 

efficient for noise removal though they are, 

which may actually remove very small neural 

signals associated with AD. Further research is, 

therefore, recommended to investigate other 

pre-processing methods and to determine their 

effects on successive analysis. 

In conclusion, though this study represents 

an improvement of previous EEG-based AD 

studies, overcoming these limitations through 

the use of larger datasets, methodological 

novelties, and collaborative efforts will be 

essential to fully realize the EEG's potential as a 

diagnostic modality for Alzheimer's Disease. 
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 Figure 6. The confusion matrix result of the main dataset for the ML models 
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Figure 7. The ROC curves for the for the ML models 

 



Nigar M. Shafiq Surameery, et al. / Diyala Journal of Engineering Sciences Vol (18) No 2, 2025: 40-61 

57 

 

  

  

  

  

  

Figure 8. The confusion matrix result of the main dataset for the DL models 
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Figure 9. The ROC curves for the for the DL models 
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Figure 10. The training loss curves for the DL models
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7. Conclusion  

This research presents the first publicly 

available EEG dataset for Alzheimer's Disease 

(AD) in Iraq, contributing significantly to the 

international research community. The dataset 

includes 53 participants across four groups 

(Healthy, Mild, Moderate, and Severe AD), 

recorded using a 40-channel EEG system 

following the 10-20 electrode placement 

standard. Advanced preprocessing, including 

Independent Component Analysis (ICA) and 

Automatic Subspace Reconstruction (ASR), 

ensures high-quality signals suitable for 

machine learning (ML) and deep learning (DL) 

applications. 

Benchmark classification results 

demonstrate the dataset’s effectiveness, with 

Random Forest achieving 96.85% accuracy in 

ML models and Deep Neural Networks (DNN) 

reaching 96.05% accuracy in DL models. These 

findings highlight EEG's potential as a 

noninvasive and cost-effective diagnostic tool 

for AD, particularly in regions with limited 

access to neuroimaging. 

Despite its contributions, the dataset has 

limitations, including regional specificity, 

reliance on resting-state EEG, and potential 

overfitting in deep learning models. Future work 

will focus on expanding the dataset, 

incorporating task-based EEG, and integrating 

multimodal approaches such as neuroimaging 

and genetic data. Additionally, optimizing 

preprocessing pipelines and exploring advanced 

ML/DL architectures, including transformer 

networks and attention mechanisms, will 

enhance classification performance. 
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