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 المستخلص 
مع المعاملات السالبة في قرص     في البحث نحن قدمنا وعرفنا صنف جزي جديد لمدوال متعددة التكافوء 

           z  ℂ} = *   الوحدة 
 حصمنا عمى بعض الخواص مثل متراجحة المعاملات, مبرهنة الانغلاق ,الوسط الوزني ومعامل التكا مل. 

Abstract. In this present paper, we establish new subclass of     - valent functions 

with negative coefficients in unit disk   *
 = {z  ℂ         We obtain some 

properties, like, theorem of coefficient inequality, closure theorem ,weighted mean and 

integral operator. 

AMS subject classification: 30C45. 

Keywords: Negative coefficients, closure theorem,weighted mean and integral 

operator. 

Introduction: This type of study was carry on by various different authors . In 2012 W. 

G. Atshan [3] study coefficient inequalities, closure theorems and obtain integral 

representation, convolution properties by using  p-valent analytic functions . In 2013 S. 

Najafzadeh [7 ] use this to define a new class of meromorphically multivalent functions 

and give two useful subclasses of this class involving fixed points. 

Consider Ĺ to be denoted category of functions take the following form: 

 ( )       ∑   

 

   

                                                                                                       ( )  

where (              )  

which are    - valent in Ω={z  ℂ        the open unit disk and also analytic. 

Let    indicate the subclass of  Ĺ of functions write by: 

 ( )       ∑   

 

   

                  (        )                                                        ( ) 

Note that the authors investigate some classes properties of analytic functions such as 

the form (1) in [5],   
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We suppose  (   ) to be symbolize the subclass of    including the functions   which 

satisfy: 

|
(             )(     )           ( )

    ( )   (             )(     )      
|                                 ( ) 

where                  

The following interesting geometric properties of this function subclass were studied by 

several authors for another classes, like, [1], [3] and [4].  

Theorem (1): Let        .Then     (   ) iff 

 ∑((     )(       )(     ))(    )  

 

   

    (   )(     )(    )                                                    ( ) 

where                        

The  result  is sharp for the function 

 ( )       
   (             )(     )

((     )(       )(     ))(    )
                 

Proof: Assume (4) holds true and let        then from (3), we obtain   

 (             )(     )       ( ( ))    

  | ( ( ))      (   )(     )      | 

 |∑(     )(       )           

 

   

|

      (   )(     )          ( ) 
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 ∑(     )(       )     

 

   

 (   )(     )

 ∑   (     )(       )

 

   

   

 ∑((     )(       )(     ))(    )  

 

   

    (   )(   

  )     

by hypothesis. 

Hence by maximum modulus principle,     (   ). 

Conversely, Let    (   ) Then 

|
(             )(     )        ( )   

  ( )     (             )(     )      
|    (   )  

That is  

|
∑ (     )(       )(     )           

   

 (             )(     )       ∑  (     )(       )(       )           
   

|

   ( ) 

 

     Since   ( )      for all z (   )  we get  

  {
∑ (     )(       )(     )           

   

 (             )(     )       ∑  (     )(       )(     )           
   

}

   ( ) 

We choose the value of the real axis on z and so that ( ( ))    is real. 

∑(     )(       )(     )          
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    (   )(     )(     )      

 ∑   (     )(       )(     )           

 

   

 

Letting z →
 
   , through real values,  

∑(     )(       )(     )  

 

   

 

    (   )(     )(     )

 ∑   (     )(       )(       )  

 

   

  

we obtain inequality (4). 

Finally, sharpness follows, if we take 

          

 ( )       
   (             )(     )

((     )(       )(       ))(    )
         

   ( ) 

Corollary (1): Let     (   )   Then 

   
   (             )(     )

((     )(       )(       ))(    )
                          ( ) 

In the following theorem, we obtain closure theorem of the class  (   ) 

Theorem (2): Let the functions    defined by   

  ( )       ∑   

 

   

         (                    )                                  (  ) 

is in the class  (   )  for every  = 1,2,…, . Then the function    defined by  
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  ( )       ∑   

 

   

           (     )  

also belongs to the  (   )  where 

   

 

 
∑                    

 

   

      

Proof: Since       (   ) , we note that  

 ∑((     )(       )(     ))(    )    

 

   

    (   )(     )(     )  

for every  =1,2,…, .  Hence  

 ∑((     )(       )(     ))(    )  

 

   

  ∑((     )(       )(     ))(    )

 

   

(
 

 
∑      

 

   

) 

 
 

 
∑

 

   

( ∑((     )(       )(     ))(    )  

 

   

    ) 

    (   )(     )(     )  

Therefore by Theorem1, obtain       (   )  

In the following theorem, we obtain weighted mean is in the class  (   )  

Definition (2)[6]:  Let     and    belong to the class of   (   ). Then the weighted 

mean     of     and    is given by:  

  ( )  
 

 
 [ (   )   ( )   (   )  ( )]            
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Theorem (2):  Let    and     be in the class  (   ) Then the weighted mean    of  

   and    is also in the class  (   ) 

Proof: By definition (1), we have  

  ( )  
 

 
 [ (   )   ( )   (   )  ( )]                                                                     (  ) 

  
 

 
 [(   ) (     ∑     

 

   

        )  (   ) (     ∑     

 

   

        )] 

      ∑
 

  
 [(   )     (   )     ]        

 

   

 

Since    and    are in the class  (   )  so by Theorem (1), we get 

∑ (((     )(       )(     ))(    )) (    )    

 

   

   (             )(     )  

and 

∑ (((     )(       )(     ))(    )) (    )    

 

   

   (             )(     )  

Hence   

∑ (((     )(       )(     ))(    )) (    )

 

   

]
 

 
[ (   )    

 (   )    ] 

  
 

 
  (   ) ∑ (((     )(       )(     ))(    )) (    )    

 

   

  

  
 

 
  (   ) ∑ (((     )(       )(     ))(    )) (    )    
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(   )  (             )(     )  

 

 
 (   )  (         

    )(     )    (   )(     )(     )  

Therefore,     (   )    

The proof  is complete. 

In the following theorem, we obtain integral operator [2] is in the class  (   )   

Theorem (3): Let  ( )   (   )  then the integral operator 

  ( )  (   )      (   ) ∫
 ( )

 

 

 

   (       )   

is also in  (   )  if      
     

   
  

Proof: If 

 ( )       ∑   

 

   

          

then  

  ( )  (   )      (   ) ∫ (
     ∑   

 
           

 
)

 

 

   

 (   )      (   ) [
    

(   )
 ∑

        

     

 

   

] 

      ∑
 (   )

     
  

 

   

         

      ∑   

 

   

         

 Where     
 (   )

     
    But  
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∑
   (             )(     )

((     )(       )(       ))(    )
  

 

   

 

 ∑
   (             )(     )

((     )(       )(       ))(    )(

 (   )

     )
  

 

   

 

 ∑
   (             )(     )

((     )(       )(       ))(    )

 (   )

     
  

 

   

 

where 

 (   )

     
   

 ∑
  (             )(     )

((     )(       )(       ))(    )
  

 

   

 

(by (4) ) 

      (             )(     )  

  ( )    (   )  , 

So the proof is complete. 

Conclusion: We obtain the properties theorem of coefficient inequality, closure 

theorem ,weighted mean and integral operator. 
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