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  الخلاصت

في هذا البحث ,استعممنا طرائق مختمفة لتقدير معممة القياس لمتوزيع الاسي كمقدر الإمكان الأعظم ومقدر 
وتوزيع  (Levy)  لاففة عندما يكون التوزيع الاولي لمعممة القياس : توزيع العزوم ومقدر بيز في ستة انواع مختم

 وتوزيع (Improper) كامبل من النوع الثاني وتوزيع معكوس مربع كاي وتوزيع معكوس كاما وتوزيع غير الملائم
Non-informative  وفقا لدالة خسارة EL-Sayyad. در, استعمل اسموب المحاكاة في مقارنة اداء كل مق

مفة من العينات )صغيرة, بافتراض عدة حالات لمعممة القياس لمتوزيع الاسي استعممت لتوليد البيانات ولاحجام مخت
وقد اظهرت نتائج المحاكاة بان طريقة بيز الافضل عندما يكون التوزيع الاولي لـ  التوزيع غير  , كبيرة(.متوسطة
 EL-Sayyad ولقيم معممتي  دالة خسارة,  (a=9, b=1) الاوليعند قيم معممتي التوزيع   (Improper)  الملائم

ولقيم معممتي ,  (c=8) عند قيمة معممة التوزيع الاولي Non-informative   عندما تكون القيمة الحقيقة لوتوزيع 
عند قيمة معممة  Non-informative   عندما تكون القيمة الحقيقة لـ.وكذلك توزيع   EL-Sayyad دالة خسارة

عندما تكون القيمة الحقيقة لـ   , وفقا لمقياس    EL-Sayyad ولقيم معممتي  دالة خسارة,  (c=8) التوزيع الاولي
  MLE. لكل احجام العينات , مقارنة  بنفس القيم المستحصمة بطريقتي (MSE) اقل قيمة متوسط مربع الاخطاء

 ME و

التوزيؼات  الأولية :   ػظن,طريقة الؼسوم ,طريقة بيس,طريقة الإهكاى الأ هفاتيح الكلوات : التوزيغ الاسي,

توزيغ كاهبل هي الٌوع الثاًي ,توزيغ هؼكوش هربغ كاي ,توزيغ هؼكوش كاها , توزيغ غير , (Levy)  توزيغ لافي

 .(MSE) هتوسط هربؼات الاخطاء , EL-Sayyad دالة .Non-informative توزيغ ,(Improper) الولائن

Abstract 

In this study, different estimators were used for estimating scale parameter for 

Exponential distribution, such as maximum likelihood estimator, moment estimator and 

the Bayes estimator, in six types when the prior distribution for the scale parameter is: 

Levy distribution, Gumbel type-II distribution, Inverse Chi-square distribution, Inverted 

Gamma distribution, improper distribution, Non-informative distribution. Under El-

Sayyad's loss function .we used simulation technique, to compare the performance for 

each estimator, several cases from Exponential distribution for data generating, for 

different sample sizes (small, medium, and large). Simulation results shown that The 

best method is the bayes estimation ,when the prior distribution for θ is improper 

distribution with (a=9, b=1) and for the values for the parameters of the El-Sayyad 's 

loss function is ( 7r & 0.5  ),when the true value of θ ( 5.0θ  ).And the non-

informative distribution with ( c=8)  and for  the values for the parameters of the El-

Sayyad 's loss function is ( 5r & 1  ), when the true value of θ ( 1θ  ).Also the non-

informative distribution with ( c=8) and for  the values for the parameters of the El-

Sayyad 's loss function is ( 9r & 5.0  ),when the true value of θ ( 5.1θ  ), according 

to the smallest values of MSE  for all samples sizes (n) comparative to the estimated 

values by using Maximum likelihood estimation method (MLE) and Moment estimation 

method (ME). 
Key words: The Exponential, Maximum likelihood estimation, Moment estimation, Bayes method, the 

prior distributions: Levy distribution, the Gumbel type-II distribution, Inverse Chi-square 

distribution, Inverted Gamma distribution, improper distribution, non-informative distribution, El-

Sayyad's loss function, mean squared errors (MSE). 
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1. Introduction 

The difference between Maximum Likelihood estimation and Bayesian estimation 

is that in maximum likelihood estimation the parameters are not random variables. In 

Bayesian analysis the unknown parameter is regarded as being the value of a random 

variable from a given probability distribution, with the knowledge of some information 

about its value prior to observing the data x1, x2… xn (Ross, 2009); we mention some of 

studies in a brief manner: 
In (1967) El-Sayyad 

[6]
 introduced some new estimators, which are unbiased with 

respect to some loss functions, are derived for the parameter in the exponential 
distribution. The corresponding bayes estimators are also obtained. The comparison 
between these two kinds of estimation is discussed. In (1998) Rossman, Short, and 
Parks 

[9]
 studied the relationship between Bayesian and classical estimation using the 

continuous uniform distribution.  
In (2001) Elfessi and Reineke 

[5]
 show how the classical estimators can be obtained 

from various choices made within a Bayesian framework .by using some of the 
relationships for the exponential distribution. In (2005)

 
Ali and Woo and Nadarajah 

[3]
 

derived bayes estimators under a symmetric squared error loss function as well as an 
asymmetric loss function, for the parameter of the standard exponential distribution. In 
(2007)

 
Abu-Taleb and Smadi and Alawneh 

[1]
 derive bayes estimates assuming the 

inverted gamma prior along with the Bayesian credible intervals, for the exponential 
random censor time. In (2009)

 
Al_Kutubi and Ibrahim 

[2]
 used Jeffery prior information 

to get the modify bayes estimator and then compared it with standard Bayes estimator 
and maximum likelihood estimator to find the best (less MSE and MPE). Simulation 
study was used to compare between estimators and Mean Square Error (MSE) and 
Mean Percentage Error (MPE) of estimators are computed. In (2010)

 
Tahir and Aslam 

[10]
 compared Bayesian and classical analysis for parameter of the exponential model for 

time-to-failure data. Their comparison is based upon the posterior variance, the 
Bayesian point and interval estimates, the coefficients of skewness of the posterior 
distribution and the posterior predictive distribution. In (2013)

 
Yang and Zhou and Yuan 

[14]
 studied the bayes estimation of parameter of exponential distribution under a 

bounded loss function, named reflected gamma loss function, which proposed by 
Towhidi and Behboodian (1999). They used the inverse Gamma prior distribution as the 
prior distribution of the parameter of exponential distribution. Bayesian estimators are 
obtained under squared error loss and the reflected gamma loss functions.  

So in this paper, we try to find best method to estimate parameter of exponential 

distribution. According to the smallest value of Mean Square Errors (MSE) were 

calculated to compare the methods of estimation. We used the maximum likelihood 

estimator, the moment estimator and the bayes estimator in six types of priors, and then 

get bayes estimation: Levy distribution, Gumbel type-II distribution, Inverse Chi-square 

distribution, Inverted Gamma distribution, Improper distribution, Non-informative 

distribution when the Bayesian estimation based on El-Sayyad's loss function. Several 

cases from exponential distribution for data generating , for different samples sizes 

(small, medium, and large) .The results were obtained  by using simulation  technique, 

Programs written using MATLAB-R2008a program were used. 

 

 

 

 

 

http://www.amstat.org/publications/jse/v9n1/elfessi.html#refs_rossman
http://www.amstat.org/publications/jse/v9n1/elfessi.html#refs_rossman
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2. Exponential Distribution 

We consider x1, x2, …, xn is a random sample of n independent observations from 

an Exponential distribution having the probability density function (pdf) define as 
[4, 5]

: 

) 1 (  ...                                                                         0      x,     )
θ

xexp(-  1-θ   ) θ ; x f( 

 

where θ  > 0 is mean, standard deviation, and scale parameter of the distribution, θ  

is a survival parameter in the sense that if a random variable  x  is the duration of time 

that a given biological or mechanical system manages to survive and  x ~ Exp(θ ) then  

E[x] = θ . That is to say, the expected duration of survival of the system is θ  units of 

time. 

3.  Parameter Estimation Methods 

        In this section, we used several methods to estimation parameterθ . 

3.1 Maximum likelihood Estimation  

From the Exponential pdf given in (1) the likelihood function will be as follows
 [4]

: 

) 2 ( ...                                                             
θ

x
exp(-  n-θ  ) θ ; x f(

n
 θ)\xL(

i

n
1i

1i

 )







 

By taking the log and differentiating partially with respect to b, we get: 

) 3 ( ...                                                                       
θ

x
 

θ

n
-θ)\xL( log

2

i
n
i 1

θ
    






 
 

Then the MLE of θ  is the solution of equation (2) after equating the first derivative to 

zero, Hence: 

) 4 (   ...                                                                                             x
n 

x
θ

i
n

1i
^

MLE 





 

3.2. Moments estimation (ME) 

The method of moments is another technique commonly used in the field of 

estimation of parameters. If  ) x, ... ,x, x(x n21 be a random sample of size (n) 

represent a set of data, then an unbiased estimator for the r
th

 origin moment is
 [4]

: 

) 5 ( ...                                                                                                     
n 

r
i

xn
1i

rm
 

    

Where rm  stands for the r
th

 sample   moment. The first moment of the Exponential 

distribution as: 

            ) 6 (  ...                                                                                        θ 
) θ/1(

1
E(x)M1 

 

Therefore by equating sample and population moments we get 

 ) 7 (  ...                                                                               θ 
) θ/1(

1
E(x)Mm 11    

http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Scale_parameter
http://en.wikipedia.org/wiki/Random_variable
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From (7) we get  ) 8 (  ...                                                    x  θ                   θ  x MM

^

  

 

3.3 Bayes Estimation Method  

Let ) x, ... ,x, x(x n21 be a random sample of size n with probability density 

function given in equation (1) and likelihood function given in equation (2).In this paper 

the posterior distributions for the unknown parameter θ are derived using the following 

six types of priors ,and then get bayes estimation 
 [4]

: 

1. Levy distribution. 

2. Gumbel type-II distribution
 [11]

. 

3. Inverse Chi-square distribution
 [13]

.  

4. Inverted Gamma distribution 
[12]

. 

5. Improper distribution. 

6. Non-informative distribution. 

 

3.3.1 The posterior distribution using different Priors 

It is assumed that θ  follows six types of prior distributions with pdf as given in table 

below: 

Table -1: The six types of prior distributions ( ) θ P( ) with pdf forθ . 

Prior distribution ) θ P(  

θ ~Levy( 3b )  0θ  ,bfor       )
2θ

b 
exp(-   θ  

2π

b 
 ) θ P( 3

33 2

3
-

    α   

θ ~Gumbel type-II( b ) 

 
0θ  b,for         )

θ

b 
exp(-  θ  b    ) θ P( 2-α   

θ ~Inverse Chi-square( v ) 0θ  for    v,   )
2θ

1 
exp(-   θ  

2

1 
 ) θ P(

1
2

v
-

2

v
     α 



 

θ ~Inverted Gamma( β α, ) 

 
0θ  β, α,for         )

θ

β 
exp(-  

1)(α-
θ  

Γα

αβ 
  ) θ P(      α 


 

θ ~Improper( ba, ) 

 
 - 




a  and    

 0θ  b,for        )
θ

b 
exp(-  

1)(a-
θ   ) θ P(    α

 

θ ~Non-informative( c ) 

 

0  c θ,for          
θ

1
     ) θ P(

c
 α   

 

 

Then the posterior distribution of given the data ) nx, ... ,x, x(x 21 is
 [4]:

 

) 9 ...(                                                      
)dθ θ P(   θ)\xL(

θ

) θ P(   θ)\xL(
    x) \θ P(                          


  
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Substituting the equation (2) and for each  ) θ P( as shown in table -1 in equation (9), 

we get the posterior distributions for the unknown parameter θ are derived using the 

following six types of priors ( for more details see Appendix-A). 

Table -2: The posterior distributions ( x) \θ P( ) for the unknown parameter 

 (θ) are derived using the following six types of priors. 
Prior dist

n
. The posterior distribution ( x) \θ P( ) 

Levy 

 

0θ  ,b  n,                                                                                      

))
2

b 
x(

θ

1
exp(-θ 

     )
2

1
Γ(n 

) 
2

b 

i
xn

1i
(

  x)\(θP

3

3n
1i

3

1 i 
1])

2
1[(n-

)
2

1
(n







 
 





 

Gumbel 

type-II 

 

 

0θ  b,  n,                                                                                           

   )1Γ(n 

b))exp( θ ) b
i

xn
1i

( 

x) \(θP
i

xn
1i(

θ

1
-

1])1[(n-)1(n

2





 







 

Inverse Chi-

square 

 

0θ    v,,n                                                                            

))
2

1
x(

θ

1
exp(-θ  

 )
2

v
Γ(n 

) 
2

1

i
xn

1i
( 

 x) \(θP i

n
1i3  

1])
2
v

[(n-

)
2
v

(n







 
 





 

Inverted 

Gamma 

 

 

0θ α, β, n,                                                                                          

  α)Γ(n 

β))
i

xn
i

(
θ

1
exp(-  

1]α)[(n-
θ  )β

i
xn

i
( 

  x) \(θP
11

)α(n

4





 


 




 

Improper 

 

 





 


 




a  and   0θ  b,  n,                                              

   a)Γ(n 

b))
i

xn
i

(
θ

1
exp(-  

1]a)[(n-
θ  )b

i
xn

i
( 

  x) \(θP
11

)a(n

5

- 

 

Non-

informative 

 

 

 0θ  ,  c n,                                                                           

 
    1)-cΓ(n 

)
i

xn
iθ

1
exp(-  

1]1)-c[(n-
θ  )

i
xn

i
( 

   x) \θ (P
11

)1-c(n

6





 


 



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3.3.2 Bayes' Estimators 
Bayes' estimators for the scale parameterθ , was considered with six different priors and 

under El-Sayyad 's loss function
[6,7].

The El-Sayyad's loss function is 

.)θ  - θ   (θ θ)  , θ  L( 2r
 ^
r

^
  Where 

^

θ  is an estimator for is θ , was considered with six 

different priors, and under El-Sayyad's loss function. Following is the derivation of these 
estimators: 
 

3.3.2.1 The El-Sayyad's loss function  
To obtain the Bayes' estimator, we minimize the posterior expected loss given by:  

) 10 (  ...                                                                              )θ  - θ   (θ θ)  , θ  L( 2r
 ^
r

^
  

After simplified steps, we get Bayes estimator of θ  denoted by
         ^

ESθ for the above prior as 

follows 

) 11 (  ...            ]

dθ x) \θ P( θ 

 dθ x) \θ P( θ 

[]
x) \θ E(

x) \θ E(
[θ                                                 r

1
r
1

0

0

r

r

ES

^












         

   So, the following results are the derivations of these estimators under the El-Sayyad's loss 
function with six prior distributions (more details see Appendix-B). 

Table -3: The estimators (
         ^

  ESθ  ) under the El-Fayyad's loss function with six different priors. 

Prior distribution r
1

r
1

]

dθ x) \θ P( θ 

 dθ x) \θ P( θ 

[]
x) \θ E(

x) \θ E(
[θ

0

0

r

r

ES

^













 

Levy   0b &n r, ,      ) 
2

b 
x(]

)
2

1
Γ(n

r)
2

1
Γ(n

[θ 3

3

i

n
1iSE1

^

 r
 -1

 r

1







  





 

Gumbel type-II 
 0b &n r, ,           ) bx(]

)1Γ(n

r)1Γ(n
[θ r

 - 1
r

1

i

n
1iSE2

^





  





 

Inverse Chi-square  0 v&n r, ,     ) 
2

1
x(]

)
2

v
Γ(n

r)
2

v
Γ(n

[θ r
 - 1

r

1

i

n
1iSE3

^







  





 

Inverted Gamma 
  0 α, βn, r, ,    β)x(]

)αΓ(n

r)αΓ(n
[θ r

 - 1
r
1

i

n
1i

         

ES4

^





  





 

 
Improper 
 

  0 b, an, r, ,        b)x(]
)aΓ(n

r)aΓ(n
[θ r

 - 1
r
1

i

n
1i

         

ES5

^





  





 

 
Non-informative 
 

 0 cn, r, ,           )x(]
)1cΓ(n

r)1cΓ(n
[θ r

 - 1
r
1

i

n
1i

         

ES6

^





  




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4.  Simulation Study  

In this study, we have generated random samples from Exponential distribution and 

compared the performance of MLE and MME and Bayes estimator based on them. So 

we have considered several steps to perform simulation study as follow, for the first 

stage:   

1. We have chosen sample size n = 10, 25, 50 and 100 to represent small, moderate 

and large sample size. 

2. We generated data from Exponential distribution for the scale parameter; we have 

considered the value for the parameter of Exponential distribution is 0.5θ  . 

3. We used three values ( 1 0.2,0.5,=b3 ) for the parameters of the Levy distribution 

as prior distribution forθ . 

4. We used three values ( 0.1 0.08, 0.04,=b ) for the parameters of the Gumbel type-

II distribution as prior distribution forθ . 

5. We used three values (  16 , 14 , 12=v ) for the parameters of the Inverse Chi-

square distribution as prior distribution forθ . 

6. We used the values ( 1 , 0.5β &   10 , 8 α  ) for the parameters of the Inverted 

Gamma distribution as prior distribution forθ . 

7. We used the values ( 1.5 , 1b &   9 , 7 a  ) for the parameters of the Improper 

distribution as prior distribution forθ . 

8.  We used three values 8,10 , 6 c   for the function of the non-informative prior 

distribution. 

 

Then we have considered several steps to perform simulation study as follow, for 

the second stage:   

1. We have chosen sample size n = 10, 25, 50 and 100 to represent small, moderate 

and large sample size. 

2. We generated data from Exponential distribution for the scale parameter; we have 

considered randomly two values for the parameter of exponential 

distribution ,1.5  1 θ  . 

3. We used the value ( 0.2=b3 ) for the parameters of the Levy distribution as prior 

distribution forθ . 

4. We used the value ( 0.04=b ) for the parameters of the Gumbel type-II 

distribution as prior distribution forθ . 

5. We used the value (  16=v ) for the parameters of the Inverse Chi-square 

distribution as prior distribution forθ . 

6. We used the value ( 0.5β &   10 α  ) for the parameters of the Inverted Gamma 

distribution as prior distribution forθ . 

7. We used the value ( 1b &   9 a  ) for the parameters of the Improper distribution 

as prior distribution forθ . 

8. We used the value ( 8 c  ) for the function of the non-informative prior 

distribution. 
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We have considered the two steps to perform simulation study for the first and the 

second stage as follow: 

1. We used the values ( 7,9 5,r & 1 0.5,  ) for the parameters of these estimators 

under the El-Sayyad's loss function with six prior distributions, which are listed in 

table -3. 

2. The number of replication used was ( 1000r  ) for each sample size (n). 

     We obtained estimators for scale parameter from equations (4), (8) and also the 

estimators in table -3; it means the estimators )θ( ES

^

under the El-Sayyad's loss 

function with six different priors. The simulation program was written by using 

MATLAB-R2008a program. After the parameter  θ  was estimated, Mean Square 

Errors (MSE) was calculated to compare the methods of estimation, where: 

) ...(12                                                                                             ]) θ-(r)θ (
r

1
MSE 2

         

ES

^         
1000

1r 

See appendix-C, for the   programs algorithm. The results of the simulation study are 

summarized and tabulated in tables (4.1) for the first stage. In each row of table (4.1) ,we  have  

four  estimated values for θ
       ^     

) θ ( with MSE for all samples sizes (n) and values ( b3 , b, v, 

α ,β , a , b, c ) respectively as considered in first stage. Also the results of the simulation study 

are summarized tabulated in tables (4.2-4.3) for the second stage .In each row of tables (4.2-4.3) 

,we  have  four  estimated values for θ
       ^     

) θ (  with MSE for all samples sizes (n) and values 

(b3,b,v, α ,β , a, b, c,) respectively as considered in second stage.  

By using different estimation methods that is maximum likelihood estimator and the 

moment estimator .And the Bayes estimators in six types of prior distribution .So our 

criteria is  the best method that gives the smallest value of (MSE). We list the results in 

the following tables (4.1 -4.3). 

 

Table 4.1: Shows the values for 
^

θ  under El-Sayyad's loss function with MSE. 
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Continue for table 4.1: Shows the values for 
^

θ  under El-Sayyad's loss function 

with MSE. 

 
 

 

Continue for table 4.1: Shows the values for 
^

θ  under El-Sayyad's loss function 

with MSE. 
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Continue for table 4.1: Shows the values for 
^

θ  under El-Sayyad's loss function 

with MSE. 

 
 

 

Continue for table 4.1: Shows the values for 
^

θ  under El-Sayyad's loss function 

with MSE. 
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Continue for table 4.1: Shows the values for 
^

θ  under El-Sayyad's loss function 

with MSE. 

 
 

Table 4.2: Shows the values for 
^

θ  under El-Sayyad's loss function with MSE. 
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Continue for table 4.2: Shows the values for 
^

θ  under El-Sayyad's loss function 

with MSE. 

 
 

 

Table 4.3: Shows the values for 
^

θ  under El-Sayyad's loss function with MSE. 
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Continue for table 4.3: Shows the values for 
^

θ  under El-Sayyad's loss function 

with MSE. 

 
 

5. Discussion 

In general, as we see in the tables (4.1-4.3) by using different estimation methods, we 

find the Mean Square Errors (MSE) decreased when sample size increased in all cases. 

And we obtained the same results for θ  & MSE by using maximum likelihood 

estimation (MLE) and the moment estimation(ME) for all sample sizes (n), because 

they have the same formula see formula from equations (4), (8).   

For the first stage in table (4.1), when the true value of θ ( 0.5θ  ): 

When the prior distribution for θ  is Levy distribution with b3. 
We obtained a good estimation  according to the smallest values of  MSE for all 

samples sizes (n) comparative to the other estimated values by using the  prior 

distribution for θ  is Levy distribution with b3=0.2 and for  the values for the parameters 

of the El-Sayyad 's loss function is ( 5r & 0.5  ). 

 When the prior distribution for θ  is the Gumbel type-II distribution with b. 

We obtained a good estimation  according to the smallest values of  MSE for all 

samples sizes (n) comparative to the other estimated values by using the  prior 

distribution for θ  is Gumbel type-II distribution with b=0.04  and for  the values for the 

parameters of the El-Sayyad 's loss function is ( 7r & 0.5  ). 

When the prior distribution for θ  is the Inverse Chi-square distribution with v.  

We obtained a good estimation according to the smallest values of  MSE for all 

samples sizes (n) comparative to the other estimated values by using the  prior 

distribution for θ  is Inverse Chi-square distribution with v=16 and for  the values for 

the parameters of the El-Sayyad 's loss function is ( 7r & 0.5  ), which is best 

estimation  ,the according to the smallest values of  MSE for all samples sizes (n) 

comparative to the estimated values by using MLE and ME. 
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When the prior distribution for θ  is the Inverted Gamma distribution with ( β , α ).  

We obtained a good estimation according to the smallest values of  MSE for all 

samples sizes (n) comparative to the other estimated values by using the  prior 

distribution for θ  is Inverted Gamma distribution with 0.5) β , 10 α (  and for  the 

values for the parameters of the El-Sayyad 's loss function is ( 5r & 0.5  ), which is 

best estimation  ,the according to the smallest values of  MSE for the samples sizes 

25n  comparative to the estimated values by using MLE and ME. 

When the prior distribution for θ  is the Improper distribution with (a, b). 

We obtained a good estimation according to the smallest values of MSE for all 

samples sizes (n) comparative to the other estimated values by using the prior 

distribution for θ  is Improper distribution with (a=9, b=1) and for the values for the 

parameters of the El-Sayyad's loss function is ( 7r & 0.5  ), which is best 

estimation, the according to the smallest values of MSE for all samples sizes (n) 

comparative to the estimated values by using MLE and ME. 

When the prior distribution for θ  is the Non-informative distribution with c. 

     We obtained a good estimation according to the smallest values of  MSE for all 

samples sizes (n) comparative to the other estimated values by using the  prior 

distribution for θ  is Non-informative distribution with c=8  and for  the values for the 

parameters of the El-Sayyad 's loss function is ( 5r & 0.5  ), which is best 

estimation  ,the according to the smallest values of  MSE for the samples sizes 

50n  comparative to the estimated values by using MLE and ME. 

For the second stage in table (4.2), when the true value of θ ( 1θ  ): 

When the prior distribution for θ  is Levy distribution with (b3=0.2). 

We obtained a good estimation according to the smallest values of MSE for all 

samples sizes (n) comparative to the other estimated values, with the values for the 

parameters of the El-Sayyad's loss function is ( 5r & 1  ), which is best estimation, 

the according to the smallest values of MSE for the samples sizes 50n  comparative 

to the estimated values by using MLE and ME. 

When the prior distribution for θ  is the Gumbel type-II distribution with (b=0.04). 

We obtained a good estimation  according to the smallest values of  MSE for all 

samples sizes (n) comparative to the other estimated values, with  and  the values for the 

parameters of the El-Sayyad 's loss function is ( 5r & 1  ),which is best estimation  

,the according to the smallest values of  MSE  for the samples sizes 25n  comparative 

to the estimated values by using MLE and ME. 

When the prior distribution for θ  is the Inverse Chi-square distribution with (v=16).  

We obtained a good estimation according to the smallest values of MSE for all 

samples sizes (n) comparative to the other estimated values, with the values for the 

parameters of the El-Sayyad's loss function is ( 5r & 1  ), which is best estimation, 

the according to the smallest values of MSE for all samples sizes (n) comparative to the 

estimated values by using MLE and ME. 

When the prior distribution for θ  is the Inverted Gamma distribution with 

( 0.5β , 10α  ).  

We obtained a good estimation according to the smallest values of MSE for all 

samples sizes (n) comparative to the other estimated values, with the values for the 
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parameters of the El-Sayyad's loss function is ( 5r & 1  ), which is best estimation, 

the according to the smallest values of MSE for the samples sizes 50n  comparative 

to the estimated values by using MLE and ME. 

When the prior distribution for θ  is the Improper distribution with (a=9, b=1). 

We obtained a good estimation according to the smallest values of MSE for all 

samples sizes (n) comparative to the other estimated values, with the values for the 

parameters of the El-Sayyad's loss function is ( 5r & 1  ), which is best estimation, 

the according to the smallest values of MSE for all samples sizes (n) comparative to the 

estimated values by using MLE and ME. 

When the prior distribution for θ  is the Non-informative distribution with (c=8). 

     We obtained a good estimation according to the smallest values of MSE for all 

samples sizes (n) comparative to the other estimated values, with the values for the 

parameters of the El-Sayyad's loss function is ( 5r & 1  ), which is best estimation, 

the according to the smallest values of MSE for all samples sizes (n) comparative to the 

estimated values by using MLE and ME. 

For the second stage in table (4.3), when the true value of θ ( 5.1θ  ): 

When the prior distribution for θ  is Levy distribution with (b3=0.2). 

We obtained a good estimation according to the smallest values of MSE for all 

samples sizes (n) comparative to the other estimated values, with the values for the 

parameters of the El-Sayyad's loss function is ( 7r & 1  ), which is best estimation, 

the according to the smallest values of MSE for the samples sizes 50n  comparative 

to the estimated values by using MLE and ME. 

When the prior distribution for θ  is the Gumbel type-II distribution with (b=0.04). 

We obtained a good estimation  according to the smallest values of  MSE for all 

samples sizes (n) comparative to the other estimated values, with  and  the values for the 

parameters of the El-Sayyad 's loss function is ( 7r & 1  ),which is best estimation  

,the according to the smallest values of  MSE  for the samples sizes 50n  comparative 

to the estimated values by using MLE and ME. 

When the prior distribution for θ  is the Inverse Chi-square distribution with (v=16).  

We obtained a good estimation according to the smallest values of MSE for all 

samples sizes (n) comparative to the other estimated values, with the values for the 

parameters of the El-Sayyad's loss function is ( 9r & 5.0  ), which is best 

estimation, the according to the smallest values of MSE for all samples sizes (n) 

comparative to the estimated values by using MLE and ME. 

When the prior distribution for θ  is the Inverted Gamma distribution with 

( 0.5β , 10α  ).  

We obtained a good estimation according to the smallest values of  MSE for all 

samples sizes (n) comparative to the other estimated values ,with the values for the 

parameters of the El-Sayyad 's loss function is ( 9r & 5.0  ). 

When the prior distribution for θ  is the Improper distribution with (a=9, b=1). 

We obtained a good estimation according to the smallest values of MSE for all 

samples sizes (n) comparative to the other estimated values, with the values for the 

parameters of the El-Sayyad's loss function is ( 9r & 5.0  ), which is best 

estimation, the according to the smallest values of MSE for the samples sizes 25n   

comparative to the estimated values by using MLE and ME. 



Journal of Baghdad College of Economic Sciences  Issue  No. 52  

 

  

11 

When the prior distribution for θ  is the Non-informative distribution with (c=8). 

     We obtained a good estimation according to the smallest values of MSE for all 

samples sizes (n) comparative to the other estimated values, with the values for the 

parameters of the El-Sayyad's loss function is ( 9r & 5.0  ), which is best 

estimation, the according to the smallest values of MSE for all samples sizes (n) 

comparative to the estimated values by using MLE and ME. 

6. Conclusion 

When we compared the estimated values for θ
       ^     

) θ ( for the scale parameter of the 

Exponential distribution by using the methods in this study .We find that Mean Square 

Errors (MSE) was decreased when sample size increased in all cases. And the MSE 

increased in all samples sizes (n) when the true value of θ  increased. The best method is 

the bayes estimation according to the smallest values of MSE for all sample sizes (n) 

when the prior distribution is  

 Improper distribution with (a=9, b=1) and for  the values for the parameters of the 

El-Sayyad 's loss function is ( 7r & 0.5  ), which is best estimation  ,the 

according to the smallest values of  MSE for all samples sizes (n) comparative to the 

estimated values by using MLE and ME, when the true value of θ ( 5.0θ  ) see table 

(4.1). 

  Non-informative distribution with ( c=8)  and for  the values for the parameters of 

the El-Sayyad 's loss function is ( 5r & 1  ), which is best estimation  ,the 

according to the smallest values of  MSE for all samples sizes (n) comparative to the 

estimated values by using MLE and ME, when the true value of θ ( 1θ  ) see table 

(4.2). 

 Non-informative distribution with ( c=8)  and for  the values for the parameters of the 

El-Sayyad 's loss function is ( 9r & 5.0  ), which is best estimation  ,the 

according to the smallest values of  MSE for all samples sizes (n) comparative to the 

estimated values by using MLE and ME, when the true value of θ ( 5.1θ  ) see table 

(4.3). 
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Appendix-A: The posterior 

distribution using different Priors 
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Appendix-B: The following is the 

derivation of these estimators under 

the El-Sayyad's loss function. 
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Appendix-C:   The following is the   

programs algorithm. 

Algorithm (1): To compute MLE for 

scale parameter (
^

θ ) with MSE. 
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Algorithm (3): To compute Bayes 

estimators ( ES1

^

θ  ) using Levy 

distribution 

as prior distribution forθ  with MSE. 

 
 

Note (1): we can reformulate the 

Algorithm (3) to compute 

Bayes estimators 

2,3,4,5,6k, θESk

^

  under using 

other distributions as prior 

distribution for θ  with MSE. 

Algorithm (2): To compute MM for 

scale parameter (
^

θ ) with MSE. 
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