Some Results on s-prime Compactly Acts over Monoid

Authors Names	ABSTRACT
Muna Jasime Mohammed Alir ^a Shireen O. Dakheel ^{a,b,*}	In this proper introduce the concept of subact \dot{N} of \dot{M} iss-prime compactly packed $(sp-c.P)$ S-Acts. if for each family $\{P_{\alpha}\}_{{\alpha}\in\lambda}$ of s- prime subact of \dot{M} with $\dot{N}\subseteq \bigcup_{{\alpha}\in\lambda}P_{\alpha}$, $\dot{N}\subseteq P_{\beta}$ for some $\beta\in\lambda$. We refer to an S-Act \dot{M} as sp- $c.P$. if every subact is
Publication date: 16 / 6 /2025	s-prime compactly packed. We study various properties of sp- <i>c</i> . <i>P</i> S-Acts.
Keywords: Multiplicatively Closed Sets Prime Subact, s- Prime Subact, s- Pure Subact.	

1.Introduction

Let \dot{M} be a unitary module defined on commutative ring with 1.A subset V of R have been said a multiplicatively closed (M.C) subset of R if: $1 \in V$ and for any v1,v2 in V, $v1v2 \in V$. Let V be (m. c. set) of R and M is an R -module, (1) V* a nonempty subset of M have been said V-closed if $vm \in V^*$ for every $v \in V$ and $m \in V^*$. (2) An V-closed subset V* have been said saturated if the next provision is hold: where $dm \in V^*$ for $d \in R$ also $m \in M$, then $d \in V$ and $m \in V^*$ [1, 2] . A proper subact \dot{N} of a S-Act \dot{M} is said to be c. P if whenever N is contained in the union of a family of prime subact of \dot{M} , then \dot{N} is contained in one of the members of the family. And \dot{M} is compactly packed S-Act if every proper subact of \dot{M} is c. P [3]. Let $S \subseteq R$ be a m.c.set. and P a submodule of M with [P:R M] $\cap S = \emptyset$. Then P is said to be an s-prime submodule if there exists $s \in V$ and whenever $s \in V$ and whenever $s \in V$ and whenever $s \in V$ then either $s \in V$ and $s \in V$ if there exists an $s \in V$ and $s \in V$ an

2. s-Prime Compactly Packed S-Acts.

Definition 2.1: [6] Let S be a monoid, a subset U of R have been said a multiplicatively closed (m.c) subset of S if: 1 belongs to U and for any u1,u2 \in U. Let V be a (M.C) of a monoid S and M be an S-act (1) A nonempty subset U* of M have been said U-closed if um belongs U* for every $v \in U$ and $m \in U^*$. (2) An U-closed subset U* have been said saturated if the next provisions are hold: where $km \in U^*$ for $k \in S$ and $m \in M$, then $k \in U$ and $m \in U^*$.

Example 2.2: [6] Let Q be act over integer number Z. If U* is saturated U-closed, then $U = Z-\{0\}$ and $U^* = Q-\{0\}$.

^aUniversity of Baghdad, College of Science for women, Department of Mathematics, Baghdad, Iraq, E-Mail: munajm_math@csw.uobaghdad.edu.iq

^b University of Baghdad, College of Science for women, Department of Mathematics, Baghdad, Iraq, E-Mail: shireenod_math@csw.uobaghdad.edu.iq

Definition 2.3: Let S be a monoid and U (m.c) subset of S with [N:S M] \cap U = Ø, a subact N of s-act M is said to be s-prime, if there is u belongs to U and whenever am \in N then either ua \in [N:S M] or um \in N for each a \in S and m \in M.

Definition 2.4: Let K be a subact of a S-Act \dot{M} , if there exist s-prime subact that contain K, then the intersection of all s-prime subact containing K is called the \dot{M} - s-radical of K and denoted by rad K. If there is no s-prime subact containing K, then s-rad K = \dot{M} . A subact K is called a s-radical subact if s-rad K = K.

Theorem 2.5: Let M be an S-Act. The following statements are equivalent:

- 1- M is s-c.P.
- 2- For every a proper subact K of \dot{M} , there is $a \in K$ such that's- rad(K) = s-rad(Sa).
- 3- For every proper subact K of \dot{M} , if $\{K_{\alpha}\}_{(\alpha \in \lambda)}$ is a family of subact of \dot{M} and $K \subseteq \bigcup_{(\alpha \in \lambda)} K_{\alpha}$ then $K \subseteq s$ rad (K_{β}) for some $\beta \in \lambda$.
- 4- For every proper subact K of M, if $\{K_{\alpha}\}_{(\alpha \in \lambda)}$ is a family of radical subact of M and $K \subseteq U_{(\alpha \in \lambda)}K_{\alpha}$ then $K \subseteq K_{\beta}$ for some $\beta \in \lambda$.

Proof: $(1\rightarrow 2)$ Let K be a proper subact of \dot{M} . Suppose s-rad $\dot{N}\not\subset$ s- rad(Sa) for each $a\in K$, there is a s-prime subact N_a which contains Sa and $K\not\subset N_a$. But $K=\bigcup_{(a\in K)}S_a\subseteq \bigcup_{(a\in K)}N_a$, that is \dot{M} is not s- c-P which contradicts (1).

 $(2\rightarrow 3)$ Let K be a proper subact of \dot{M} and let $\{K_{\alpha}\}_{(\alpha\in\lambda)}$ be a family of subact of \dot{M} such that $K\subseteq U_{(\alpha\in\lambda)}$ K_{α} . By (b) there is $a\in K$ such that s-radK=s-rad(Sa). Then $a\in U_{(\alpha\in\lambda)}$ K_{α} and hence $a\in K_{\beta}$ for some $\beta\in\lambda$, so that $Sa\subseteq K_{\beta}$ and $K\subseteq s\text{-rad}(K)=s\text{-rad}(Sa)\subseteq s\text{-rad}(K_{\beta})$.

 $(3\rightarrow 4) & (4\rightarrow 1)$ are clear

Recall that an S-Act M is called a multiplication S-Act if each subact N of M has the form N=IM for an ideal I of R. In fact N=[N:M]M. [7].

Remark 2.6:

- 1- If \dot{M} is a multiplication S-Act and K is a subact of \dot{M} with $K \subseteq \bigcup_{(\alpha \in \lambda)} K_{\alpha}$, where K is s- prime subact of \dot{M} and λ is a finite set, then $K \subseteq K_{\beta}$ for some $\beta \in \lambda$.
- 2- If \dot{M} is a multiplication S-Act containing finite number of s-prime subact then \dot{M} is s-c.p.

Definition 2.7 : A subact N of a S-act M is called S-pure if there exists an $s \in U$ such that $s(N \cap IM) \subseteq IN$ for every ideal I of S.

Proposition 2.8: Let \dot{M} be S-Act and every subact is s-pure, then \dot{M} is c.P if and only if, each proper subact K of M is cyclic.

Proof : The sufficiency is clear. To prove the necessity, let K be a proper subact of M. Since M is s-c.p then by theorem 2.5, there exists $a \in K$ such that -rad K = s - rad Sa. But every subact is s-pure,

Theorem 2.8: If M is s - c. P S-Act which has at least one maximal subact then M satisfies the ACC on s-radical subact.

Proof: let $K_1 \subseteq K_2 \subseteq \cdots$ be an ascending chain of s-radical subact of M and let $K = \bigcup_i K_i$. If K = M and B is a maximal subact of M, then $B \subseteq \bigcup_i K_i$. Since M is s-c.P then $B \subseteq K_j$ for some M. Therefore $M \subseteq K_j$ and therefore $M \subseteq K_j$ that is $M \subseteq K_j$ which is impossible. Thus L is a proper subact of M. Thus $M \subseteq K_j$ for some M and therefore M and therefore M and therefore M and let M an

Because every finitely generated S-Act and every multiplication S-Act has a proper maximal subact, [8] then we have:-then K = Sa

Corollary 2.9 : If \dot{M} is finitely generated or multiplication c.P S-Act, then M satisfies the ACC on radical subact.

Definition 2. 10 : A s-prime subact L of an S-Act \dot{M} is called a minimal s-prime subact of a subact K if $L \subseteq K$ and there exist no smaller s-prime subact with this property. Remember that if \dot{M} is an S-Act that satisfies the ACC on s-radical subact then the s-radical of any proper subact K of \dot{M} is the intersection of a finite number of minimal s-prime subact of K.

Lemma 2.11: If \dot{M} be a proper multiplication S-Act that satisfies the ACC on radical subact, then for every proper subact \dot{N} of \dot{M} there exists a finite number of minimal prime subact of \dot{N} .

Proof: let K be a proper subact of \dot{M} , then s-radK is the intersection of a finite number of minimal s-prime subact of \dot{M} say $L_1, L_2, ..., L_n$. We shall prove that these L_i 's are the only minimal s-prime subact of \dot{N} . Suppose \dot{M} is a minimal prime subact. It is clear that $s-rad K \subseteq H$ that is $\bigcap_{i=1}^n L_i \subseteq H$ and hence $\bigcap_{i=1}^n [L_i : \dot{M}] = [\bigcap_{i=1}^n l_i : \dot{M}] \subseteq [\dot{U}_i : \dot{M}]$. And $[\dot{U} : \dot{M}]$ is s-prime ideal [7] then there exists $j \in \{1,2,...,n\}$ such that $[L_j : \dot{M}] \subseteq [H : \dot{M}]$, but \dot{M} is a multiplication S-Act thus $L_j \subseteq H$ because \dot{M} is minimal s-prime subact.

Corollary 2.12: If \dot{M} is a multiplication s-c. P S-Act, then for every proper subact K of \dot{M} there exist a finite number of minimal prime subact of K.

Let L be s-prime subact of an S-Act \dot{M} . The height of L equals n (denoted by ht(L) = n) if there exists a chain of distinct s-prime subact of L_i of \dot{M} of the form $L = L_0 \supset L \supset \cdots \supset L_n$ and it is the longest chain such that $L = L_0$.

The Krull dimension of \dot{M} , denoted by dim \dot{M} , is defined as: $dim\dot{M} = \{ht(L): L \ is \ s - prime \ subact \ of \ \dot{M}\}$.

Following [8, 9], the Prime Avoidance Theorem for modules states as follows: Put U is module, K_1, K_2, \ldots, K_n a finite number of submodules of U and K is a submodule of U such that $K \subseteq K_1 \cup K_2 \cup \ldots \cup K_n$. Assume that at most two of the K_i ; are not prime, and that

 $(K_j : M) \not\sqsubseteq \sqrt{K_l : M}$ (whenever $j \ne 1$; Then $K \subseteq K_l$ for some $1 \in \{1, 2, ..., n\}$. We examine how this theory can be extended to the Primal Avoidance theory for acts over monoid.

Theorem 2.13: Let \dot{M} be a multiplication S-Act. If $\dim \dot{M}=0$ then \dot{M} is c.P iff \dot{M} has finite number of prime subact.

Proof: Suppose \dot{M} is c.P. If $\{0\}$ is prime subact then the necessity is trivial. If $\{0\}$ is not prime, then every prime subact is minimal in \dot{M} and by (corollary 2.12) the number of prime subact of \dot{M} is finite. The sufficiency follows from the Prime Avoidance Theorem

A partial converse of theorem 1.5 can be found in the subsequent theorem.

Theorem 2.14: Put \dot{M} is an S-act and every finitely generated subact is cyclic. If \dot{M} satisfies the ACC on radical subact, then \dot{M} is c.P.

Proof: Put \dot{N} is a proper subact of \dot{M} . By [8], there exists a finitely generated subact \dot{U} of \dot{M} such that s-rad \dot{N} = s-rad \dot{U} and hence \dot{U} is cyclic subact, and by theorem 2.5 \dot{M} is s-c. P.

Definition 2.15: An S-act \dot{M} is called s-semilocal, if \dot{M} /s-rad(\dot{M}) is semisimple.

Proposition 2.16: Let \dot{M} be a multiplication s-semilocal S-Act with $dim \, \dot{M} \leq 1$. If M satisfies the ACC on s-radical subact, then \dot{M} is s-c.P.

Proof: We have two cases, first if $\{0\}$ is s-prime subact then every non-zero s-prime subact of \dot{M} is maximal and hence the number of s-prime subact of \dot{M} is finite. On the other hand if $\{0\}$ is not s-prime, let \dot{A} be the set of all s-prime subact of \dot{M} and let $\breve{E} = \{\dot{U} \in \dot{A}: \dot{U} \in \dot{A}:$

Definition 2.17: An S-Act \dot{M} is said to be satisfy the Cyclic Subact Condition (s-CSC) if for each $x \in \dot{M}$ and each s-prime subact \dot{K} of \dot{M} minimal over Sx, therefore $ht(K) \le 1$.

Proposition 2.18: Suppose that \dot{M} is a *c.P* S-Act. If the s-CSC is satisfied for \dot{M} , then $dim\ \dot{M} \le 1$.

Proof: Put $\c K$ be a maximal subact of $\c M$, then by theorem (2.5) there exists $a \in \c M$ such that $\c K = s$ -rad $\c Sa$. This implies that $\c K$ is minimal s-prime subact over $\c Sa$. By s-CSC, $\c M(\c K) \le 1$, therefore $\c M \le 1$.

Proposition 2.19: Let $f: M \to M'$ be an epimorphism. If M is s - c. P then so is M'. The converse is true when M is finitely generated or (multiplication) S-Act and $ker f \subseteq s - rad\{0\}$.

Proof: It is clear.

References

- [1] S. Visweswaran, Some remarks on multiplicatively closed sets, Arab J Math, (2013),1-17,
- [2] O. Khudhayer and K. Haibat, Restrict Nearly Primary Submodules, Wasit Journal for Pure Science, Vol(1), No(3) (2022)70-80.
- [3] O. Shireen Dakheel, Zaienb Anwer Ahmed and Muna Jasim Mohammed Ali, On Compactly Packed Acts over Monoid, To appear in Journal of Discrete Mathematical Sciences and Cryptography.
- [4] Ş. Esra Sevimi, A.Tarık,, T.Ünsal and K.,Suat, On S-prime submodules, Turkish Journal of Mathematics, 43 (2019) 1036 1046.
- [5] F. Farshadifar, A Generalization of Pure Submodules, Journal of Algebra and Related Topics Vol. 8, No 2, (2020), pp 1-8
- [6] Muna Jasim Mohammed Ali, Uhood S. AL-Hassani, Nahida Naji Kadhim and Samira Naji Kadhim, On Multiplicatively Closed Sets and Prime Subact Over Monoid, To appear.
- [7] M.S. Abbas and Samer Adnan, The product of Gamma Subacts of Multiplication Gamma Act, Journal of Physics: Conference Series 1804 (2021) 012105, 1-7
- [8] M. Kilp, U. Knauer and A. Mikhalev, Monoids, acts and categories, Walter de Gruyter (2000)
- [9] M..Mohammed AL-Ashker, Arwa E. Ashour and Ahmed A. Abu Mallouh, On Primal Compactly Packed Modules, Palestine Journal of Mathematics, Vol. 3(Spec 1) (2014), 481–488