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In this proper introduce the concept of  subact Ṅ of Ṁ iss-prime compactly packed 

(      ) S-Acts. if for each family {  }    of s- prime subact of M with Ṅ 

      ,      for some    . We refer to an S-Act Ṁ as sp-    . if every subact is 

s-prime compactly packed. We study various properties of sp-    S-Acts. 

 

1.Introduction  

Let Ṁ be a unitary module defined on commutative ring with 1.A subset V of R have been said a 

multiplicatively closed (M.C) subset of R if: 1   V and for any v1,v2 in V, v1v2   V. Let V be ( m. c. 

set) of  R and M is an R –module, (1) V* a nonempty subset of M have been said  V-closed if vm      

for every v   V and m      . (2) An V-closed subset    have been said saturated if the next provision 

is hold: where dm     for  d    R also  m    M, then d      and  m        [1, 2] . A proper subact Ṅ 

of a S-Act Ṁ is said to be     if whenever N is contained in the union of a family of prime subact of 

Ṁ, then Ṅ is contained in one of the members of the family. And Ṁ is compactly packed S-Act if 

every proper subact of Ṁ is     [3]. Let S   R be a m.c.set. and P a submodule of M with [P :R M]∩S 

= ∅ . Then P is said to be an s -prime submodule if there exists s   V and whenever am   P then either 

sa   [P :R M] or sm   P for each a   R and m   M [4].In [5], we say that a submodule N of an R-

module M is S-pure if there exists an s   S such that s(N ∩ IM)   IN for every ideal I of R. an ideal I 

of R is called an S -prime ideal if I is an S -prime submodule of R-module R. Note that all prime 

submodules P whose residual by M is disjoint from S become an S -prime submodule since 1   S. 

Also, if we take S   u(R), where u(R) denotes the set of units in R, the notions of S -prime 

submodules and prime submodules are equal [4] 

2. s-Prime Compactly Packed S-Acts. 

Definition 2.1 : [6] Let S be a monoid, a subset U of R have been said a multiplicatively closed (m.c) 

subset of S if : 1 belongs to U and for any u1,u2   U. Let V be a ( M.C) of a monoid S and M be an S-

act  (1) A nonempty subset U* of M have been said U-closed if um  belongs    for every v   U and 

m      . (2) An U-closed subset    have been said saturated if the next provisions are hold: where  

km     for       and  m    M, then k      and m        .  

Example 2.2: [6] Let Q be act over integer number Z. If U* is saturated U-closed, then U = Z-{0} and 

U* = Q-{0}. 
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Definition 2.3: Let S be a monoid and U (m.c) subset of S with [ N:S M]   U = Ø, a subact N of s-act 

M is said to be s-prime, if there is u belongs to U and whenever am   N then either ua   [N :S M ] or 

um   N for each a   S and m   M. 

Definition 2.4 : Let K be a subact of a S-Act Ṁ, if there exist s-prime subact that contain K, then the 

intersection of all s-prime subact containing K is called the Ṁ- s-radical of K and denoted by rad K. If 

there is no s-prime subact containing K, then s-rad K =Ṁ. A subact K is called a s-radical subact if s-

rad K = K. 

Theorem 2.5 : Let Ṁ be an S-Act. The following statements are equivalent: 

1- Ṁ is s-c.P. 

2- For every a proper subact K of Ṁ, there is a K such that’s- rad(K) = s-rad(Sa). 

3- For every proper subact K of Ṁ, if {Kα }(α λ) is a family of subact of Ṁ and K     (α λ) Kα then 

K  s- rad(Kβ) for some β λ. 

4- For every proper subact K of M, if {Kα }(α λ) is a family of radical subact of M and K  (α λ)Kα 

then K Kβ for some β λ. 

Proof: (1→2) Let K be a proper subact of Ṁ. Suppose s-radṄ⊄s- rad(Sa) for each a K, there is a s-

prime subact Na which contains Sa and K ⊄Na. But K =  (a K)  Sa  (a K) Na, that is Ṁ is not s- c-P 

which contradicts (1). 

(2→3) Let K be a proper subact of Ṁ and let {Kα }(α λ) be a family of subact of Ṁ such that K    (α λ) 

Kα. By (b) there is a   K such that s-radK = s-rad(Sa). Then a  (α λ) Kα and hence a Kβ for some 

β λ, so that Sa  Kβ and K   s-rad(K) = s-rad(Sa)   s-rad(Kβ). 

(3→4) & (4→1) are clear 

Recall that an S-Act M is called a multiplication S-Act if each subact N of M has the form N=IM for 

an ideal I of R. In fact N=[N:M]M. [7]. 

Remark 2.6: 

1- If Ṁ is a multiplication S-Act and K is a subact of Ṁ with K   (α λ)Kα, where K is s- prime 

subact of Ṁ and λ is a finite set, then K   Kβ for some β λ . 

2- If Ṁ is a multiplication S-Act containing finite number of s-prime subact then Ṁ is s-c.p. 

Definition 2.7 : A subact N of a S-act M is called S-pure if there exists an s   U such that s(N ∩ IM)   

IN for every ideal I of S. 

Proposition 2.8 : Let Ṁ be S-Act and every subact is s-pure , then Ṁ is     if and only if, each proper 

subact K of M is cyclic. 
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Proof : The sufficiency is clear. To prove the necessity, let K be a proper subact of M. Since M is s-c.p 

then by theorem 2.5, there exists a  K such that                . But every subact is s-pure,  

Theorem 2.8 : If M is       S-Act which has at least one maximal subact then M satisfies the ACC 

on s-radical subact.  

Proof: let         be an ascending chain of s-radical subact of M and let       . If    

and B is a maximal subact of Ṁ, then       . Since Ṁ is s-c.P then      for some j. Therefore 

     and therefore        , that is      which is impossible. Thus L is a proper subact of Ṁ. 

Thus      for some j and therefore                       , thus the ACC is 

satisfied for s-radical subact. 

Because every finitely generated S-Act and every multiplication S-Act has a proper maximal subact, 

[8] then we have:-then K = Sa 

Corollary 2.9 : If Ṁ is finitely generated or multiplication     S-Act, then M satisfies the ACC on 

radical subact.  

Definition 2. 10 : A s-prime subact L of an S-Act Ṁ is called a minimal s-prime subact of a subact K 

if L   K and there exist no smaller s-prime subact with this property. Remember that if Ṁ is an S-Act 

that satisfies the ACC on s-radical subact then the s-radical of any proper subact K of Ṁ is the 

intersection of a finite number of minimal s-prime subact of K. 

Lemma 2.11: If Ṁ be a proper multiplication S-Act that satisfies the ACC on radical subact, then for 

every proper subact Ṅ of Ṁ there exists a finite number of minimal prime subact of Ṅ. 

Proof: let   be a proper subact of Ṁ, then        is the intersection of a finite number of minimal 

s-prime subact of Ṁ say           . We shall prove that these   ’s are the only minimal s-prime 

subact of Ṅ. Suppose H is a minimal prime subact. It is clear that           that is     
      

and hence     
             

             . And       is s-prime ideal [7] then there exists 

  {       } such that             , but Ṁ is a multiplication S-Act thus      because H is 

minimal s-prime subact. 

Corollary 2.12: If Ṁ is a multiplication       S-Act, then for every proper subact K of Ṁ there 

exist a finite number of minimal prime subact of K. 

Let L be  s-prime subact of an S-Act Ṁ. The height of L equals n (denoted by        ) if there 

exists a chain of distinct s-prime subact of Li of Ṁ of the form             and it is the 

longest chain such that     . 

The Krull dimension of Ṁ, denoted by dimṀ, is defined as:     {             

                 } . 
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 Following [8, 9], the Prime Avoidance Theorem for modules states as follows: Put U is 

module, K1, K2 ,….., Kn a finite number of submodules of U and K is a submodule of U such that K   

K1     K2   ….  Kn. Assume that at most two of the Ki;s are not prime, and that 

(Kj : M)    √       (whenever j   l; Then K   Kl for some  l   { 1,2,…. n}. We examine how this 

theory can be extended to the Primal Avoidance theory for acts over monoid . 

Theorem 2.13: Let Ṁ be a multiplication S-Act. If dimṀ=0 then Ṁ is     iff Ṁ has finite number of 

prime subact.  

Proof: Suppose Ṁ is    . If { } is prime subact then the necessity is trivial. If { } is not prime, then 

every prime subact is minimal in Ṁ and by (corollary 2.12) the number of prime subact of Ṁ is finite. 

The sufficiency follows from the Prime Avoidance Theorem 

A partial converse of theorem 1.5 can be found in the subsequent theorem. 

Theorem 2.14: Put Ṁ is an S-act and every finitely generated subact is cyclic. If Ṁ satisfies the ACC 

on radical subact, then Ṁ is    . 

Proof: Put Ṅ is a proper subact of Ṁ. By [ 8], there exists a finitely generated subact Ù of Ṁ such that 

s-radṄ = s-radÙ and hence Ù is cyclic subact, and by theorem 2.5 Ṁ is      . 

Definition 2.15 : An S-act  Ṁ is called s-semilocal, if Ṁ/s-rad(Ṁ) is semisimple.        

Proposition 2.16: Let Ṁ be a multiplication s-semilocal S-Act with        . If M satisfies the 

ACC on s-radical subact, then Ṁ is      . 

Proof: We have two cases, first if {0} is s-prime subact then every non-zero s-prime subact of Ṁ is 

maximal and hence the number of s-prime subact of Ṁ is finite. On the other hand if {0} is not s-

prime, let Á be the set of all s-prime subact of Ṁ and let Ĕ = {Ù    Ù is maximal subact of Ṁ}, 

Ķ={L      }. By lemma 2.11. we have Ķ is finite set and hence Á is finite. In any case we get Ṁ 

is       from the s-Prime Avoidance Theorem 

Definition 2.17: An S-Act Ṁ is said to be satisfy the Cyclic Subact Condition (s-CSC) if for each 

x   and each s-prime subact Ķ of Ṁ minimal over Sx, therefore  ht(K)   . 

Proposition 2.18: Suppose that Ṁ is a     S-Act. If the s-CSC is satisfied for Ṁ, then        . 

Proof: Put Ķ be a maximal subact of Ṁ, then by theorem (2.5) there exists a Ṁ such that Ķ = s-radSa. 

This implies that Ķ is minimal s-prime subact over Sa. By s-CSC, ht(K)   , therefore        .  

Proposition 2.19: Let f:      be an epimorphism. If   is       then so is   . The converse is 

true when M is finitely generated or (multiplication) S-Act and             { }. 

Proof: It is clear. 
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