Artin Exponent of $SL(2, \mathbb{Z}_{2p})$

Ahmed Baqer Hussein Ali Kareem Kadhim Alla Tareq Balasim

Al_mustansiriya University - College of Basic Education - Department of Mathematics

لمستخلص

لتكن ${f G}$ الزمرة الخطية الخاصة المنتهية ${\cal S}L(2,{\Bbb Z}_{2p})$. في هذا البحث قمنا بايجاد رتبة وأس وعدد , ${f [6p.(p^2-1)]}$ وجدنا بأن رتبة ${f G}$ تساوي , ${f [6p.(p^2-1)]}$, عدد صفوف التكافؤ يساوي ${f (3p+12)}$ وأس ارتن يساوي , ${f [}{1\over 2}p(p^2-1){f]}$, عدد صفوف التكافؤ يساوي (${f 3p+12}$) وأس ارتن يساوي .

Abstract

Let G be the finite special linear group $SL(2, \mathbb{Z}_{2p})$. In this work we determined the order of this group, exponent of G, number of conjugacy classes and Artin exponent A(G).

For p = 5.7 and 11, We found that the order of G is $[6p.(p^2 - 1)]$, exponent of G is $[\frac{1}{2}p(p^2 - 1)]$, the number of conjugacy classes is (3p + 12) and $A(G) = p^2 - 1$.

Introduction

Let f be an integral valued class function on a finite group G, Artin induction Theorem[8] states that |G|f is an integral linear combination of characters of G induced from characters of linear representations of cyclic subgroups of G.

In (1968), Lam [8] proved a sharp form of Artins Theorem, he determined the least positive integer, A(G), such that $A(G)\chi$ is an integral linear combination of induced principal characters of cyclic subgroups for all rational valued characters χ of G.

This is a continuation of the papers [1] and [2]. In [1], the authors found that $A\left(SL\left(2,\mathbb{Z}_{2^k}\right)\right)=2^{3(k-1)}$ for k=2,3,4,5 and in [2], the authors found that $A\left(SL\left(2,\mathbb{Z}_{3.2^k}\right)\right)=3.2^{3k}$ for k=1,2,3, where $SL(2,\mathbb{Z}_n)$ is the special linear group over the ring \mathbb{Z}_n .

In this work, the group G under consideration is $SL(2,\mathbb{Z}_{2p})$, where p = 5.7 and 11 The main results will be stated in section 2, as follows: in Theorem(2.5) we found that

 $A(G) = p^2 - 1$, in Theorem(2.6) we found that $|G| = 6p(p^2 - 1)$, in Theorem(2.7) we found that $exp(G) = \frac{1}{2}p(p^2 - 1)$ and in Theorem(2.8) we found that the number of conjugacy classes is (3p + 12).

§.1 Basic Definitions and Examples

In this section we shall set up the basic notations and definitions for later work.

<u>Definition(1.1), [9]:</u> The set of all nxn non-singular matrices over a ring R ,which form a group under the set operation of matrix multiplication. This group is called **The General Linear Group** of degree n over R, and denoted by GL(n,R).

<u>Definition(1.2), [7]:</u> Let V be a vector space over any field F, GL(V) denotes the group of all linear isomorphism of V onto itself.

<u>Definition(1.3), [3]</u>: *A representation* of a group G is a homomorphism T : G \rightarrow GL(V).

<u>Definition(1.4), [3]:</u> *A matrix representation* of a group G is a homomorphism $T: G \longrightarrow GL(n,F)$, where n is called the degree of the matrix representation.

<u>Definition(1.5), [3]</u>: A representation $T: G \to GL(1, \mathbb{C})$ such that T(x)=1, $\forall x \in G$, it is called the *linear representation* or *principle representation* of G.

<u>Definition(1.6), [4]:</u> A class function on a group G is a function $f:G \to \mathbb{C}$ which is constant on conjugacy classes ,that is, $f(x^{-1}yx) = f(y) \ \forall \ x, y \in G$.

If all value of f are in \mathbb{Z} , then it is called \mathbb{Z} – valued class function.

<u>Definition(1.7), [5]:</u> Let T be a matrix representation of a finite group G over a field F, the *character* χ of T is the mapping $\chi: G \to F$ defined by $\chi(g) = tr(T(g))$, $\forall g \in G$, where tr(T(g)) refers to the trace of the matrix T(g).

Clearly, $\chi(1) = n$, which is called the degree of χ , also character of degree 1 is called linear character.

<u>Definition(1.8), [5]</u>: The function $\mathbf{1}_G$ with constant value 1 on G, is a linear character, it is called the *principle* or *unit* or *trivial character* of G.

<u>Lemma(1.9), [5]:</u> Characters of a group G are class functions on G.

<u>Definition(1.10), [5]</u>: Let H be a subgroup of a group G and ϕ be a class function of H, then $\phi \uparrow^G$, the *induced class function* on G is given by :

$$\phi \uparrow^G (g) = \frac{1}{|H|} \sum_{x \in G} \phi^{\circ}(xgx^{-1})$$

Where
$$\begin{cases} \phi^{\circ}(h) = \phi(h) & \text{if } h \in H \\ \phi^{\circ}(h) = 0 & \text{if } h \notin H \end{cases}$$

Clearly $\phi \uparrow^G$ is a class function on G and $\phi \uparrow^G (1) = [G: H]\phi(1)$.

Where $\phi \uparrow^G (y) = 0$ if $H \cap C(y) = \emptyset$. This formula is immediate from the definition of $\phi \uparrow^G$ since as x runs over G, $xyx^{-1} = x_i$ for exactly $|C_G(y)|$ values of x.

Proposition(1.11), [5]: Let H be a subgroup of G, and ϕ to be a character of H, then $\phi \uparrow^G$ is a character.

<u>Definition(1.12), [8]:</u> The character induced from the unit character of a cyclic subgroups of G is called *Artin character*, and denoted by $\phi(x)$.

Example(1.13): The three conjugacy classes of the symmetric group S_3 are

C(1) = (1), $C(12) = \{(12), (13), (23)\}$ and $C(123) = \{(123), (132)\}$, We calculate the Artin characters (induced characters) of S_3 from the unit characters of the cyclic subgroups H_i , i=1,2,3 by using formula (1-1)

The orders of the three classes are |C(1)| = 1, |C(12)| = 3, |C(123)| = 2 and the orders of the centralizers are $|C_{S_3}(1)| = 6$, $|C_{S_3}(12)| = 2$, $|C_{S_3}(123)| = 3$

Thus

1)
$$(1^3): 1_{H_1} \uparrow^{S_3} (1) = \frac{6}{1} \sum 1 = 6$$
, $1_{H_1} \uparrow^{S_3} (12) = 0$ and $1_{H_1} \uparrow^{S_3} (123) = 0$
 $\phi_1(x) = (6 \ 0 \ 0)$ Since, $(1) \notin C(12)$ and $(1) \notin C(123)$.

2)
$$(12)$$
: $1_{H_2} \uparrow^{S_3} (1) = \frac{6}{2} \sum 1 = 3$, $1_{H_2} \uparrow^{S_3} (12) = \frac{2}{2} \sum 1 = 1$, and $1_{H_2} \uparrow^{S_3} (123) = 0$ $\phi_2(x) = (3 \ 1 \ 0)$ Since, $\langle (12) \rangle \cap C(123) = \emptyset$.

3)
$$(123)$$
: $1_{H_3} \uparrow^{S_3} (1) = \frac{6}{3} \sum 1 = 2$, $1_{H_3} \uparrow^{S_3} (12) = 0$ and $1_{H_3} \uparrow^{S_3} (123) = \frac{3}{3} \sum 1 + 1 = 2$ $\phi_3(x) = (2 \ 0 \ 2)$ Since, $\langle (123) \rangle \cap C(12) = \emptyset$.

C(x)	(1^3)	(12)	(123)
C(x)	1	3	2
$ C_{S_3}(x) $	6	2	3
ϕ_1	6	0	0
ϕ_2	3	1	0
ϕ_3	2	0	2

Table(1-1) Artin characters of S_3 .

Lemma(1.14), [5]: Let χ be a rational valued character of G, then, $\forall g \in G$, $\chi(g) \in \mathbb{Z}$.

Lemma(1.15), [5]: Let χ be a rational valued character of G, and let $x, y \in G$ with $\langle x \rangle = \langle y \rangle$, Then $\chi(x) = \chi(y)$.

<u>Definition(1.16), [8]:</u> The *Artin exponent*, A(G), of a group G is the smallest positive integer A(G) such that A(G) ϕ is an integer linear combination of the induced principle characters of the cyclic subgroups of G, for all rational valued characters ϕ of G.

Remark(1.17), [8]: Let $H_1 = \{1\}, H_2, \ldots, H_q$ be the full set of nonconjugate cyclic subgroups of G. We write 1_j , for the principle character on H_j and denote the Artin character (induced character) on G by ϕ_j , which is the character afforded by the rational representation of G and it is clearly depends only on the conjugacy class of the cyclic subgroup H_j .

<u>Definition(1.18), [8]:</u> Let G be a finite group, an integer $m \in \mathbb{Z}$ is said to be an Artin exponent for G if, given any rational character χ on G such that :

$$m\chi = \sum_{k=1}^{q} a_k \phi_k$$

is solvable for integer unknowns $a_k \in \mathbb{Z}$ and for any given rational character χ on G.

Remark(1.19), [8]: All Artin exponents form an ideal in the integers and [G:1] is in this ideal. We pick the (unique) positive generator A(G) for this ideal and we shall call it the Artin exponent of G, A(G) divides |G|.

<u>Proposition(1.20), [8]:</u> Let 1_G denote the principal character of G and $d \in \mathbb{Z}$, then d is an Artin exponent of G if it has the following property:

There exist (unique) integers $a_k \in \mathbb{Z}$ such that $d. 1_G = \sum_{k=1}^{q} a_k \phi_k$

Where $\phi_1, \phi_2, ..., \phi_q$ are the Artin characters.

If, a_1, a_2, \dots, a_q have no common factor, then d = A(G) and conversely.

Proposition(1.21), [8]: Let G be an arbitrary finite group, and $H = \{H_1, H_2, ..., H_q\}$ be a full set of non conjugate cyclic subgroups of G, then A(G) is the smallest positive integer m such that:

$$m.\, 1_G = \sum_{H_k \in H} \ a_k \, . \, 1_{H_k} \uparrow^G \quad(1-2)$$

With each $a_k \in \mathbb{Z}$.

Remark(1.22), [8]:

1) If m is a positive integer, and (1-2) holds for some set of integers $\{a_k\}$ with greatest common divisor=1, then necessarily m = A(G).

2) Given a group G, We can compute the characters $\{1_{H_k} \uparrow^G\}$ explicitly, and then use proposition (1.21) to determine A(G).

Theorem(1.23), [8]: A(G) = 1 iff G is cyclic.

Remark(1.24), [8]: A(G) gives an interesting numerical measure of the deviation of G from being a cyclic group. The invariant A(G) is, therefore, merely a measure of noncyclicity.

Example(1.25): Consider G=S₃, Let $H = \{H_1, H_2, H_3\}$ with H_i cyclic subgroups of order i.

According to example(1.13) and its table, if we multiply ϕ_1 by -1 , ϕ_2 by 2 , and ϕ_3 by 1,

then we have :
$$2.1_{S_3} = -(1_{H_1} \uparrow^{S_3}) + 2(1_{H_2} \uparrow^{S_3}) + (1_{H_3} \uparrow^{S_3})$$

and therefore $A(S_3)=2$.

<u>Definition(1.26), [4]:</u> Let G be a group, then the *exponent* of G is the least common multiple of the orders of its elements, and denoted by exp(G).

§.2 Artin Exponent of $SL(2, \mathbb{Z}_{2p})$

In this section we will find the order of the group $SL(2, \mathbb{Z}_{2p})$, exponent, Artin characters and Artin exponent for this group when p=5,7 and 11.

(2.1) The Special Linear Group [9]: Let R be commutative ring with 1, GL(n,R) has a very important subgroup

$$SL(n,R) = \{ x \in M(n,R) | \det(x) = 1 \}$$

Consisting of matrices with determinant 1. The group SL(n, R) is called the **special** linear group of degree n over R.

In this work, we interested in the finite special linear groups SL(2, R) in case of $R = \mathbb{Z}_{2p}$, the ring of integers modulo (2p) where p = 5,7 and 11.

To find Artin exponent of $SL(2,\mathbb{Z}_{2p})$, We construct a powerful programs to compute the elements of $SL(2,\mathbb{Z}_{2p})$, its order, all conjugacy classes, cyclic subgroups, Artin characters, and then Artin exponent A(G), All programs have been written in *Mathcad Professional 2001i*.

Let C_i be the classes of the group $SL(2,\mathbb{Z}_{2p})$, $|C_i|$ be the number of elements in C_i , x_i be a representative of a class C_i (we take the first element in a class C_i as a representative), o(x) be the order of the element x in a group G, Since the elements in the same class have the same order. Thus, We denote $o(x_i)$ to be the order of the elements in a class C_i , H_i be the cyclic subgroup generated by x_i , i.e., $H_i = \langle x_i \rangle$, $C_G(x_i)$ be the centralizer of x_i in G, and ϕ_i be the Artin character (induced character) of G from the unit characters of the cyclic subgroup H_i .

(2.2) Artin Exponent of $SL(2, \mathbb{Z}_{2.5})$: Let $G = SL(2, \mathbb{Z}_{2.5})$, by using our programs, we

found that $|\mathbf{G}| = 720$, This group has 27 conjugacy classes: C_i , i = 0,1,...,26.

We write the representative x_i for each class C_i :

$$x_{0} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ x_{1} = \begin{bmatrix} 9 & 0 \\ 0 & 9 \end{bmatrix}, \ x_{2} = \begin{bmatrix} 4 & 5 \\ 5 & 4 \end{bmatrix}, \ x_{3} = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}, x_{4} = \begin{bmatrix} 1 & 5 \\ 5 & 6 \end{bmatrix}, x_{5} = \begin{bmatrix} 1 & 2 \\ 6 & 3 \end{bmatrix},$$

$$x_{6} = \begin{bmatrix} 0 & 1 \\ 9 & 9 \end{bmatrix} \ x_{7} = \begin{bmatrix} 1 & 2 \\ 4 & 9 \end{bmatrix}, \ x_{8} = \begin{bmatrix} 0 & 1 \\ 9 & 0 \end{bmatrix}, \ x_{9} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}, \ x_{10} = \begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix}, \ x_{11} = \begin{bmatrix} 4 & 5 \\ 5 & 9 \end{bmatrix},$$

$$x_{12} = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}, \ x_{13} = \begin{bmatrix} 0 & 1 \\ 9 & 1 \end{bmatrix}, \ x_{14} = \begin{bmatrix} 0 & 1 \\ 9 & 4 \end{bmatrix}, \ x_{15} = \begin{bmatrix} 0 & 1 \\ 9 & 6 \end{bmatrix}, \ x_{16} = \begin{bmatrix} 1 & 2 \\ 8 & 7 \end{bmatrix},$$

$$x_{17} = \begin{bmatrix} 1 & 4 \\ 4 & 7 \end{bmatrix}, \ x_{18} = \begin{bmatrix} 0 & 3 \\ 3 & 2 \end{bmatrix}, x_{19} = \begin{bmatrix} 0 & 3 \\ 3 & 8 \end{bmatrix}, \ x_{20} = \begin{bmatrix} 0 & 1 \\ 9 & 2 \end{bmatrix}, \ x_{21} = \begin{bmatrix} 0 & 1 \\ 9 & 8 \end{bmatrix}$$

$$, x_{22} = \begin{bmatrix} 0 & 1 \\ 9 & 5 \end{bmatrix}, x_{23} = \begin{bmatrix} 0 & 1 \\ 9 & 7 \end{bmatrix}, x_{24} = \begin{bmatrix} 0 & 3 \\ 3 & 7 \end{bmatrix}, x_{25} = \begin{bmatrix} 0 & 1 \\ 9 & 3 \end{bmatrix}, \ x_{26} = \begin{bmatrix} 0 & 3 \\ 3 & 3 \end{bmatrix}$$

The order of the elements in the group $G = SL(2, \mathbb{Z}_{2.5})$ are :

$o(x_i)$ 1 2 2 2 3 3 3 4 4 5 5 6 6 6	6 6	6 6	6

x_i	<i>x</i> ₁₆	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>x</i> ₁₉	<i>x</i> ₂₀	<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄	<i>x</i> ₂₅	<i>x</i> ₂₆
$o(x_i)$	10	10	10	10	10	10	12	15	15	30	30

Then exp(G) = 60.

Since, conjugate cyclic subgroups give the same Artin characters, thus we need to find the intersection of the non conjugate cyclic subgroups with conjugacy classes of the group $G = SL(2, \mathbb{Z}_{2.5})$

In the following table, we means by (1e) set contain only one element, (2e) set contain two elements and (4e) set contain four elements

3	200	2 6	s e	s e	s e	2 6	2 6	2 6	2 6	2 6	2 6	2 6	s e	s e	2 6	2 6	2 6	2 6	2 6	2 6	م م
5	37 6	2 6	3 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	4 9
27	\$7 E	2 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	۵ d	-
(2,	57	2 6	2 6	2 6	3 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	+	-
(,,	77 6	2 6	2 6	2 6	2 6	2 6	2 6	9 6	9 6	6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	4	2 6	+-
C,1	77	2 6	2 6	2 6	2 6	2 6	2 6	8	2 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	2 6	م	8	2 6	9 0
Cyo	3 6	8	8	2 6	2 6	2 6	8	8	8	8	8	2 6	2 6	2 6	2 6	2 6	ر م	8	2 6	2 6	2 0
C ₁₀	e	6	8	2 6	2 6	2 6	8	6	8	8	8	8	2 6	2 6	2 6	2 6	9 6	2e /	6	8	9
Cla	8	8	8	2 6	2 6	8	8	9	0	6	8	8	2 6	2 6	2 6	2 6	2e 2	6	6	6	0
C1.2	9	6	8	8	2 6	8	0	0	0	0	0	8	8	2 6	2 6	2e 1	8	9	8	9	2e 7
C16	1	8	8	8	8	6	0	0	0	0	0	6	6	2 6	8	2e	9	0	8	0	26 z
C_{15}		8	8	8	8	0	0	0	Ø	0	0	6	6	6	26	0	0	0	6	0	a
C ₁₄	0	0	0	6	6	0	0	Ø	Ø	Ø	0	0	8	7e	8	0	0	0	0	0	0
c_{13}	0	0	0	0	0	0	Ø	0	Ø	0	0	0	2e	8	0	0	0	0	0	0	a
C ₁₂	Ø	Ø	0	0	0	0	ø	Ø	Ø	Ø	Ø	2e	0	8	0	0	0	Ø	0	a	a
c_{11}	ø	0	Ø	0	0	Ø	ø	Ø	Ø	Ø	2e	Ø	0	0	0	Ø	Ø	Ø	2e	a	2e
c_{10}	Ø	ø	Ø	0	0	0	Ø	Ø	Ø	2e	ø	0	0	0	0	2e	2e	2e	ø	2e	2e
S	0	Ø	Ø	0	0	Ø	Ø	Ø	Ø	2е	Ø	Ø	Ø	0	0	2e	2e	2e	Ø	2e	2e
28	Ø	Ø	Ø	0	0	Ø	Ø	Ø	2e	Ø	ø	Ø	Ø	Ø	0	Ø	Ø	Ø	ø	0	Ø
C ₂	Ø	0	Ø	Ø	0	Ø	Ø	2e	Ø	Ø	Ø	Ø	Ø	ø	ø	ø	Ø	ø	2e	Ø	Ø
Ce	0	0	Ø	Ø	0	Ø	2e	Ø	Ø	0	Ø	Ø	2e	0	Ø	ø	Ø	Ø	Ø	ø	0
Cs	Ø	Ø	Ø	Ø	0	2e	Ø	Ø	Ø	Ø	Ø	2e	Ø	2e	2e	Ø	Ø	Ø	Ø	Ø	ø
, C4	Ø	Ø	Ø	0	2e	Ø	Ø	Ø	Ø	Ø	2e	Ø	Ø	Ø	Ø	Ø	Ø	Ø	2e	2e	2e
2 (3	Ø	0	0	1e	Ø	Ø	Ø	Ø	Ø	Ø	Ø	0	Ø	1e	Ø	Ø	1e	Ø	Ø	Ø	Ø
1 C2	0	e Ø) 1e	0	0	0	Ø	Ø	0	8	Ø	0	0	Ø	1e	0	Ø	1e	0	Ø	0
C ₀ C ₁	1e Ø	1e 1e	1e Ø	1e Ø	e Ø	1e Ø	e e	e 1e	e 1e	о е	e 1e	e 1e	e 1e	Ø =	0	e 1e	Ø	0) 1e	Ø) 1e
	_				1 1e		, 1e	, 1e	1e	1e	1 1e	2 1e	3 1e	4 1e	5 1e	, 1e	3 1e	, 1e	, le	3 1e	1e
C	H_0	H	H_2	H_3	H_4	H	H_6	H ₇	H_8	Н,	H ₁₁	H ₁₂	H ₁₃	H ₁₄	H ₁₅	H ₁₆	H_{18}	H ₁₉	H ₂₂	H ₂₃	H ₂₅

Table (2.1) Intersection of cyclic subgroups H_i with conjugacy classes C_j

x ₀ x ₁ x ₂ <th< th=""><th>x₀ x₁ x₂ x₂ x₂ x₁ x₁ x₁ x₁ x₁ x₁ x₁ x₁ x₂ x₂ <th< th=""><th>sn /</th><th>By using formula (1.1), the Ar</th><th>IIIIIIIa</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<></th></th<>	x ₀ x ₁ x ₂ x ₂ x ₂ x ₁ x ₂ <th< th=""><th>sn /</th><th>By using formula (1.1), the Ar</th><th>IIIIIIIa</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	sn /	By using formula (1.1), the Ar	IIIIIIIa																				
1 3 3 3 2 40 30 90 12 2 40 60 60 60 12 35 36 60 24 2 720 720 240 240 360 18 24 86 60 36 18 12 16 10 <th> 1 3 3 3 2 2 40 30 30 12 2 2 40 60 60 60 60 60 60 60</th> <th></th> <th>\mathbf{c}_i</th> <th>χ_0</th> <th>x_1</th> <th><i>x</i>²</th> <th>χ_3</th> <th>x_4</th> <th>χ²</th> <th>χ_{6}</th> <th>x₇</th> <th>χ_8</th> <th>х</th> <th>X₁₁</th> <th>x₁₂</th> <th>χ_{13}</th> <th>X₁₄</th> <th>χ₁₅</th> <th>-+</th> <th>+</th> <th>-+</th> <th>-+</th> <th>\rightarrow</th> <th>χ25</th>	1 3 3 3 2 2 40 30 30 12 2 2 40 60 60 60 60 60 60 60		\mathbf{c}_i	χ_0	x_1	<i>x</i> ²	χ_3	x_4	χ²	χ_{6}	x ₇	χ_8	х	X ₁₁	x ₁₂	χ_{13}	X ₁₄	χ ₁₅	-+	+	-+	-+	\rightarrow	χ25
720 720 <th>720 720 240 240 360 36 36 36 36 36 36 48 12 12 60 20 20 12 30 36 36 36 18 12 12 60 20 20 12 30 36 36 18 12 12 60 20 0<th></th><th> C_i </th><th>-</th><th>-</th><th>က</th><th>3</th><th>2</th><th>20</th><th>40</th><th>30</th><th>06</th><th>12</th><th>7</th><th>20</th><th>40</th><th>09</th><th>9</th><th>12</th><th>36</th><th>36</th><th>-</th><th>\dashv</th><th>24</th></th>	720 720 240 240 360 36 36 36 36 36 36 48 12 12 60 20 20 12 30 36 36 36 18 12 12 60 20 20 12 30 36 36 18 12 12 60 20 0 <th></th> <th> C_i </th> <th>-</th> <th>-</th> <th>က</th> <th>3</th> <th>2</th> <th>20</th> <th>40</th> <th>30</th> <th>06</th> <th>12</th> <th>7</th> <th>20</th> <th>40</th> <th>09</th> <th>9</th> <th>12</th> <th>36</th> <th>36</th> <th>-</th> <th>\dashv</th> <th>24</th>		C _i	-	-	က	3	2	20	40	30	06	12	7	20	40	09	9	12	36	36	-	\dashv	24
720 0	720 0	1 –	$C_G(x_i)$		720	240	240	360	36	18	24	8	09	360	36	18	12	12	09	20	20	-+	<u>۾</u>	30
360 360 6	360 360 0 <th></th> <th>ϕ_0</th> <th>1</th> <th>0</th> <th></th> <th></th> <th>0</th>		ϕ_0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0
360 0 120 0 <td>360 0 120 0<th></th><th>ϕ_1</th><td>360</td><td>360</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td></td><td>0</td><td>0</td></td>	360 0 120 0 <th></th> <th>ϕ_1</th> <td>360</td> <td>360</td> <td>0</td> <td></td> <td>0</td> <td>0</td>		ϕ_1	360	360	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0
360 0	360 0		ϕ_2	360	0	120	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
240 0	240 0		φ3	360	0	0	120	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
240 0	240 0		φ4	240	0	0	0	240	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
240 0	240 0		φ2	240	0	0	0	0	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
180 180 0 <td>180 180 0<th>1</th><th>φ</th><td>240</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>12</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></td>	180 180 0 <th>1</th> <th>φ</th> <td>240</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>12</td> <td>0</td>	1	φ	240	0	0	0	0	0	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0
180 180 0 <td>180 180 0<th>1</th><th>φ2</th><td>180</td><td>180</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>12</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></td>	180 180 0 <th>1</th> <th>φ2</th> <td>180</td> <td>180</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>12</td> <td>0</td>	1	φ2	180	180	0	0	0	0	0	12	0	0	0	0	0	0	0	0	0	0	0	0	0
144 0	144 0 0 0 0 24 0 0 0 0 24 0 <th>1</th> <th>φ8</th> <td>180</td> <td>180</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>4</td> <td>0</td>	1	φ8	180	180	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0
120 120 0 0 120 0 0 120 0 0 120 0 <th< td=""><td>120 120 0 0 0 120 0 0 120 0 0 120 <th< td=""><th>1</th><th>ф</th><td>44</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>24</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></th<></td></th<>	120 120 0 0 0 120 0 0 120 0 0 120 0 <th< td=""><th>1</th><th>ф</th><td>44</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>24</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></th<>	1	ф	44	0	0	0	0	0	0	0	0	24	0	0	0	0	0	0	0	0	0	0	0
120 120 0 0 0 12 0 0 0 12 0 </td <td>120 120 0<th>1</th><th>φ11</th><td>120</td><td>120</td><td>0</td><td>0</td><td>120</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>120</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></td>	120 120 0 <th>1</th> <th>φ11</th> <td>120</td> <td>120</td> <td>0</td> <td>0</td> <td>120</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>120</td> <td>0</td>	1	φ11	120	120	0	0	120	0	0	0	0	0	120	0	0	0	0	0	0	0	0	0	0
120 120 0 <td>120 120 0<th>1</th><th>φ12</th><td>120</td><td>120</td><td>0</td><td>0</td><td>0</td><td>12</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>12</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></td>	120 120 0 <th>1</th> <th>φ12</th> <td>120</td> <td>120</td> <td>0</td> <td>0</td> <td>0</td> <td>12</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>12</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	1	φ12	120	120	0	0	0	12	0	0	0	0	0	12	0	0	0	0	0	0	0	0	0
120 0 40 0 12 0 0 0 0 4 0 4 0 <td>120 0 40 0 0 0 0 4 0 4 0</td> <th>1</th> <th>ϕ_{13}</th> <td>120</td> <td>120</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>9</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>9</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	120 0 40 0 0 0 0 4 0 4 0	1	ϕ_{13}	120	120	0	0	0	0	9	0	0	0	0	0	9	0	0	0	0	0	0	0	0
120 0 40 0	120 0 40 0	1	φ14	120	0	0	40	0	12	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0
72 72 0 0 0 12 0	72 72 72 0 0 0 12 0 <th>1</th> <th>φ15</th> <td>120</td> <td>0</td> <td>40</td> <td>0</td> <td>0</td> <td>12</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>4</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	1	φ15	120	0	40	0	0	12	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0
72 0 24 0 0 0 12 0	72 0 0 24 0 0 0 0 0 0 12 0	1	ϕ_{16}	72	72	0	0	0	0	0	0	0	12	0	0	0	0	0	12	0	0	0		0
72 0 24 0 0 0 12 0 0 0 0 0 0 0 0 4 0	72 0 24 0	1	ϕ_{18}	72	0	0	24	0	0	0	0	0	12	0	0	0	0	0	0	4	0	0	0	0
60 60 60 0	60 60 60 0 <th>1</th> <th>φ19</th> <td>72</td> <td>0</td> <td>24</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>12</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>4</td> <td>0</td> <td>0</td> <td>0</td>	1	φ19	72	0	24	0	0	0	0	0	0	12	0	0	0	0	0	0	0	4	0	0	0
48 0	48 0	1	φ22	09	99	0	0	09	0	0	4	0	0	09	0	0	0	0	0	0	0	4	0	0
24 24 0 0 0 0 4 24 0 0 0 4 0 0 4 0 0 4 0 0 4 0 0 0 4 0 0 4 0	24 24 0 0 0 24 0 0 0 0 4 24 0 0 0 4 4 27 0 0 0 0 0 4 0 0 0 0 4 0 0 0 4 0 0 0 4		φ23	48	0	0	0	48	0	0	0	0	8	0	0	0	0	0	0	0	0	0	®	0
	Table (2-2) Artin Characters table of the group $G =$		φ25	24	24	0	0	74	0	0	0	0	4	24	0	0	0	0	4	0	0	0	4	4

Now, from the Artin characters table:

$1/8 \phi_0 =$	06	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$-5/24 \phi_1 =$	-75	-75	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$-1/8 \phi_2 =$	-45	0	-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$-1/8 \phi_3 =$	-45	0	0	-15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$-1/4 \phi_5 =$	09-	0	0	0	0	9-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$1/4 \phi_8 =$	45	45	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
$-1/4 \phi_9 =$	-36	0	0	0	0	0	0	0	0	9-	0	0	0	0	0	0	0	0	0	0	0
$-1/6 \phi_{11} =$	-20	-20	0	0	-20	0	0	0	0	0	-20	0	0	0	0	0	0	0	0	0	0
$1/12 \ \phi_{12} =$	10	10	0	0	0	-	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
$1/6 \phi_{13} =$	20	20	0	0	0	0	-	0	0	0	0	0	1	0	0	0	0	0	0	0	0
$1/4 \phi_{14} =$	30	0	0	10	0	က	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
$1/4 \phi_{15} =$	30	0	10	0	0	3	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
$1/4 \phi_{18} =$	18	0	0	9	0	0	0	0	0	3	0	0	0	0	0	0	1	0	0	0	0
$1/4 \phi_{19} =$	48	0	9	0	0	0	0	0	0	3	0	0	0	0	0	0	0	1	0	0	0
$1/4 \phi_{22} =$	15	15	0	0	15	0	0	1	0	0	15	0	0	0	0	0	0	0	1	0	0
$1/4 \phi_{25} =$	9	ၜ	0	0	9	0	0	0	0	1	9	0	0	0	0	1	0	0	0	1	1
Summation		_	_	-	-	-		_	_	_	_	_	_	_	_	_	_		1	_	1

In other words,

24 . **1**_{*G*} = 3
$$\phi_0$$
 + (-5) ϕ_1 + (-3) ϕ_2 + (-3) ϕ_3 + (-6) ϕ_5 + 6 ϕ_8 + (-6) ϕ_9 + (-4) ϕ_{11} + 2 ϕ_{12} + 4 ϕ_{13} + 6 ϕ_{14} + 6 ϕ_{15} + 6 ϕ_{18} + 6 ϕ_{19} + 6 ϕ_{22} + 6 ϕ_{25}

Therefore, from this equations we get, the Artin exponent of $G = SL(2, \mathbb{Z}_{2.5})$ is equal to 24,

$$A(SL(2,\mathbb{Z}_{2.5}))=24=5^2-1$$

(2.3) Artin Exponent of $SL(2, \mathbb{Z}_{2.7})$: Let $G = SL(2, \mathbb{Z}_{2.7})$, by using our programs, we found

that |G| = 2016, This group has 33 conjugacy classes: C_i , i = 0,1,...,32.

The representatives for each class are:

$$\text{Set_of_Representative} = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & \begin{pmatrix} 13 & 0 \\ 0 & 13 \end{pmatrix} & \begin{pmatrix} 6 & 7 \\ 7 & 6 \end{pmatrix} & \begin{pmatrix} 1 & 0 \\ 7 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 7 \\ 7 & 8 \end{pmatrix} & \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 13 & 13 \end{pmatrix} & \begin{pmatrix} 1 & 2 \\ 6 & 13 \end{pmatrix} & \begin{pmatrix} 6 & 7 \\ 7 & 13 \end{pmatrix} & \begin{pmatrix} 1 & 2 \\ 10 & 7 \end{pmatrix} \\ \begin{pmatrix} 0 & 1 \\ 13 & 1 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 13 & 6 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 13 & 8 \end{pmatrix} & \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 0 \\ 6 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 2 \\ 4 & 9 \end{pmatrix} & \begin{pmatrix} 1 & 2 \\ 8 & 3 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 13 & 4 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 13 & 10 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 13 & 7 \end{pmatrix} & \begin{pmatrix} 1 & 2 \\ 12 & 11 \end{pmatrix} \\ \begin{pmatrix} 1 & 6 \\ 4 & 11 \end{pmatrix} & \begin{pmatrix} 0 & 3 \\ 9 & 2 \end{pmatrix} & \begin{pmatrix} 0 & 3 \\ 9 & 12 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 13 & 2 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 13 & 12 \end{pmatrix} & \begin{pmatrix} 0 & 3 \\ 9 & 9 \end{pmatrix} & \begin{pmatrix} 0 & 3 \\ 9 & 9 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 13 & 3 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 13 & 11 \end{pmatrix} & \begin{pmatrix} 0 & 3 \\ 9 & 5 \end{pmatrix} \end{bmatrix}$$

The order of the elements in the group $G = SL(2, \mathbb{Z}_{2.7})$ are :

x_i	x_0	x_1	x_2	x_3	χ_4	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇	<i>x</i> ₈	<i>x</i> ₉	<i>x</i> ₁₀	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅	<i>x</i> ₁₆
$o(x_i)$	1	2	2	2	3	3	3	4	4	6	6	6	6	6	7	7	8

x_i	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>x</i> ₁₉	<i>x</i> ₂₀	<i>x</i> ₂₁	<i>x</i> ₂₂	<i>x</i> ₂₃	<i>x</i> ₂₄	<i>x</i> ₂₅	<i>x</i> ₂₆	<i>x</i> ₂₇	<i>x</i> ₂₈	<i>x</i> ₂₉	<i>x</i> ₃₀	<i>x</i> ₃₁	<i>x</i> ₃₂
$o(x_i)$	8	8	8	12	14	14	14	14	14	14	21	21	24	24	42	42

Then
$$exp(G) = 168$$
.

By using formula (1.1), the Artin characters table for $G = SL(2, \mathbb{Z}_{2.7})$ is:

C_i	χ_0	χ_1	x_2	χ_3	χ4	$\chi_{\rm S}$	<i>x</i> ⁶	x ₇	χ8	χ ₉	x10	0 111	1 1/2	x13	X14	1 X 16	χ_{18}	x20	X2.1	X22	X24	X27	X20	χ_{21}
$ C_i $	-	-	3	3	2	26	112	2 42	H	6 2		-	1	├ ──	₩		ᡧ——			<			8	84
$ C_G(x_i) $	2016	2016	672	672	1008	36	18	48	16	1008	8 36	18	12	12	8	48	16	24	8	88	28	42	24	42
ϕ_0	2016	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ϕ_1	1008	1008	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ϕ_2	1008	0	336	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ϕ_3	1008	0	0	336	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ϕ_4	672	0	0	0	672	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ϕ_5	672	0	0	0	0	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ϕ_6	672	0	0	0	0	0	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ϕ_7	504	504	0	0	0	0	0	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ϕ_8	504	504	0	0	0	0	0	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ϕ_9	336	336	0	0	336	0	0	0	0	336	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ϕ_{10}	336	336	0	0	0	12	0	0	0	0	12	0	0	0	0	0	0	0	0	0	0	0	0	0
ϕ_{11}	336	336	0	0	0	0	9	0	0	0	0	9	0	0	0	0	0	0	0	0	0	0	0	0
ϕ_{12}	336	0	0	112	0	12	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0
ϕ_{13}	336	0	112	0	0	12	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0
ϕ_{14}	288	0	0	0	0	0	0	0	0	0	0	0	0	0	36	0	0	0	0	0	0	0	0	0
ϕ_{16}	252	252	0	0	0	0	0	12	0	0	0	0	0	0	0	12	0	0	0	0	0	0	0	0
ϕ_{18}	252	252	0	0	0	0	0	12	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0
ϕ_{20}	168	168	0	0	168	0	0	8	0	168	0	0	0	0	0	0	0	8	0	0	0	0	0	0
ϕ_{21}	1 4	44	0	0	0	0	0	0	0	0	0	0	0	0	18	0	0	0	18	0	0	0	0	0
ϕ_{23}	144	0	0	48	0	0	0	0	0	0	0	0	0	0	18	0	0	0	0	9	0	0	0	0
ϕ_{24}	44	0	48	0	0	0	0	0	0	0	0	0	0	0	18	0	0	0	0	0	9	0	0	0
ϕ_{27}	96	0	0	0	96	0	0	0	0	0	0	0	0	0	12	0	0	0	0	0	0	12	0	0
ϕ_{29}	8	84	0	0	84	0	0	4	0	8	0	0	0	0	0	4	0	4	0	0	0	0	4	0
ϕ_{31}	48	48	0	0	48	0	0	0	0	48	0	0	0	0	9	0	0	0	9	0	0	ဖ	0	9

From The Artin characters table, We find that:

$$48.1_{G} = 5\phi_{0} - 7\phi_{1} - 5\phi_{2} - 5\phi_{3} - 12\phi_{5} - 6\phi_{7} + 6\phi_{8} - 4\phi_{9} + 4\phi_{10} + 8\phi_{11} + 12\phi_{12} + 12\phi_{13} - 8\phi_{14} + 12\phi_{18} + 8\phi_{23} + 8\phi_{24} + 12\phi_{29} + 8\phi_{31}$$

Therefore, from this equation we get, the Artin exponent of $G = SL(2, \mathbb{Z}_{2.7})$ is equal to 48,

$$A(SL(2,\mathbb{Z}_{2.7})) = 48 = 7^2 - 1$$
.

(2.4) Artin Exponent of $SL(2, \mathbb{Z}_{2.11})$: Let $G = SL(2, \mathbb{Z}_{2.11})$, by using our programs, we find

that |G|=7920, This group has (45) conjugacy classes: C_i , $i=0,1,\ldots,44$. The representatives for all classes are:

$$\text{Set_of_Representative} = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & \begin{pmatrix} 21 & 0 \\ 0 & 21 \end{pmatrix} & \begin{pmatrix} 10 & 11 \\ 11 & 10 \end{pmatrix} & \begin{pmatrix} 1 & 0 \\ 11 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 12 \\ 11 & 12 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 21 & 21 \end{pmatrix} & \begin{pmatrix} 1 & 2 \\ 10 & 21 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 21 & 0 \end{pmatrix} \\ \begin{pmatrix} 1 & 2 \\ 6 & 13 \end{pmatrix} & \begin{pmatrix} 1 & 2 \\ 8 & 17 \end{pmatrix} & \begin{pmatrix} 10 & 11 \\ 11 & 21 \end{pmatrix} & \begin{pmatrix} 1 & 2 \\ 16 & 11 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 21 & 1 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 21 & 10 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 21 & 12 \end{pmatrix} & \begin{pmatrix} 1 & 2 \\ 12 & 3 \end{pmatrix} & \begin{pmatrix} 1 & 2 \\ 14 & 7 \end{pmatrix} \\ \begin{pmatrix} 0 & 1 \\ 21 & 14 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 21 & 18 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 21 & 4 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 21 & 8 \end{pmatrix} & \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix} & \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix} & \begin{pmatrix} 1 & 2 \\ 18 & 15 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 21 & 17 \end{pmatrix} \\ \begin{pmatrix} 0 & 1 \\ 21 & 5 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 21 & 11 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 21 & 6 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 21 & 6 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 21 & 19 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 21 & 13 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 3 & 13 \end{pmatrix} & \begin{pmatrix} 0 & 1 \\ 21 & 9 \end{pmatrix} & \begin{pmatrix} 0 & 7 \\ 3 & 9 \end{pmatrix} \end{bmatrix}$$

The order of the elements in the group $G = SL(2, \mathbb{Z}_{2.11})$ are :

x_i	x_0	x_1	x_2	x_3	x_4	x_5	<i>x</i> ₆	<i>x</i> ₇	x_8	<i>x</i> ₉	<i>x</i> ₁₀	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅	<i>x</i> ₁₆	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>x</i> ₁₉	<i>x</i> ₂₀	<i>x</i> ₂₁	<i>x</i> ₂₂
$o(x_i)$	1	2	2	2	3	3	3	4	4	5	5	6	6	6	6	6	10	10	10	10	10	10	11

x_i	x ₂₃	<i>x</i> ₂₄	<i>x</i> ₂₅	<i>x</i> ₂₆	<i>x</i> ₂₇	<i>x</i> ₂₈	<i>x</i> ₂₉	<i>x</i> ₃₀	<i>x</i> ₃₁	<i>x</i> ₃₂	<i>x</i> ₃₃	<i>x</i> ₃₄	<i>x</i> ₃₅	<i>x</i> ₃₆	<i>x</i> ₃₇	<i>x</i> ₃₈	<i>x</i> ₃₉	<i>x</i> ₄₀	<i>x</i> ₄₁	<i>x</i> ₄₂	<i>x</i> ₄₃	x ₄₄
$o(x_i)$	11	12	12	12	12	12	12	12	15	15	22	22	22	22	22	22	30	30	33	33	66	66

Then
$$exp(G) = 660$$

By using formula (1.1), the Artin characters table for $G = SL(2, \mathbb{Z}_{2.11})$ is:

x ₄₃	120	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9
χ41	120	99	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	20	9
x39	264	e	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0
x36	180	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	0	0	0
X35	180	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0
x_{33}	9	132	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	စ္က	0	0	0	0	9
x_{31}	264	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	0	0	0	4	0	0
x_{29}	330	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0
x_{28}	220	36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	0	0	0	0	0	0	0	0
x_{26}		36	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0	0
x ₂₄		72	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	0	0	0	0	0	0	0	0	0	0
x_{22}		132	٥	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	09	0	0	0	0	0	30	30	30	0	20	10
x_{20}		8	٥	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0
χ_{18}		8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0
x_{16}	132	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	0	0	0	0	0	0	0	0	0	0	0	4	0	0
x ₁₅	330	24	0	0	0	0	0	0	0	0	0	0	0	0	0	٥	8	0	0	0	0	0	٥	0	0	0	0	0	0	٥	0	0
x ₁₄	330	24	0	0	0	0	0	0	0	0	0	0	0	0	0	80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
x ₁₃	220	36	0	0	0	0	0	0	0	0	0	0	0	0	12	0	0	٥	0	0	0	٥	9	0	0	0	0	0	0	٥	0	0
x ₁₂	110	72	0	0	0	0	0	0	0	0	0	0	0	24	0	٥	٥	٥	0	٥	0	12	0	0	12	0	0	0	0	0	0	0
χ_{11}	2	3960	0	0	0	0	0	0	0	0	0	0	1320	0	0	٥	0	٥	0	٥	0	٥	0	99	0	0	0	0	0	264	0	120
χ	132	09	0	0	0	0	0	0	0	0	0	74	0	0	0	0	0	12	12	12	0	0	0	0	0	80	0	0	0	4	0	0
$\chi_{\rm B}$	330	24	0	0	0	٥	0	0	0	0	12	0	0	0	٥	٥	0	٥	٥	٥	0	٥	٥	۰	4	0	0	0	0	0	0	0
x ₇	110	72	0	0	0	0	0	0	0	36	0	0	0	0	0	0	0	0	0	0	0	12	12	12	0	0	0	0	0	0	0	0
χ_6	220	36	0	0	0	0	0	0	24	0	0	0	0	0	12	0	٥	0	0	٥	0	٥	9	٥	0	0	0	0	0	٥	0	٥
χ_5	110	72	٥	0	0	0	0	48	0	0	0	0	0	74	0	72	24	٥	0	٥	0	12	0	0	12	٥	0	0	٥	0	0	٥
χ_4	2	3960	0	0	٥	0	2640	0	0	0	0	0	1320	0	0	0	0	0	0	٥	0	٥	0	99	0	528	0	0	0	564	240	120
χ_3	3	2640	0	0	0	1320	0	0	0	0	0	0	0	0	0	440	0	0	797	0	0	0	0	0	0	0	0	120	0	0	0	0
x_2	က	2640	0	0	1320	0	0	0	0	0	0	0	0	0	0	0	440	0	0	264	0	0	0	0	0	0	0	0	120	٥	0	0
<i>x</i> ₁	-	7920	0	3960	0	0	0	0	0	1980	1980	0	1320	1320	1320	0	0	792	0	0	0	099	099	099	099	0	360	0	0	564	0	120
x_0	-	7920	7920	3960	3960	3960	2640	2640	2640	1980	1980	1584	1320	1320	1320	1320	1320	792	792	792	720	099	099	099	099	528	360	360	360	264	240	120
C_{l}	C,	$ C_G(x_i) $ 7	φ0	ϕ_1	φ ₂		φ4	φ2	φ	φ, ,	ϕ_8	\Box	ϕ_{11}		ϕ_{13}	ϕ_{14}	ϕ_{15}	φ16	φ18	ϕ_{20}	φ22	ϕ_{24}		ϕ_{28}			ϕ_{33}		φ36	ϕ_{39}		\vdash
	۲	2	P	Þ	P	B	4	P	4	Þ	4	Þ	Ф	Ð	Ф	Ф	φ	Φ	φ	ø	0	Φ	Ð	Ð	ø	ϕ_{31}	0	0	Ð	Φ	ϕ_{41}	Ð

From the values of Artin characters, ϕ_i 's, We get:

$$\begin{aligned} 120.1_G &= 12\phi_0 - 12\phi_2 - 12\phi_3 - 15\phi_5 - 10\phi_7 - 30\phi_9 - 12\phi_{11} - 15\phi_{12} \\ &+ 15\phi_{14} + 15\phi_{15} + 30\phi_{18} + 30\phi_{20} - 12\phi_{22} + 10\phi_{24} + 20\phi_{26} \\ &+ 10\phi_{28} + 30\phi_{29} + 12\phi_{35} + 12\phi_{36} + 30\phi_{39} + 12\phi_{43} \end{aligned}$$

Therefore, from this equation we get, the Artin exponent of $G = SL(2, \mathbb{Z}_{2.11})$ is equal to 120,

$$A(SL(2,\mathbb{Z}_{2.11})) = 120 = 11^2 - 1$$
.

From sections (2.2),(2.3) and (2.4), We deduce the following propositions:

Proposition (2.5): For p = 5.7 and 11; The Artin exponent of the group $SL(2, \mathbb{Z}_{2p})$ is

$$A\left(SL(2,\mathbb{Z}_{2p})\right)=p^2-1$$
.

Proposition (2.6): For p = 5.7 and 11; The order of the group $SL(2, \mathbb{Z}_{2p})$ is equal to $|SL(2, \mathbb{Z}_{2p})| = 6p(p^2 - 1)$.

Proposition (2.7): For p = 5.7 and 11; The exponent of the group $SL(2, \mathbb{Z}_{2p})$ is equal to

$$exp\left(SL(2,\mathbb{Z}_{2p})\right) = \frac{1}{2}p(p^2-1)$$
.

Proposition (2.8): For p = 5.7 and 11; The number of conjugacy classes of the group $SL(2, \mathbb{Z}_{2p})$ is equal to (3p + 12).

References:

- [1]. Ahmed.B.H, Awss.J.M and Eman.F.M. " *Exponent and Artin Exponent of* $SL(2, \mathbb{Z}_{2^k})$ ", Al-mustansiriyah University, College of Basic Education, Journal of the College of Basic Education, Vol.15, No.59, pp(25-44), 2009.
- [2]. Ahmed.B.H, and Awss.J.M. " *Induced Characters of SL* $(2, \mathbb{Z}_{3.2^k})$ ", Almustansiriyah University, Journal of Conference the College of Basic Education, No.12, pp(445-470), 2010.
- [3]. Burrow ,M. " *Representation Theory of Finite Group* ", Academic Press, New York, 1965.
- [4]. Feit, W. " Characters of Finite Groups ", W.A.Benjan, Inc, New York, 1967.
- [5]. Isaacs, I.M. " *Character Theory of Finite Groups*", Academic Press, New York, 1976.
- [6]. J.L.Alperin with Rowen B.Bell, " *Groups and Representations* ", Spring-Verlag, New York, Inc,1995.
- [7]. Keown, R. " An Introduction To Group Representation Theory ", Academic Press, New York, 1976.
- [8]. Lam, T. " *Artin Exponent of Finite Groups* ", Colombia University, New York, Journal of Algebra, Vol.9 ,pp(94-119), 1968.
- [9]. Vavilov, Nikolai; "*Linear Groups Over Rings*", Department of Algebra, Vestnik Saint-Petersburg State University, 2008.