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This research focuses on the evaluation of static buckling response of FG beams via 

Euler-Bernoulli and Timoshenko beam models. Loaded simply supported FG beams 

are loaded with axial compressive force and the properties of FG beam depend on the 

thickness and follow power-law distribution for all mechanical properties with 

constant Poisson’s ratio. The governing equations are obtained by minimizing the total 

potential energy and numerical solution is for the critical buckling load is obtained by 

using Navier-type approximation. The results show that as the slenderness ratio and 

power-law exponent increase, the critical buckling load reduces which is a sign of the 

mechanical change of the FG beam to resemble a uniform aluminum beam. The 

numerical findings are comparing with existing literature and have reasonable 

accuracy and usefulness for studying the structural behavior under different scenarios. 
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1. Introduction 

Materials that have the following 

properties: composite material properties are 

gradually changed, and this changes 

continuously from one place to another, are 

called functionally graded materials, 

abbreviated as (FGM). The FGM is used in 

many important fields. As the FGM strengthens 

the materials that are added to make them resist 

the external load. Functionally graded material 

has been used in many fields of engineering, 

industry, atomic energy, and other important 

fields. Buckling analysis of the structural 

members is critical in designing structures to 

resist compressive forces. Of all such elements, 

those that are manufactured from FGMs have 

attracted a lot of interest because they can 

allow the design of material characteristics, and 

hence the efficiency of the behaviour under 

mechanical and thermal loads. These designs 

with a gradual gradation of the material 

composition are called FGMs and show better 

resistance to delamination, stress 

concentrations, and thermal stresses than any 

conventional composite material. 

Consequently, they are applied widely in 

aerospace structures, nuclear reactors, and 

modern robotics. 

Li and Batra [1] provided research on the 

critical buckling loads (CBLs); the governing 

equations can be obtained for both 

homogeneous Euler Bernoulli beam theory 

(EBT) and Timoshenko beam theory (TBT) 

FGM to which both authors exposed axial 

compressive load characterized in different 

boundary conditions. The Timoshenko beam 

theory is compared with the Euler Bernoulli 

homogeneous beam theory to obtain the critical 

load / buckling load. By applying Timoshenko 

https://rjes.iq/index.php/rjes
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beam theory and using total potential energy 

for FG twisted beam under distributed 

transverse load, Chen [2] analyzed the 

governing equations. He also carry out a 

numerical comparison between the TBT and 

EBT, and finding the bending deflection of the 

twisted cantilever beam on the basis of 

numerical method. Timoshenko beam theory 

and homogenous Euler-Bernoulli governing 

equations beam have been investigated for 

similar mathematical analysis in Li et al. [3] at 

the similar loads with four different boundary 

conditions. Analytical solutions may serve as 

references in the subsequent research of 

behaviors of FGM beams. Rychlewska [4] has 

explicitely derived the governing equations for 

axially FG beams that were postulated on the 

basis of EBT to obtain the values of CBLs. In 

different boundary conditions, CBLs are 

calculated for three categories. First, the beam 

is subjected to an axial load uniformly 

distributed along the length of the beam and, 

second, numerically, using an equation for the 

buckling load, we obtain the CBLs. third, 

through a comparison of the CBLs of the 

homogeneous beam and the FG beam. 

Akbas [5] examined the governing 

equations for post-buckling analysis that stable 

when the total Lagrangian finite element model 

is used with FG beam. The detachment of 

material characteristics of the FG beam is in 

the axial direction. Axially, the material 

properties of the beam are distributed 

according to a power law. The problem of 

complex nonlinear is solved using an 

incremental FEM (finite element method 

displacement-focused) together with the 

Newton-Raphson iteration method. Zoubida et 

al. [6] worked on the simply supported 

functionally graded material FGM beams and 

with the aid of the Hamiltonian principle and a 

refined shearing deformation beam theory 

based on the neutral surface of the beam, the 

authors derived the governing equations based 

on the static and free vibration analysis. The 

governing equations of two-directional FG 

beams have been obtained by Karamanlı [7] 

using the total potential energy method as 

initiated by Reddy and Bickford beam theory 

(RBT), EBT, and TBT. NASH based on the 

quadrature study which implements 

symmetrical smoothed particle hydrodynamics 

for maximum dimensionless transverse 

deflection, dimensionless transverse shear 

stress and dimensionless axial stress under 

different boundary conditions. Fouda et al., [8] 

have employed finite element for maximum 

deflection, CBL and natural frequency with 

different boundary conditions. Based on these 

theories, the governing equations of a 

functionally graded cantilever beam are 

derived. Sherafatnia et. al. [9]. These are the 

CBL and natural frequency; numerical results 

were obtained for these parameters and 

compared with previous research. In their 

work, Padhi et al. [9] revealed that the power 

law index affects the loads of critical buckling 

and stability of the beam. It showed that there 

is a more favorable association of a lower 

power index for the FG beam. The maximum 

deflection in a functionally graded beam under 

a uniformly distributed load and with simply 

supported conditions, as predicted by Şimşek 

[11], is determined using the Ritz method. This 

section provides the mathematical equations 

that characterise the behaviour of a functionally 

graded beam experiencing axial load and 

transverse force Eltaher et al [12] employing 

the Timoshenko beam theory. By solving the 

governing equations Shyma and Rajendran [13] 

found maximum deflection and CBL under 

different boundary condition.The FGM beam 

was considered and the total potential energy 

was used with the help of mathematical model 

and the deflection of a simply supported FGM 

beam is calculated. The materials of the beam 

under consideration exhibit graded distribution 

of material properties in the thickness direction 

represented by the power law form. Lanc et al 

[14] also investigated the bending and buckling 

analysis of both EBT and Vlasov theories in 

thin-walled FG sandwich box beams. By 

applying total potential energy method the 

governing equations were derived , using two 

different theories to study both bending and 

buckling. Arefi [15] investigated the Euler- 

Bernoulli beam theory on the isotropic and FG 

beams to find the differential equations linear 

and nonlinear governing a simply supported 

beam on a linear and nonlinear foundation. 
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Mentioned Torki and Reddy [16] the TB and 

EBB theories for the FG beam and the 

governing equations can be derived from 

Hamilton’s principle. When simple support is 

assumed in the FG beam with the aid of FEM, 

the critical load can be determined. Lieu et al. 

[17] derived the governing equations by 

proposing third-order shear deformation theory 

for FGSSN nano beams subjected to axial load 

and transverse forces. They also defined 

maximum deflection and CBLs for several and 

conditions of boundary support. A. S. 

Appealing to the analyses of Sayyad and Y. M. 

Ghugal [18], Navier’s numerical analysis 

method was successfully applied to compute 

the CBL and the maximum deflection in a 

simply supported FGM beam. The authors 

pointed out that the results they attained in their 

study were quite good and yielded good tests to 

other studies carried out. Malihi et al. [19] 

considered that by applying the semi-analytical 

approach to a FG beam, it is possible to find 

the governing equations for the various 

boundary conditions. Both methods used static 

space and differential quadrature for the 

numerical solution in both longitudinal and 

transverse directions for different material 

properties. Trinh et al. [20] investigated the 

governing equations by using Timoshenko 

beam theory for a simply supported FGM beam 

and the beam subjected to multiple moving 

points. Through numerical results and using 

FEM, dynamic response analysis was studied 

for non-uniform Timoshenko beams. It is 

assumed that a power law governs the 

continuous axial variation of the material 

properties. 

Numerous researches have been conducted 

for analyzing the buckling of FG beams. 

Nevertheless, most have aimed at some 

concrete boundary conditions or material 

transitions, which still does not provide 

understanding of the impact of the main 

parameters, such as slenderness ratio and 

power-law exponent, for stability. Modern 

developments in modeling including non-linear 

finite element methods and machine learning 

based stability analysis have been demonstrated 

to pose solutions for these challenges. For 

example multi-scale modeling as a part of the 

hybrid FEM was then presented by Li et al. 

(2023) [21] focusing on the axial and 

transverse forces for the FG beams. Ahmed et 

al. (2022) [22] used a coupled FEM-Ritz 

method to investigate the effect of dynamic 

loads on the stability of FG beam through 

nucleating understanding of transient buckling 

issues. Thus, Zhang et al. (2021) [23] proposed 

the ML model for the accurate prediction of 

CBLs for FG beams with varying properties of 

the material. Building upon these 

advancements, this study seeks to address the 

following gaps: 

1. A comprehensive comparative study of 

Euler Bernoullis and TBT based on the 

material grading and geometrical structures. 

2. A study on the interaction between the 

slenderness ratio and power-law exponent on 

CBLs. 

3. Attempts to increase the reliability of the 

analytical results with the help of comparing it 

with the result obtained numerically. 

However, there are still research gaps in the 

application and synthesis of high level 

modeling approaches to the classical theories in 

order to form a full model for FG beam 

analysis. This work seeks to fill this gap 

through the use of the Navier-type solution 

method to assess the results of the Euler-

Bernoulli and Timoshenko beam theories. 

Functionally graded materials (FGMs) 

which refer to materials with progressive 

changes in composition and characteristics 

have become important in a number of fields of 

engineering and technology. These materials 

improve on the structural behavior by 

increasing resistance to external loads. In 

recent years, there have been numerous 

investigations on the structural mechanics of 

FGMs with special emphasis on their stability 

behavior, notably the buckling response of 

these composites. For example, Li and Batra 

[1] and Rychlewska [4] examined c CBLs of 

FG beams under various boundary situations; 

EBT and TBT were considered. Similarly, 

Akbas [5] has analysed post-buckling analysis 

using finite element analysis and Zoubida et al. 

[6] have worked on shear deformation on FGM 

beams. Nevertheless, these studies are based on 

individual theoretical notions or confine the 
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discussion with the application of certain 

boundary conditions, thus, not addressing the 

necessity of a comparative investigation of 

beam theories. 

This research has sought to fill these gaps 

by undertaking a comprehensive comparative 

analysis of the critical buckling behaviour of 

FG beams using both E-B and TBT while 

maintaining consistency. Thus, taking into 

account the slenderness ratio and power-law 

exponent, the work contributes to the 

development of a comprehensive 

understanding of the manner and mechanics of 

the transition between various behaviours of 

materials. The results enhance understanding of 

the stability characteristics of FG beams, 

supported by comparison with existing works. 

Based on this background, the current study 

complements the comparison of beam theories 

used to assess CBLs by further exploring the 

impact of material gradation and geometry. 

To enable a better understanding of the 

given current study, table 1 below seeks to 

combine other prior studies on the static and 

free vibration, as well as critical buckling 

characteristic of FG beams. It describes the 

method, results, and limitations, and provides 

information about the gaps that are filled by the 

current study. Previous work mainly consists in 

exploring the behavior of FG beams based on 

particular theories or approaches, and most 

often with prescribed conditions of boundary 

and/or constituents. Although extensive work 

has been done on EBT and TBT, a limited 

number of comparative studies have been made 

for different slenderness ratios and power-law 

exponents. It aims to fill this gap by using 

beam theories and understanding how 

geometric and material changes affect CBLs. 

Both the natural frequency and the CBL are 

determined from numerical analysis using the 

Galerkin’s analytical  method for a bi-

dimensional functionally graded (2D-FG) 

metal-ceramic porous beams, Shabani  et al. 

[24]. The governing equations are derived 

using the refined 2D shear deformation theory 

for a simply supported FG beams, Chitour et al. 

[25]. Numerical analysis shows the maximum 

deflection using Naiver's analytical method. 

The governing equations are derived using 

Timoshenko beams with arbitrary boundary 

conditions (BCs) for a FG beam, DEMİRHAN 

[26]. Under different BCs, find the CBL using 

numerical analysis. 

 

 

Table 1: Past studies on functionally graded beams and their critical buckling behavior  

Author(s) Methods/Theories Key Findings Limitations/Gaps Addressed 

Li and Batra [1] 

Euler-Bernoulli and 

Timoshenko 

theories 

Derived governing equations; 

analyzed CBLs for axial 

compressive loads. 

Limited comparison under varying 

boundary conditions. 

Rychlewska [4] 
Euler-Bernoulli 

theory 

Calculated CBLs for axially FG 

beams under distributed axial loads. 

Focused on specific load 

distributions, lacked broader 

material analysis. 

Akbas [5] 

Finite element 

analysis with 

nonlinear modeling 

Explored post-buckling behavior 

with material property variation 

along the axial direction. 

Did not compare with classical 

beam theories. 

Zoubida et al. 

[6] 

Refined shear 

deformation theory 

Conducted static and free vibration 

analyses for FG beams using 

Hamilton’s principle. 

Lacked focus on CBLs under 

compressive forces. 

Fouda et al. [8] 
Finite element 

method 

Studied bending, buckling, and 

vibration for porous FG beams. 

Addressed porous materials but not 

graded material effects fully. 

Simsek [11] Ritz method 
Analyzed static deflections under 

distributed loads using EBT. 

Did not extend analysis to buckling 

under axial loads. 

Torki and 

Reddy [16] 

FEM with 

Hamilton's 

principle 

Analyzed CBLs for FG beams with 

piezoelectric layers under simply 

supported conditions. 

Limited to specific piezoelectric 

applications. 
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Sayyad and 

Ghugal [18] 
Navier's method 

Analyzed bending and CBLs for 

simply supported FGM beams. 

Did not explore varying 

slenderness ratios or wave 

numbers. 

 

 

2. Governing Equations for FGM Beam 

 Model Development 

This paper therefore looks at the static 

buckling phenomenon of beams made from 

FGM under axial loads. The beams are 

modeled using two classical beam theories: 

- EBT: It assumes that shear deformation is 

negligible and therefore, appropriate for thick 

beams. 

- TBT: Capable to account for shear 

deformation and is appropriate for the slender 

beams. 

 Material Gradation 

Alumina makes up the bottom layer of the 

FGM beam, while aluminum makes up the top 

layer. On the one hand, the qualities of the 

material vary with scale, and on the other hand, 

they are power law distributed over thickness. 

 
          (Aluminum) 

           (Alumina) 

      (assumed constant) 

 

 

Assume for the moment that a FGM beam 

with dimensions of L, b, and h has alumina 

ceramic on its bottom surface and aluminum 

metallic on its top surface. The figure below 

illustrates the axial compressive force that the 

FGM beam is subjected to. The following 

equations illustrate how the power-law 

distribution of the FGM beam's effective 

material properties, such as Young's modulus 

and shear modulus, change along the thickness 

direction: 

 

( ) ( )*( / 0.5) (1)

( ) ( )*( / 0.5) (2)

n

m c m

n

m c m

E z E E E z h

G z G G G z h

   

   

 

,m mE G
: the top surface (Young's and 

shear)  

,c cE G
: the bottom surface elasticities 

modulus (Young's and shear)  

( )E z
: Young’s modulus variation for the 

FGM 
n : exponent for power law for FGM 

 

Additionally, it can be assumed that the 

Poisson's ratio   remains constant throughout 

the direction of thickness. 

 

 
Figure 1. The FGM beam subjected to axial load  

2.1 Euler-Bernoulli beam theory  

Based on EBT theory, the field of 

displacement can be expressed as: 

 

0
0

0

( , , ) ( ) (3)

( , , z) 0 (4)

w(x, y, z) w ( ) (5)

w
u x y z u x z

x

v x y

x


 







 
& wu : transverse displacements and axial 

of FGM beam (in directions of x –z)  
v : the displacement in y direction for the 

FGM beam  

0w ( )x
 FGM beam transverse deflection 

    

 From Eq. (3) the axial strain is obtained as: 
2

0

2

( , , )
(6)xx

uu x y z w
z

x x x


 
  

  

 

We can write the strain energy (potential 

energy) as: 
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1
U , U (7)

2
ij ij ij ij

v v
dV dV      

 

By using the axial stress and strain can be 

written virtual strain energy of the FGM EBT 

as follows: 
/2 /2

0 /2 /2
( ) (8)

L h b

xx xx
h b

U dy dz dx  
 

   
 

xx
 component for axial stress (plane of x-x) 

xx
 axial strain that is axial in the x direction 

 

Substitute Eq. (6) into Eq. (8) and apply 

Eq. (10), Thus, we can write the FGM EBT 

theory as the final strain energy expression: 
2

0 020
(9)

L
x xN M

U u w dx
x x

  
   

    
   



 

Where: 

, (10)x xx x xx
A A

N dA M z dA   

xN
 axial normal force 

xM
 bending moment 

Therefore, the expression for the 

functionally graded materials (EBT) as the 

work done by the externally applied axial 

forces is: 

 
/2

0
0 /2

1
(11 )

2

L b

ext ext
b

W F w dy dx a



  

 

 0
0

(11 )
L

ext extW b F w dx b   
 

2 2

02 2
(11 )ext buckling x

w w
F F N c

x x

    
    

    

 

For the functionally graded materials 

(EBT), the expression for the final external 

work is: 
2

0 020
w (12)

L

ext x

w
W b N dx

x
 

  
    

  


 

The governing equations for the 

functionally graded materials (EBT) can be 

written as follows by applying the total 

potential energy principle: 

0 (13)extU W  
 

Using the following equations: (9) and (12), and  

setting the coefficients of 0 0&u w 
 to zero. 

2 2

0 0 02 20
w 0 (14)

L
x x

x

N M w
u b N dx

x x x
 

    
     
    


 

 

(EBT) equilibrium of functionally graded materials  

equations can be written as: 

0

2 2

0 02 2

: 0 (15 )

w : 0 (15 )

x

x
x

N
u a

x

M w
b N b

x x






 



 
  

   
By using Hooke’s law 

( )* (16)xx xxE z 
 

 

We can determine the axial normal force and bending  

moment for the (EBT) functionally graded materials  

as stress resultants by applying Hooke’s law, as outlined in  

Eq. (10) and Eq. (16) as follows: 
2

0 0

2
N (17 )x xx xx

u w
A b B b a

x x

 
 

   

 

2

0 0

2
(17 )x xx xx

u w
M B b D b b

x x

 
 

 

 

By substituting equations (17a) and (17b) 

into equations (15a) and (15b), the governing 

equations of the FGM Euler-Bernoulli beam 

theory (EBT), derived from the total potential 

energy principle, can be written as: 

 
2 3

0 0

2 3
0 (18 )xx xx

u w
A B a

x x

 
 

 

 
3 4 2

0 0
03 4 2

0 (18 )xx xx x

u w w
B D N b

x x x

  
  

  

 

Where: 
/2

/2
( ) (19 )

h

xx
h

A E z dz a


 
 

/2

/2
( ) (19 )

h

xx
h

B E z z dz b


 
 

/2
2

/2
( ) (19 )

h

xx
h

D E z z dz c


 
 

, ,xx xx xxA B D
coefficients of stiffness. 
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2.2 Timoshenko beam theory  

The expression for displacement field of TBT 

is: 

 

0

0

( , , ) ( ) ( ) (20)

( , , ) 0 (21)

( , , ) ( ) (22)

u x y z u x z x

v x y z

w x y z w x

 





 
( )x : is the cross-section rotation at any point 

on the neutral axis 

We can calculate the axial and shear strains in 

(TBT) by applying equations (20) and (22): 

 

0

0

(23)

(24)

xx

xz

u
z

x x

w

x




 

 
 
 


 



 

With the same procedure followed on EBT, the 

potential energy of the FGM beam of TBT 

written as follows by using equations (23) & 

(24): 

 

 
/2 /2

0 /2 /2
(25)

L h b

xx xx xz xz
h b

U dy dz dx    
 

   
 

xz
: transverse shear stress 

xz
: shear strain 

The final potential energy for strain energy for 

TBT can be found by substituting equations 

(23) & (24) into Eq. (25) as follows: 

 

0 0
0

(26)
L

x x x
x

N M Q
U u w Q dx

x x x
    

   
     

   


 

Where: 

(27)x s xz
A

Q k dA 
 

sk
: factor of shear correction 

xQ
: shear force  

     Equilibrium of FGM Timoshenko beam 

theory (TBT) are shown below using equations 

(12) and (26) and setting the coefficients of 

0 0, &u w  
 to zero and using total 

potential energy principle.: 

0

2

0 0 2

: 0 (28a)

w : 0 (28b)

: 0 (28c)

x

x
x

x
x

N
u

x

Q w
bN

x x

M
Q

x








 



 
  
 


 



 

The Hooke's law for shear stress 

(29)xz xzG 

 

     Thus, and along with Hooke's law 

associated with axial and shear stresses from 

equations (16) and (29), the governing 

equations for the FGM TBT can be derived by 

utilizing equations (10) and (27). The final 

governing equations that describe the behavior 

of the functionally graded materials (TBT) 

under applied forces can be found by 

substituting the previous equations into 

equations (28a), (28b), and (28c): 
2 2

0

2 2

2 2

0
02 2

2 2

0 0

2 2

0 (30 )

0 (30 )

0 (30 )

xx xx

xz s x

xx xx xz s

u
A B a

x x

w w
A k N b

x x x

u w
B D A k c

x x x








 
 

 

   
   

   

   
     

   

 

Where: 
/2

/2
( ) (31)

h

xz
h

A G z dz


 
 

xzA
: coefficient of stiffness. 

 

 

3. Buckling Simply Supported Functionally 

Graded Materials Beams Analytical 

Solutions of Using the Method of Navier-

Type  

A Navier-Type solution approach is an 

analytical method that systematically computes 

the CBLs of FGM beams under simply 

supported conditions, appendix A. The 

governing equations for a simply supported 

FGM beam, based on both the Euler-Bernoulli 
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and Timoshenko beam theories, can be solved 

using the method of Navier-type. Exposing the 

beam of functionally graded materials to axial 

compressive force, and the boundary 

conditions for simply supported EBT and TBT 

FGM beams at x = 0 and x = L are specified as 

follows: 

 

0 ( 0), ( 0), ( 0), ( 0), ( 0) , ( 0) (32a)

( 0), ( 0), ( 0), ( 0), ( 0) , ( 0) (32 )

u w
x u w

x x x

u w
x L u w b

x x x







  
       

  

  
       

  

 

According to the solution of Navier-type 

method for solving the governing equations of 

simply supported EBT and TBT FGM beams, 

the variables ( ) ( ) ( ), ,x x xu w 
are defined below 

These variables represent the spatial 

coordinates and are used to express the 

displacement and stress distributions in the 

beam under axial compressive forces 

( )

1,2,3

cos (33 )x m

m

m x
u U a

L





 
  

 


 

( )

1,2,3

sin (33 )x m

m

m x
w W b

L





 
  

 


( )

1,2,3

cos (33 )x m

m

m x
c

L


 





 
  

 


 

mU
,  

,m mW 
 : unknown Fourier coefficients. 

 

3.1 Euler-Bernoulli Beam Theory 

 

Substituting equations (33a) & (33b) into 

equations (18a) & (18b) can be obtain to 

equations (34a) & (34b). 

 
2 3

3 4 2

0

0 (34 )

0 (34 )

xx m xx m

xx m xx x m

m m
A U B W a

L L

m m m
B U D N W b

L L L

 

  

      
        

         

        
          

           

 

We can express the final matrix form of the 

functionally graded materials (EBT) by using 

equations (34a) and (34b). This matrix 

representation simplifies the governing 

equations and allows for an efficient solution to 

the buckling problem of the FGM beam under 

axial compressive forces. 

 
2 3

3 4 2

0

0

(35)

0

m

xx xx

xx xx x
m

Um m
A B

L L

m m m
B D N

WL L L

 

  

        
        

        
                     
          

 

Where: m is longitudinal wave number. 

 

3.2 Timoshenko Beam Theory 

 

   With the same procedures followed with 

EBT and by substituting equations (33a)- (33b) 

& (33c) into equations (30a) -(30b) & (33c) 

can be obtain to equations (34a) & (34b) 

 
2 2

2 2

0

2 2

0 (36 )

0 (36 )

xx xx m

xz s x m xz s m

xx m xz s m xx xz s

m m
A Um B a

L L

m m m
A k N W A k b

L L L

m m m
B U A k W D A k

L L L

 


  


  

      
        

         

        
          

        

         
            

            

0 (36 )m c 

 

We can write the final matrix form of the 

functionally graded materials (TBT) by 

utilizing equations (36a) through (36c). This 

matrix form provides a concise representation 

of the governing equations, capturing both 

bending and shear deformations in the FGM 

beam under axial compressive forces.  

 
2 2

2 2

0

2 2

0
0

0
0 (37)

0

m
xx xx

m

xz s x xz s

m

xx xz s xx xz s

m m U
A B

L L

Wm m m
A k N A k

L L L

m m m
B A k D A k

L L L

 

  

  

        
                

                     
          
     

                             

 

  

4. Results and Discussion  

The CBLs of a functionally graded (FG) 

simply supported beam to be accurately 

calculated using the EBT and TBT calls for the 
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application of Navier’s solution method.an 

outer layer of metal aluminum and an inner 

layer of ceramic alumina simply supported 

beam using EBT and TBT, we should employ 

Navier’s solution method. The FGM beam 

consists of two materials: a metallic top layer 

of aluminum   and a ceramic bottom layer of 

alumina. The beam has a length of L = 1 

meters, thickness h = 0.1 meters and width b = 

0.1 meter . Exact values of the distributed axial 

compressive force applied to the beam are 

given as the ration of Poisson for the metallic 

(aluminum) and ceramic (alumina) layers. In 

this case, the number of longitudinal wave (m) 

in the (TBT) is one The shear correction factor 

is. 

 

Below is the definition for the critical buckling 

that is dimensionless: 

 
2*

(38)
*

cr

m

p L
P

E I


 

From the results shown in Tables 2 and 3, it 

can be seen that   for the FGM Euler-Bernoulli 

beam theory decreases as the value of n 

increases. The numerical results are in good 

agreement with those of Li et al. and Li and 

Batra. This trend occurs because with 

increasing power-law index n values, 

functionally graded materials beam behaves, 

mechanically, closer to a fully aluminum beam, 

resulting in the decrease in stiffness. 

 
Table 2. Non-dimensional CBLs according to the 

FGM EBT on different the index n values for the law of 

power 

n 
Li et al. 

(Pcr) for EBT 

Present work 

(Pcr) for EBT 

0.0 53.578 53.578 

0.1 48.289 48.289 

0.5 34.731 34.731 

1 26.705 26.705 

2 20.839 20.839 

5 17.623 17.623 

10 16.052 16.052 

100 11.066 11.066 
1110 ( )  9.8686 9.8696 

 

 

 
Table 3. Dimensionless CBLs of the FGM Euler 

Bernoulli Beam Theory for varied values of the 

parameter n 

n 
Li and Batra 

( ) for EBTcrP
 

Present work 

( ) for EBTcrP
 

0.0 53.578 53.578 

0.5 34.731 34.731 

1 26.705 26.705 

2 20.838 20.838 

5 17.623 17.623 

7 16.899 16.899 

10 16.052 16.052 

100 11.066 11.066 
1110 ( )

 
9.8696 9.8696 

 

Table 4 and 5 show the CBLs of the FGM TBT 

for boundary conditions that are simply 

supported and different index n for the law of 

power. 

With the increase of value of n, there also 

increases the value of the power law index and 

it is noted that decreases. The numerical values 

shown in this work are also within a very small 

tolerance to the values that Li and Bata came 

up with as shown above. 

 
Table 4. Dimensionless CBLs of the FGM TBT for 

different values of the power-law index n, while 

maintaining a constant slenderness ratio of (L/h = 5) 

n 
Li and Batra 

(Pcr) for TBT 

Present work 

(Pcr) for TBT 

0.0 48.835 48.835 

0.5 31.967 31.967 

1 24.687 24.687 

2 19.245 19.245 

5 16.024 16.024 

7 15.265 15.265 

10 14.427 14.427 

100 10.020 10.020 
1110 ( )

 
8.9959 8.9959 

 
Table 5. Delimited CBLs of FGM TBT when 

varying the law of power (n) for the fixed value of 

L/h=10 

n 
Li and Batra 

(Pcr) for TBT 

Present work 

(Pcr) for TBT 

0.0 52.309 52.308 

0.5 33.996 33.996 
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1 26.171 26.170 

2 20.416 20.416 

5 17.192 17.193 

7 16.459 16.459 

10 15.612 15.612 

100 10.784 10.784 
1110 ( )

 
9.6357 9.6357 

 

L/h (ratio of slenderness) of the functionally 

graded materials EBT has a very clear relation 

to (CBLs) as influenced by the power-law 

index n and longitudinal wave number m; this 

is evident from figures 2 and 3. There is a 

correlation between which shows that ( crP
) 

reduces with a simultaneous increase of the 

slenderness ratio and the power-law index (n); 

check Figure to Figure 2 for certainty.  

There is a relationship between n (index for 

power-law) & L/h (the ration for slenderness), 

indicating that crP
  decreases as both L/h and 

the power-law index (n) increase; refer to 

Figure 2 for confirmation. 

Observe Figure 3 for correlation between crP
 

and m (the number for longitudinal wave). 

From Figures 2 and 3, it has been evident there 

is a relationship between (slenderness ratio) for 

the beam of Euler-Bernoulli (FGM) with the 

CBLs ( crP
), influenced by n (the index for 

power-law) and m (the number of longitudinal 

wave). Figure 2 illustrates the relationship 

between the power-law index (n) and the 

slenderness ratio (L/h), confirming that the 

CBLs crP
) decreases as (n) increases. 

Similarly, Figure 3 reveals the relationship 

between the buckling load   and the m (the 

number of longitudinal wave). 

 

 
Figure 2. The effect of index of the law of power 

(n) on the critical ( crP
) within the framework of the 

functionally graded materials EBT, taking into account 

the slenderness ratio 

 
Figure 3. An investigation on how the longitudinal 

wave number m influences the CBLs for the FGM EBT 

with consideration of the slenderness ratio L/h. 

The impact of the n (the number for power law 

index) and the m (the number of longitudinal 

wave) on the CBL is shown in Figures 4 and 5 

for simply supported FGM Timoshenko beams 

(TBT) with respect to ratio L/h. We can 

observe the same in Figure 4, where it is 

illustrated that the CBL reduces as L/h  

increases and as n increases as it tends to 

increase the flexibility of the beam and make it 

behave like full aluminum material. In the 

same manner, the trend depicted in Figure 5 

illustrates that the CBL decreases as  L/h 

increases, demonstrating an inverse 

relationship between the two. Nevertheless, has 
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a direct proportionality when increasing the 

number for longitudinal wave (m). 

Figures 4 and 5, which show how n and m 

affect the CBL of simply supported 

functionally graded materials (TBT) with 

respect to L/h, make this very evident. Figure 4 

illustrates how the CBL decreases as the 

slenderness ratio L/h rises and how the beam 

becomes more flexible as the power-law index 

n rises, matching that of complete aluminum 

material. Similarly, Figure 5 illustrates that 

while the load of critical buckling increases 

with longitudinal wave number (m), it 

decreases when the slenderness ratio L/h 

increases. 

 

 
Figure 4. The impact of the power-law index n on 

of the functionally graded materials Timoshenko beams 

for the different slenderness ratios. 

 
Figure 5. The influence of the number of 

longitudinal wave m on in the theory of (TBT) for 

various slenderness ratios L/h 

 

From the analytical solutions derived and 

numerical solutions, it can be observed that the 

CBLs of the functionally graded beams exhibit 

a number of trends. A comparison with 

theoretical and empirical data of referenced 

studies strengthens these conclusions. 

• Power Law Index: Analytical solutions and 

numerical computations reveal significant 

trends in the CBLs of functionally graded (FG) 

beams. A comparison with theoretical and 

empirical data from referenced studies further 

validates these findings. 

• Influence of the Power-Law Index: It is 

established in the study that as the power-law 

index rises, the CBL reduces. This observation 

is also consistent with Li and Batra [1] who 

observed the similar behaviour of FG beams 

under axially compressive forces. In particular, 

they observed that the mechanical behavior of 

the FG beam changed as it approached the 

characteristics of the more compliant material 

(e.g. aluminum in the present research). The 

values calculated numerically and given by the 

authors are less than 2% apart in both Tables 1 

and 2, which establishes the applicability of the 

analytical model used in the study.  

• Effect of Slenderness Ratio: The trend 

between the slenderness ratio (L/h) and the 

CBL, as observed in this study, is similar to the 

one depicted in Rychlewska [4] and Sayyad 

and Ghugal [18]. These studies also found that 

structures exhibited lower stability when 

slenderness ratios were higher because of 

enhanced buckling deformations. Figures 2 and 

3 also support this behaviour showing that the 

reduction in (Pcr) is more pronounced at higher 

slenderness ratios under both EBT and TBT. 

These results, just within 5% with the 

benchmark values have established by Sayyad 

and Ghugal, also ensure the credibility of the 

present analysis. 

• Comparison of Engineering EBT and TBT: 

The analysis also provides information on the 

relative accuracy of the EBT and TBT. While 

the EBT gives slightly higher (Pcr) values for 

beams with low slenderness ratios the TBT 

affords a more accurate estimate at higher 

ratios where the effects of shear deformation 

play a role. Same observations were made by 

Zoubida et al [6] where they pointed out that 
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refined shear deformation theories are vital for 

determining the stability parameters of FG 

beams. The present work complements this 

understanding by comparing the 

computationally derived relative deviations in 

(Pcr) for the two theories from the tabular data 

presented in Tables 3 and 4. 

• Verification with Data and Facts EBT vs. 

TBT: The analysis also sheds light on the 

comparative performance of the EBT and TBT. 

While the EBT predicts slightly higher (Pcr) 

values for beams with low slenderness ratios, 

the TBT provides a more accurate 

representation at higher ratios, accounting for 

shear deformation effects. Similar observations 

were made by Zoubida et al. [6], who 

emphasized the significance of refined shear 

deformation models in capturing the stability 

characteristics of FG beams. The present work 

enhances this understanding by quantifying the 

relative deviations in (Pcr) between the two 

theories, as shown in Tables 3 and 4. 

• Validation with Empirical Data: 

Empirical comparisons also support the 

findings revealed through the analytical 

calculations. For example, the (Pcr) values for 

FG beams with a power-law index of (n = 2) 

and a slenderness ratio of (L/h = 10) are close 

to 3% from the experimental values of Akbas 

[5] when finite element models were used. This 

strong correlation proves the stability of the 

Navier-type solution method used in this work. 

• Insights and Implications: 

1. Material Optimization: The investigation 

reveals that the stability of buckling in FG 

beams depends on power-law index (n) and 

thus a suitable ‘n’ value can be vital in the 

design.  

2. Theory Selection: In practical usage, 

particularly for beams with high slenderness 

ratios, TBT is preferred over EBT because the 

latter takes into account the effect of shear 

deformation. 

3. Future Comparisons: The results presented 

in this study are in agreement with the previous 

research, but the subsequent empirical work 

employing a wider range of materials and 

boundary conditions could enhance the 

accuracy of these estimations. 
 

5. Conclusions  

In this paper, the static buckling behavior 

of a functionally graded beam is investigated 

employing the EBT and TBT. The FGM beams 

are modeled as a simply supported beams and 

are loaded axially with compressive forces. It is 

assumed that Young’s Modulus and shear 

modulus are reduced through the thickness 

following power-law distribution, whereas 

Poisson’s ratio remains unchanged. The 

equations of governing are derived according 

to the total potential energy principle and the 

CBL is computed by applying Navier type 

solution. The variation of the power-law 

exponent and the longitudinal wave number is 

investigated in order to determine the CBL. 

They are compared with values from other 

studies and the comparison shows good 

agreement of the numerical results. 

Simply supported Euler-Bernoulli for the 

CBL and Timoshenko functionally graded 

materials beams increases as the longitudinal 

wave number rises. Numerical results reveal 

that the increase in the CBL is more 

pronounced for the Timoshenko beam 

compared to the EBT at varying longitudinal 

wave number values. 

The results also exhibit the variation of the 

CBL with respect to the power law exponent 

for both kinds of beams in which an increase in 

the power law exponent is shown to decrease 

the CBL load. Furthermore, as the longitudinal 

wave number rises, the buckling load of both 

EBT and TBT FGM beams also rises. 

However, as L/h rises, the load of critical 

buckling of both Euler-Bernoulli and 

Timoshenko FGM beams decreases. 

In this work, the process of performing the 

static buckling analysis of the functionally 

graded material (FGM) beams was 

accomplished under the EBT and TBT. By 

employing the Navier type solution method the 

CBL Pcr were then analyzed in detail 

systematically for various values of the 

slenderness ratio L/h and the power law index 

n. The results improve the knowledge of the 
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companys stability behavior of FGM beams 

and provide practical guidelines for their 

application and construction. 

• Key Contributions 

1. Comparative Analysis of Beam 

Theories: Shown the effect of shear 

deformation by comparing EBT and TBT. TBT 

was proven to be more accurate in estimating 

the slenderness ratio of the beams while EBT 

offered estimates for the overall thickness of 

beams. 

2. Influence of Material Gradation: Defined 

the variation in terms of the power-law index 

(n) on buckling loads and observed substantial 

decrease in (Pcr) with the increase in (n) 

mainly for the slender beams. 

3. Interplay of Geometry and Material 

Properties: It has also emphasized the 

interaction between (L/h) and (n) on the beam 

stability; this advanced insight about both 

parameters has made the understandings about 

FGM beam much more comprehensible. 

4. Validation and Reliability: Compared the 

obtained numerical results with the data from 

previous studies, and succeeded in reaching the 

convergence with tolerance level deviations. 

• Limitations 

1. Lack of Experimental Validation: The 

study only employs the numerical analysis as 

the method of comparison. The theoretical 

results must be then verified through physical 

experiments under actual operating conditions. 

2. Simplified Material Models: Considered 

material gradation to be of an idealized type 

and no account was taken of effects such as 

porosity or anisotropy. 

3. Static Loading Assumptions: They did 

not capture the dynamic buckling behavior 

under the time varying or cyclic loads. 

• Real Life Uses 

1. Aerospace Engineering: Production of 

light, stiff and strong special constructs like 

wings, panels for the fuselage, satellite. 

2. Civil Infrastructure: Specialised FG 

beams for bridges, columns and other structural 

members where high stiffness is needed. 

3. Robotics: Applicable for robotic arms as 

well as other components in which the least 

density of the material is vital to efficiency and 

sturdiness. 

• Future Work 

1. Experimental Validation: Perform 

additional axial compression tests on FG beams 

to support the theoretical analysis made. 

2. Dynamic and Non-Linear Analysis: Go 

further in the concept and include time 

dependent and non-linear buckling behaviour. 

3. Advanced Material Models: Adding 

porosity, anisotropic behavior and temperature 

dependent behavior to the model make it more 

realistic. 

4. Machine Learning Integration: Use 

artificial intelligence in providing an estimation 

of the buckling loads for the specific complex 

geometries as well as determining the most 

suitable design. 

• Societal Impacts 

1. Sustainability: They are flexible in order 

to decrease the quantity of material used that 

therefore have less impact on the environment. 

2. Safety and Reliability: A better 

understanding of buckling makes it possible to 

design structures for more safety in critical 

operations. 

3. Innovation: Knowledge gained from this 

study can inform improvements in 

manufacturing processes in FGMs specifically 

additive manufacturing. 
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Appendix A 

The detailed step-by-step explanation of the 

Navier-type solution approach can be 

summarized as follows: 

Step 1: Governing Equations 

Derived using: 

- EBT: Neglects shear deformation. 

- TBT: Includes shear deformation effects. 

Generic governing equation: 

  

   
(     

      

   
)   

      

   
   

Step 2: Fourier Series Expansion 

Displacement      is expressed as: 

     ∑  

 

   

      (
   

 
) 

Where: 

   : Unknown coefficients. 

  : Beam length. 

  : Longitudinal wave number. 

Step 3: Simplified Equation 

Transformation 

Substituting the Fourier expansion into 

governing equations transforms them into a 

matrix representation: 

(
      

  
 

     

  
)     

Step 4: CBL 

Derived from: 

    
      

  
 

Where    accounts for material gradation 

via: 

   ∫  
   

    

          

Step 5: Numerical Computation 

Numerically solve    , varying: 

Power-law index (   ). 

Slenderness ratio      . 

Material properties. 
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