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Abstract 

     The monoform concept is defined as a module in which every nonzero 

submodule is rational. The primary goal of this research is to study this class of 

modules in terms of pure property, named purely monoform modules. It constitutes 

an extension of the monoform modules; in fact, the monoform modules are properly 

included in the class of purely monoform modules. Many characteristics of a purely 

monoform module have been offered as analogues to those in monoform modules. 

A discussion of how this class of modules relates to other related modules is 

considered, like almost monoform, purely uniform, purely quasi-Dedekind and 

purely prime modules. Besides that, other characterizations of the purely monoform 

module have been given similar to those known and satisfied in the monoform 

modules. 

 

Keywords: Rational submodules, Pure submodules, Monoform modules, Purely 
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 المقاسات أحادية الصيغة المتعلقة بخاصية النقاء 
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 الخلاصة 
تُعرّف المقاسات أحادية الصيغة على أنها تلك المقاسات التي كل مقاس جزئي غير صفري فيها يكون       

بواسطة   المقاسات  من  الصنف  هذا  دراسة  هو  البحث  هذا  من  الأساسي  الهدف  ان  النقاء،  نسبياً.  خاصية 
ان   الواقع  في  الصيغة،  أحادية  للمقاسات  امتداداً  يشكل  انه  النقية.  الصيغة  أحادية  بالمقاسات  عليه  وأطلقنا 
أحادية   المقاسات  من خواص  العديد  الصيغة.  أحادية  المقاسات  فعلياً  تحوي  النقية  الصيغة  أحادية  المقاسات 
الصيغة النقية قُدّمت في هذا البحث والتي تكون مناظرة للصفات المتحققة في المقاسات أحادية الصيغة. كما  
تم مناقشة علاقة هذا النوع من المقاسات بمقاسات أخرى ذات العلاقة، مثل المقاسات أحادية الصيغة تقريباً،  
تم   ذلك،  جانب  الى  النقية.  الاولية  والمقاسات  النقية  الديديكاندية  شبه  المقاسات  النقية،  المنتظمة  المقاسات 
اعطاء تشخيصات أخرى للمقاسات أحادية الصيغة النقية مناظرة لما هو متحقق ومعروف في مفهوم المقاسات  

 الأحادية النقية.
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1. Introduction 

     Many researchers studied monoform modules such as H.H. Storrer, J. Zelmanowitiz, 

I.M.A. Hadi, A. Hajikarimi and A.R. Naghipour. This paper aims to generalize this class of 

modules by using the pure property. This new concept is named purely monoform modules. 

Rational submodule T in a module M (shortly, T ≤𝑟 M) is defined as HomR(
M

T
, ℰ(M))=0, 

ℰ(M) is indicated to the injective envelope of M, [1, P.274]. Monoform is a module in which 

every nonzero submodule is rational, [2]. We denoted to the pure submodule T  of M by 

T≤𝑝𝑢M, and it is defined as T ∩ HM = HT for every ideal H of R, [3]. 

 

     There are three sections in this article. In section two, purely monoform modules are 

studied. Various properties and characterizations of this type of module are presented and 

discussed that are comparable to the results that are known in the polyform module, Among 

the main of these outcomes are listed below:  

• Consider the following for any module M satisfying Condition 2.5.  

i.All partial endomorphisms f: N⟶M with a nonzero pure submodule N≤M having zero 

kernels in their domains (i.e., f is monomorphism). 

ii.HomR(
M

N
, ℰ(M))=0 for each nonzero pure submodule N of M. (i.e., M is a purely monoform 

module). 

Then (i) ⟹ (ii). 
See Proposition 2.6 

• If a module M is purely monoform and satisfies Condition 2.7, then all partial 

endomorphisms f: N⟶M where N is a nonzero pure in M have zero kernels in their domains 

(i.e., f is monomorphism). See Proposition 2.8. 

 

• If M is a purely monoform module then the kernel of f: M⟶ ℰ(M) is equal to 0 for each 

nonzero homomorphism f. See Proposition 2.10. 

           In section three, another characterization and partial characterization of purely 

monoform modules are given such as the following theorems: 

• A module M is purely monoform if and only if any one of the following is achieved:   

i.M is a purely uniform and PF-polyform module. 

ii.M is a purely P-uniform and PF-polyform module. 

See Theorem 3.11. 

            This kind of module  relationship with other relevant concepts is taken into 

consideration, including the following theorems: 

• The statements below are equivalent to any module M on a regular ring R. 

i. M is almost monoform; 

ii. M is purely monoform; 

iii. M is monoform;  

iv. M is a purely P-uniform and PF-polyform module. 

See Theorem 3.13. 

• Take a quasi-Dedekind ring R and the below statements:  

1. R is polyform. 

2. R is QI-monoform. 

3. R is monoform. 

4. R is purely monoform. 

Then (1) ⇒ (2) ⇒ (3) ⇒ (4). 

See Theorem 3.21. 

      It is worth noting that any ring mentioned in this work has an identity and commutative, 

all modules are unitary left R-modules. They are indicated by R and M respectively. 
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2. Purely monoform modules 

     This section introduces an extension of the monoform module, called a purely monoform 

module. We start with its definition. 

Definition 2.1: A nonzero module M is termed purely monoform if every nonzero T≤𝑝𝑢M is 

rational. If R is a purely monoform R-module, then R is named a purely monoform ring. 

Note: From now on, we will write mono instead of monoform to avoid plagiarism. 

Remarks 2.2: Each mono module is purely mono because, in the mono module, every 

nonzero submodule of M is rational, hence every nonzero pure is rational. The reverse is not 

true, for instant 𝑍𝑝∞ as Z-module, is a purely mono Z-module since 𝑍𝑝∞ itself is the only 

nonzero pure submodule and 𝑍𝑝∞ ≤𝑟 𝑍𝑝∞. In contrast, 𝑍𝑝∞ is not mono since the nonzero 

submodule <
1

𝑃
+Z> of 𝑍𝑝∞ is not rational in 𝑍𝑝∞. 

Remarks and examples 2.3: 

1. In the class of F-regular modules, there is no difference between purely mono and mono 

modules, where an R-module M is termed F-regular if every submodule of M is pure, [4]. 

2. The Z-module 𝑍4 is purely mono, since 𝑍4 contains only one nonzero pure submodule 

which is 𝑍4, and it is rational in itself.  

3. As the only nonzero pure in a simple module is itself, Besides that it is a rational 

submodule, so every simple module is purely mono. 

4. A semisimple module is not purely mono, since in a semisimple module say M all 

submodules are direct summands, and clearly, the only rational submodule in M is itself. 

 

     A pure simple is a nonzero module in which the only pure submodules are only (0) and 

itself, [5]. Examples of such modules are the Z-modules Z and Q, where Z is the integers and 

Q is the set of rational numbers. 

 

5. Any pure simple module is purely mono. Indeed, the only nonzero pure submodule of 

this kind of module is itself which is rational. 

6. Every purely mono module is indecomposable.  

Proof: Take a purely mono M, and assume the contrary, so  T≨M and G≨M such that 

M=T⨁G. Now, HomR(
M

T
, ℰ(M)) HomR(G, ℰ(M))≠0, which contradicts the assumption. 

7. Any integral domain is a purely mono ring. In fact, it is known that any integral domain 

is a mono ring, hence it is purely mono. 

 

The next result concerns the hereditary property of a purely mono  

module. 

 

Proposition 2.4: A nonzero pure submodule of a purely mono is itself purely mono. 

Proof: Take a nonzero pure submodule N of M and a pure submodule T of N. By [3], T is 

pure in M. Since M is a purely mono module, then T≤𝑟M, hence T≤𝑟N, [1, Proposition 8.7, 

P.274]. 

 

Condition 2.5: For any submodules T≤ B≤ U. If T≤𝑝𝑢U, then B ≤𝑝𝑢U. 

      In view of [2], a mono module is defined as all nonzero partial endomorphisms of M are 

monomorphisms. For a purely mono module, the following is obtained. 

 

Proposition 2.6: If M satisfies Condition 2.5 and:  

i.All partial endomorphisms f: N⟶M with a nonzero pure submodule N of M have zero 

kernels in their domains (i.e., f is monomorphism). 



Ahmed and Hasan                                  Iraqi Journal of Science, 2025, Vol. 66, No. 5, pp: 2038-2047                                     

 

2041 

ii.HomR(
M

N
, ℰ(M))=0, for each nonzero pure submodule N of M. (i.e., M is a purely mono 

module). 

Then (i) ⟹ (ii): 

Proof: Consider (i), and take a nonzero pure submodule N of M. Assume that f: 
M

N
⟶ ℰ(M) 

is a homomorphism. If f≠0, then m+N∈
M

N
  with f(m+N)=ḿ≠0, ḿ ∈ ℰ(M). Since 

M≤𝑒 ℰ(M), so r∈R with 0≠rḿ∈M. Put rm ́=x. Define 𝜑: N+Rm ⟶ RxM by 𝜑(n+rm)=rx 

nN, rR. To prove that 𝜑 is well-defined, assume that 𝑛1+𝑟1m=𝑛2+𝑟2m where 𝑛1, 𝑛2∈N, 

𝑟1,𝑟2∈R, that is 𝑛1-𝑛2=(𝑟1-𝑟2)m∈N. But  

f [(𝑟1-𝑟2)(m+N)]=f [(𝑟1-𝑟2)m+N]=0.                        ………...(1) 

Also, 

f(𝑟1-𝑟2)(m+N)=(𝑟1-𝑟2)f(m+N)= (𝑟1-𝑟2)ḿ.                          ….…(2) 

 

From (1) and (2) we get (𝑟1-𝑟2)ḿ=0, that is 𝑟1ḿ=𝑟2ḿ, then 𝑟1𝑟ḿ=𝑟2𝑟ḿ, hence 𝑟1x=𝑟2𝑥. This 

implies that 𝜑(𝑛1+𝑟1m)=𝑟1x = 𝜑(𝑛2+𝑟2m)= 𝑟2x, therefore, 𝜑 is well-defined. Also, 𝜑 is a 

nonzero homomorphism. It remains to prove that N⊆ker𝜑, let n∈N that is n=n+0m, so that 

𝜑(n)=0x=0, that is N⊆ker𝜑. Now, since Nker𝜑 M and N≤𝑝𝑢M, by Condition 2.5, ker𝜑 

≤𝑝𝑢M. Now, ker𝜑  N+Rm  M, again by Condition 2.5, we have N+Rm ≤𝑝𝑢M. From (i), 

ker𝜑 =0, therefore, N=0, which is a contradiction, thus f=0. 

 

     The following condition is useful to prove the other direction of Proposition 2.6.  

Condition 2.7: For all submodules T, D and H with T≤ D≤ H. If D≤𝑝𝑢H, then T≤𝑝𝑢 H. 

 

Proposition 2.8: If M is a purely mono module and satisfies Condition 2.7, then all partial 

endomorphisms f: N⟶M with 0≠N≤𝑝𝑢M, have zero kernels in their domains (i.e., f is 

monomorphism). 

Proof: Take a purely mono module M and a nonzero pure N≤ M, 0≠f: N→M. If kerf=0 then 

we are done, so assume that kerf≠0. By the first isomorphism theorem 
N

kerf
≅f(N), so there is 

an isomorphism Ψ: 
N

kerf
 → f (N). It is clear that Ψ ≠0. Take the inclusion homomorphism 

f(N) 
i

→ M, so we have the following sequence: 
N

kerf
 

Ψ
→ f(N) 

i
→ M 

. Since i∘Ψ≠0, then (i∘Ψ)( 
N

kerf
 )≠0. Now, kerf ≤ N ≤ M, and N is pure in M, so by Condition 

2.7, kerf is pure in M. In contrast, M is purely mono, which implies that kerf is a rational 

submodule. That means HomR(
N

kerf
, M)=0, [1, Proposition 8.6, P.274].  But this is impossible 

because i∘Ψ≠0, therefore kerf=0. 

 

     From Proposition 2.6 and Proposition 2.8, a partial characterization of the definition of a 

purely mono module is given as follows. 

Corollary 2.9: If a module M satisfies Condition 2.5 and Condition 2.7, then M is a purely 

mono module if and only if all partial endomorphisms f: N⟶M with N is a nonzero pure in 

M, having zero kernels in their domains.  

Proposition 2.10: For every nonzero f∈Hom(M, ℰ(M)), kerf equals zero whenever M is a 

purely mono module. 

Proof: Assume that M is a purely mono module and let f: M ⟶ ℰ(M) be a homomorphism 

with kerf ≠0. We have to show that f=0. Define g: 
M

kerf
 ⟶ ℰ(M) by g(m+kerf)=f(m) for all 
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m∈ℰ(M). To verify that g is well-defined, assume that x1+kerf=x2+kerf,  x1, x2∈M. This 

implies that (x1-x2)∈kerf that is f(x-x2)=0. Since f is a homomorphism, then f(x1)-f(x2)=0, 

hence f(x1)=f(x2). Moreover, since f≠0, then g≠0. This means HomR(
M

kerf
, ℰ(M))≠0 which is 

a contradiction, therefore, f=0. Thus, kerf=0.  

 

     A module M is named Artinian if every descending chain of submodules is terminated, 

[2].  

Proposition 2.11: Every nonzero Artinian module has a purely mono submodule. 

Proof: Take a nonzero Artinian module M, and N≤M. Our goal is to prove that N is a purely 

mono submodule. If N is purely mono then there is nothing to prove, otherwise, there is a 

nonzero pure submodule N1 of N such that N1 ≰𝑟N. Next, if N1 is purely mono then we are 

done, if not then there exists a nonzero pure N2 ≤ N1 with N1 ≰𝑟 N2. If N2 is mono then we 

are through, otherwise, there is a nonzero pure submodule N3 of N2  such that N3 ≰𝑟 N2. By 

continuing in this process, the descending chain of submodules is deduced: 

  

N ≥ N1 ≥ N2 ≥ N3 ≥ N4 ≥……  .  

 

After a finite number of steps, we must find a submodule in M which is a purely mono, 

otherwise, we would have a contradiction because M is an Artinian module. Thus, N is a 

purely mono submodule. 

 

3. Purely mono modules and related concepts 

     This part of our work is devoted to examining the connection of the purely mono module 

with other related modules such as polyform, P-polyform, P-uniform, essentially quasi-

Dedekind, purely quasi-Dedekind and SQD modules. 

        P-rational submodule N of M (shortly, N≤𝑝𝑟M) is pure and satisfies HomR(
M

N
, ℰ(M)) = 

0, [6].  An R-module M is called almost mono if every 0≠N≤M is P-rational in M, [7]. Note 

that the class of purely mono modules contains the class of almost mono modules properly, as 

shown in the following. 

Remark 3.1: Every almost mono module is purely mono. 

Proof: Since every almost mono module is mono, the last concept implies the purely mono 

module. Therefore, the outcome is achieved. 

 

     The opposite side of Remark 3.1 is not necessarily true, as shown in Example 2.3(2), we 

verify that 𝑍4 as Z-module, is purely mono. In contrast, that 𝑍4 is not almost mono, [7, 

Example 2.4(7)]. For the same reason, the Z-module 𝑍𝑝∞ is a purey mono module as we saw 

in Remark 2.2, while 𝑍𝑝∞ not almost mono module, [7, Example 2.4(8)]. 

Remark 3.2:  As a consequence of the above argument, one can deduce that the mono 

module lies between purely mono and almost mono modules. 

 

     However, the two concepts coincide under certain conditions, as shown in the following. 

Proposition 3.3: A module M is almost mono if and only if M is purely mono, provided that 

M is F-regular. 

Proof: Take 0≠N≤M. because M is F-regular, then N is pure. In addition, M is purely mono, 

therefore, N≤𝑟M. So, N is rational and pure, hence N≤𝑝𝑟M. The first direction is 

straightforward. 
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     A nonzero submodule T of M is said to be essential (shortly, T≤𝑒M) if T∩H≠0 for each 

0≠ H ≤ M, ([8], P.15). A nonzero module M is called purely uniform if every nonzero pure 

submodule of M is essential in M, [7].  

 

Proposition 3.4: All purely mono are purely uniform modules. 

Proof: Since in the purely mono every nonzero pure submodule is rational, and every rational 

submodule is essential, therefore, M is a purely uniform module. 

 

     T is a P-essential submodule of M (briefly T≤𝑝𝑒M) if  U≤𝑝𝑢M with T∩U=(0) implies 

U=(0), [9]. A module M is called P-uniform if every nonzero submodule of M is P-essential, 

[6]. In the following, we give a restriction of P-uniform modules. 

 

Definition 3.5: A purely P-uniform is a module in which all nonzero pure submodules are P-

essential. 

 

Remark 3.6: Each purely mono module is a purely P-uniform. 

 

Proof: Take a purely mono module M, that is every nonzero pure submodule of M is rational. 

But any rational submodule implies essential, hence P-essential. Thus, the result is achieved. 

 

     Recall that a module M is named polyform if all essential submodules of M are rational, 

[2]. As a special kind of this known concept, we define the following. 

 

Definition 3.7: A module M is named purely polyform if all nonzero pure and essential 

submodules of M are rational. 

 

Remark 3.8: Any purely mono module M is purely polyform. 

 

Proof: Since M is a purely mono module, then every nonzero pure (hence nonzero pure and 

essential) submodule of M is rational. Thus, the result is obtained. 

 

     An R-module M is said to be fully polyform if each P-essential submodule of M is 

rational. That is HomR(
M

N
, ℰ(M) = 0 for any P-essential N≤M, [6]. There is no direct 

implication between purely mono and fully polyform, this motivates the authors to define the 

following. 

 

Definition 3.9: A PF-polyform M is a module in which every nonzero pure and P-essential 

submodule of M is rational. 

 

Remark 3.10. Each purely mono module is a PF-polyform. 

 

Proof: Take N≤𝑒M. Since M is purely mono then every nonzero (especially each P-

essential) submodule of M is rational, so the result is done. 

     The following gives characterizations of purely mono 

 

Theorem 3.11: M is purely mono module if and only if any one of the following is achieved:   

1. M is a purely uniform and PF-polyform module. 

2. M is a purely P-uniform and PF-polyform module. 

Proof:  
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1. Take a purely mono module M. By Remarks 3.4 and 3.10, point (1) is obtained. For 

sufficiency, taking 0≠N≤M with N is pure. Now, M is a purely uniform implying that 

N≤𝑒M, hence N≤𝑝𝑒M, [9]. Besides that, M is fully polyform, so N≤𝑟M, this means M is 

purely mono.  

2. For the necessity, suppose that M is purely mono, by Remarks (3.6) and (3.10), point (2) is 

followed. Conversely, taking 0≠N≤M with N is pure. because M is P-uniform then N≤𝑝𝑒M. 

In addition, M is fully polyform implying N≤𝑟M. Thus, M is purely mono. 

 

      Next, the two modules purely mono and purely uniform are equivalent under certain 

conditions, as follows, previously, a module M is named multiplication if each N≤M can be 

written as N = HM for a certain ideal H of R, [10]. 

 

Theorem 3.12: For any multiplication module M with a prime annihilator, M is a purely 

mono module iff M is a purely uniform. 

 

Proof: The direction one is clear. For sufficiency, take a nonzero pure submodule N of M. If 

N≰𝑟M, then there exists V≤M, N≤V≤M such that HomR(
V

N
, M)≠0, i.e., there is 

0≠fHomR(
V

N
, M). This implies that there is x+N 

V

N
, xN such that f(x+N)=m≠0. Now, M 

is purely uniform implying that N≤𝑒M, so there exists r≠0 with 0≠rxN, ([1], Definition 

3.26). It follows that rm=rf(x+N) = f(rx+N)=0, hence rm=0. Besides that, M is multiplication 

means Rm=KM for some an ideal K of R. Hence rKM=(0). Thus, rKannRM. But annRM is 

a prime ideal of R, so we have two cases: either rannRM or KannRM. If rannRM, then 

rM=0, and since xM, thus rx=0, which is a contradiction. The other case is KannRM, 

hence Rm=KM=(0),  a contradiction since m≠0. Therefore, HomR(
V

N
, M)=0, that is N≤𝑟M, 

hence M is a purely mono. 

 

Theorem 3.13: For any module M on a regular ring R, the statements below are equivalent: 

1. M is an almost mono; 

2. M is purely mono; 

3. M is  mono; 

4. M is a purely P-uniform and PF- polyform. 

 

Proof: 

(1)⇒(2): It is clear by Remark 3.1. 

(2)⇔(3): The regularity of R implies M is F-regular, [3]. Additionally, by Remark 2.3(1), the 

two concepts, purely mono and mono modules are identical. 

(3)⇒(4): Let 0≠N≤M, By assumption, N≤𝑟M, hence N≤𝑒M, so that N≤𝑝𝑒M, [9]. Thus, M is 

P-uniform. Now, assume that K≤𝑝𝑒M, since M is a mono module then each nonzero pure 

(hence each nonzero pure and essential) submodule of M is rational, thus, K≤𝑟M, and the 

proof is completed. 

(4)⇒(1): Since M is a purely P-uniform and PF-polyform module, then by Theorem 3.11(2), 

M is a purely mono module. But R is a regular ring, then M is an F-regular module, [3]. And 

by Proposition 3.3, M is an almost mono module.  

         Next, point (4) of Theorem 3.13 can be replaced with (M is a purely uniform and PF- 

polyform R-module) as follows: 

Theorem 3.14: The below assertions are identical for any module M over a regular ring R,  

1. M is almost mono. 

2. M is purely mono. 
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3. M is mono. 

4. M is a purely uniform and PF-polyform. 

 

 

Proof: Similarly to the proof of Theorem 3.13, the only difference is in depending on 

Theorem 3.11(1) instead of Theorem 3.11(2). 

 

      The following lemma is needed, it is appeared in ( [1], Exc 8.4, P.284). 

 

Lemma 3.15: Let M be a nonsingular uniform module, then any nonzero submodule of M is 

rational in M. 

 

Proposition 3.16: Any nonsingular module M is a purely mono iff M is uniform. 

Proof: The direction one is evident. To prove sufficiency, Since M is nonsingular and 

uniform, then according to Lemma 3.15, M is mono, and by Remark 2.2, M is a purely mono 

module. 

 

     A quasi-invertible submodule T of M (briefly, T≤𝑝𝑞M ) is defined as Hom𝑅(
M

T
 , M) = 0. A 

quasi-Dedekind is a module in which every nonzero submodule is quasi-invertible, [11]. T is 

termed a purely quasi-invertible submodule of M (briefly, T≤𝑝𝑞𝑢M ) if T is pure and satisfies 

Hom𝑅(
M

T
 , M) = 0. A module M is said to be purely quasi-Dedekind if every proper nonzero 

pure submodule of M is quasi-invertible, [12].  

 

Proposition 3.17: Any purely mono module is purely quasi-Dedekind. 

Proof: Take a purely mono module M and a nonzero pure N< M. Because M is purely mono 

then N<𝑟M, hence N<𝑞𝑢M, [11]. In addition, N is pure, thus M is purely quasi-Dedekind. 

        We think the reverse of Proposition 3.17 is not generally true, but we didn't find an 

example. But as the following illustrates, that is valid when M is a multiplication module as 

shown below. Firstly, the following lemma is required. 

Lemma 3.18: ([11], Theorem 3.11, P.18) 

        Taking a multiplication module M with its annihilator is a prime ideal. N≤M is quasi-

invertible if and only if N is an essential submodule of M. 

 

Proposition 3.19: M is purely mono if and only if it is a purely quasi-Dedekind module, 

provided that M is multiplication. 

Proof: The direction one is just Proposition 3.17. Conversely, assume that M is purely quasi-

Dedekind and 0≠T≤𝑝𝑢M. By assumption, N≤𝑝𝑞𝑢M, hence N≤𝑞𝑢M. Moreover, M is a 

multiplication, so by Lemma 3.18, N≤𝑟M. hence M is purely mono. 

           Following [12], if a module M is satisfied  annR(M) = annR(N) for each nonzero pure 

submodule N of M,  then M is called purely prime.  

 

Proposition 3.20: For any R-module M, the implications (1)⇒(2)⇒(3) ⇒(4) hold, where: 

1. M is mono 

2. M is purely mono. 

3. M is purely quasi-Dedekind. 

4. M is purely prime. 

 

Proof:  

(1)⇒(2): By Remark 2.2 
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(2)⇒(3):  By Proposition 3.17. 

 (3)⇒(4): [12]. 

 

      The following result is satisfied only in the category of rings. Before that, a quasi-

invertibility mono or QI-mono is a module in which every nonzero quasi-invertible 

submodule is rational, [6]. 

 

Proposition 3.21: Let R be a quasi-Dedekind ring. Consider the following:  

1. R is a polyform ring. 

2. R is QI-mono. 

3. R is mono. 

4. R is purely mono. 

Then (1) ⇒ (2) ⇒ (3) ⇒ (4). 

Proof: 

(1) ⇒ (2): Let I be a nonzero quasi-invertible ideal of a ring R. By ([11], Corollary 2.3,    

P.12), I≤𝑒R. Since R is polyform, then I≤𝑟R. So that R is a QI-mono ring. 

(2)  ⇒ (3): Let R be a QI-mono ring, and I a nonzero ideal of R. Since R is quasi-

Dedekind, then I≤𝑞𝑢R. Besides that,  R is a QI-mono ring, therefore, I≤𝑟R. Thus, R is a 

mono ring.  

 (3) ⇒ (4): It is obvious. 

           

      The following are achieved since every integral domain is a quasi-Dedekind ring. 

Corollary 3.22: For any integral domain R, the implications (1) ⇒ (2) ⇒ (3) ⇒ (4) hold, 

where:. 

1. R is polyform. 

2. R is QI-mono. 

3. R is mono. 

4. R is purely mono. 

 

4. Conclusions 

      This work extends the class of mono into a new class of modules. The term for it is " 

purely mono module". This paper's main finding can be summed up as follows: 

1. Several useful properties of purely mono modules have been shown that are analogous to 

those found in the concept of mono modules. 

2. Other characterizations of purely mono modules are given.  

3. Discuss appropriate conditions for the equivalence of mono and mono modules. 

4. The connection of the purely mono module with other related concepts has been 

established such as almost mono, purely polyform, PF-polyform, purely quasi-Dedekind and 

purely prime modules. Nevertheless, the following figure can depict each of these 

relationships: 
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