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Abstract

The monoform concept is defined as a module in which every nonzero
submodule is rational. The primary goal of this research is to study this class of
modules in terms of pure property, named purely monoform modules. It constitutes
an extension of the monoform modules; in fact, the monoform modules are properly
included in the class of purely monoform modules. Many characteristics of a purely
monoform module have been offered as analogues to those in monoform modules.
A discussion of how this class of modules relates to other related modules is
considered, like almost monoform, purely uniform, purely quasi-Dedekind and
purely prime modules. Besides that, other characterizations of the purely monoform
module have been given similar to those known and satisfied in the monoform
modules.
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1. Introduction

Many researchers studied monoform modules such as H.H. Storrer, J. Zelmanowitiz,
I.M.A. Hadi, A. Hajikarimi and A.R. Naghipour. This paper aims to generalize this class of
modules by using the pure property. This new concept is named purely monoform modules.

Rational submodule T in a module M (shortly, T <,. M) is defined as HomR(% E(M))=0,

E(M) is indicated to the injective envelope of M, [1, P.274]. Monoform is a module in which
every nonzero submodule is rational, [2]. We denoted to the pure submodule T of M by
T<,uM, and it is defined as T " HM = HT for every ideal H of R, [3].

There are three sections in this article. In section two, purely monoform modules are
studied. Various properties and characterizations of this type of module are presented and
discussed that are comparable to the results that are known in the polyform module, Among
the main of these outcomes are listed below:

e Consider the following for any module M satisfying Condition 2.5.
ILAll partial endomorphisms f: N—M with a nonzero pure submodule N<M having zero
kernels in their domains (i.e., f is monomorphism).

ii.HomR(%, E(M))=0 for each nonzero pure submodule N of M. (i.e., M is a purely monoform

module).

Then (i) = (ii).

See Proposition 2.6

e If a module M is purely monoform and satisfies Condition 2.7, then all partial
endomorphisms f: N—M where N is a nonzero pure in M have zero kernels in their domains
(i.e., f is monomorphism). See Proposition 2.8.

e If M is a purely monoform module then the kernel of f: M— £(M) is equal to 0 for each
nonzero homomorphism f. See Proposition 2.10.
In section three, another characterization and partial characterization of purely
monoform modules are given such as the following theorems:
e A module M is purely monoform if and only if any one of the following is achieved:
I.M is a purely uniform and PF-polyform module.
ii.M is a purely P-uniform and PF-polyform module.
See Theorem 3.11.
This kind of module relationship with other relevant concepts is taken into
consideration, including the following theorems:
e The statements below are equivalent to any module M on a regular ring R.
i. M is almost monoform;
ii. M is purely monoform;
iii.M is monoform;
iv. M is a purely P-uniform and PF-polyform module.
See Theorem 3.13.
e Take a quasi-Dedekind ring R and the below statements:
1. Ris polyform.
2. R is Ql-monoform.
3. R is monoform.
4. R is purely monoform.
Then (1) = (2) = (3) = (4).
See Theorem 3.21.
It is worth noting that any ring mentioned in this work has an identity and commutative,
all modules are unitary left R-modules. They are indicated by R and M respectively.
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2. Purely monoform modules

This section introduces an extension of the monoform module, called a purely monoform
module. We start with its definition.
Definition 2.1: A nonzero module M is termed purely monoform if every nonzero T<,,,M is
rational. If R is a purely monoform R-module, then R is named a purely monoform ring.
Note: From now on, we will write mono instead of monoform to avoid plagiarism.
Remarks 2.2: Each mono module is purely mono because, in the mono module, every
nonzero submodule of M is rational, hence every nonzero pure is rational. The reverse is not
true, for instant Z,~ as Z-module, is a purely mono Z-module since Z,= itself is the only
nonzero pure submodule and Z,~ <, Z,~. In contrast, Z,~ is not mono since the nonzero

submodule < %+Z> of Z,~ is not rational in Z .

Remarks and examples 2.3:

1. Inthe class of F-regular modules, there is no difference between purely mono and mono
modules, where an R-module M is termed F-regular if every submodule of M is pure, [4].

2. The Z-module Z, is purely mono, since Z, contains only one nonzero pure submodule
which is Z,, and it is rational in itself.

3. As the only nonzero pure in a simple module is itself, Besides that it is a rational
submodule, so every simple module is purely mono.

4. A semisimple module is not purely mono, since in a semisimple module say M all
submodules are direct summands, and clearly, the only rational submodule in M is itself.

A pure simple is a nonzero module in which the only pure submodules are only (0) and
itself, [5]. Examples of such modules are the Z-modules Z and Q, where Z is the integers and
Q is the set of rational numbers.

5. Any pure simple module is purely mono. Indeed, the only nonzero pure submodule of
this kind of module is itself which is rational.

6. Every purely mono module is indecomposable.

Proof: Take a purely mono M, and assume the contrary, so 3 T=M and G=M such that

M=T@G. Now, HomR(%, E(M))= Homg(G, £(M))#0, which contradicts the assumption.

7. Any integral domain is a purely mono ring. In fact, it is known that any integral domain
is a mono ring, hence it is purely mono.

The next result concerns the hereditary property of a purely mono
module.

Proposition 2.4: A nonzero pure submodule of a purely mono is itself purely mono.

Proof: Take a nonzero pure submodule N of M and a pure submodule T of N. By [3], T is
pure in M. Since M is a purely mono module, then T<,.M, hence T<,.N, [1, Proposition 8.7,
P.274].

Condition 2.5: For any submodules T< B< U. If T<,,,,U, then B <,,,,U.
In view of [2], a mono module is defined as all nonzero partial endomorphisms of M are
monomorphisms. For a purely mono module, the following is obtained.

Proposition 2.6: If M satisfies Condition 2.5 and:

I.LAll partial endomorphisms f: N—M with a nonzero pure submodule N of M have zero
kernels in their domains (i.e., f is monomorphism).
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".HomR(%,e(M)):O, for each nonzero pure submodule N of M. (i.e., M is a purely mono

module).

Then (i) = (ii):

Proof: Consider (i), and take a nonzero pure submodule N of M. Assume that f: % — E(M)
is a homomorphism. If f#£0, then 3m+Ne% with f(m+N)=rh#0, m € £(M). Since

M<, E(M), so 3reR with 0£heM. Put rm’=x. Define ¢: N+Rm — RxcM by ¢@(n+rm)=rx
VvneN, reR. To prove that ¢ is well-defined, assume that n,+r;m=n,+r,m where n,,n,€N,
1,12 ER, that is ny-n,=(r;-r,)MEN. But
f [(r;-r)(M+N)]=f [(r;-12)m+N]=0. ... (1)
Also,
f(ri-r)(M+N)=(r;-r,)f(M+N)= (ry-r,)mh. . )

From (1) and (2) we get (r;-1,)m=0, that is r;th=r, 1, then r;rh=r,rm, hence r;x=r,x. This
implies that ¢ (n,+r;m)=r;x = @(n,+r,m)=r,X, therefore, ¢ is well-defined. Also, ¢ is a
nonzero homomorphism. It remains to prove that NCkerg, let neN that is n=n+0m, so that
@ (n)=0x=0, that is NSkerg. Now, since Nckergp M and N<,, M, by Condition 2.5, ker¢

<puM. Now, kergp — N+Rm c M, again by Condition 2.5, we have N+Rm <, M. From (i),
kerp =0, therefore, N=0, which is a contradiction, thus f=0.

The following condition is useful to prove the other direction of Proposition 2.6.
Condition 2.7: For all submodules T, D and H with T< D< H. If D<,,, H, then T<,,,, H.

Proposition 2.8: If M is a purely mono module and satisfies Condition 2.7, then all partial
endomorphisms f: N—M with 0#N<,, M, have zero kernels in their domains (i.e., f is
monomorphism).

Proof: Take a purely mono module M and a nonzero pure N< M, 0£f: N—M. If kerf=0 then

we are done, so assume that kerf#0. By the first isomorphism theorem %rf =f(N), so there is

an isomorphism ¥: %rf — £ (N). It is clear that ¥ #0. Take the inclusion homomorphism

f(N) R M, so we have the following sequence:

N ¥ i

. Since ioW#£0, then (io¥)( %rf);éo. Now, kerf <N <M, and N is pure in M, so by Condition
2.7, kerf is pure in M. In contrast, M is purely mono, which implies that kerf is a rational
submodule. That means HomR(%rf, M)=0, [1, Proposition 8.6, P.274]. But this is impossible

because ioW+0, therefore kerf=0.

From Proposition 2.6 and Proposition 2.8, a partial characterization of the definition of a
purely mono module is given as follows.
Corollary 2.9: If a module M satisfies Condition 2.5 and Condition 2.7, then M is a purely
mono module if and only if all partial endomorphisms f: N—M with N is a nonzero pure in
M, having zero kernels in their domains.
Proposition 2.10: For every nonzero feHom(M, £(M)), kerf equals zero whenever M is a
purely mono module.
Proof: Assume that M is a purely mono module and let f: M — £(M) be a homomorphism

with kerf #0. We have to show that £=0. Define g: —— — £(M) by g(m-+kerf)=f(m) for all
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me&(M). To verify that g is well-defined, assume that x,+kerf=x,+kerf, x;,x,€EM. This
implies that (x,-x,)€kerf that is f(x-x,)=0. Since f is a homomorphism, then f(x,)-f(x,)=0,

hence f(x,)=f(x,). Moreover, since f#0, then g#0. This means HomR(%rf, E(M))#0 which is
a contradiction, therefore, f=0. Thus, kerf=0.

A module M is named Artinian if every descending chain of submodules is terminated,
[2].
Proposition 2.11: Every nonzero Artinian module has a purely mono submodule.
Proof: Take a nonzero Artinian module M, and N<M. Our goal is to prove that N is a purely
mono submodule. If N is purely mono then there is nothing to prove, otherwise, there is a
nonzero pure submodule N; of N such that N; £,N. Next, if N; is purely mono then we are
done, if not then there exists a nonzero pure N, < N; with N; £, N,. If N, is mono then we
are through, otherwise, there is a nonzero pure submodule N5 of N, such that N; %, N,. By
continuing in this process, the descending chain of submodules is deduced:

N>N; >N, >N;>N,>......

After a finite number of steps, we must find a submodule in M which is a purely mono,
otherwise, we would have a contradiction because M is an Artinian module. Thus, N is a
purely mono submodule.

3. Purely mono modules and related concepts

This part of our work is devoted to examining the connection of the purely mono module
with other related modules such as polyform, P-polyform, P-uniform, essentially quasi-
Dedekind, purely quasi-Dedekind and SQD modules.

P-rational submodule N of M (shortly, N<,,.M) is pure and satisfies HomR(%, E(M)) =

0, [6]. An R-module M is called almost mono if every 0N<M is P-rational in M, [7]. Note
that the class of purely mono modules contains the class of almost mono modules properly, as
shown in the following.

Remark 3.1: Every almost mono module is purely mono.

Proof: Since every almost mono module is mono, the last concept implies the purely mono
module. Therefore, the outcome is achieved.

The opposite side of Remark 3.1 is not necessarily true, as shown in Example 2.3(2), we
verify that Z, as Z-module, is purely mono. In contrast, that Z, is not almost mono, [7,
Example 2.4(7)]. For the same reason, the Z-module Z,~ is a purey mono module as we saw
in Remark 2.2, while Z,. not almost mono module, [7, Example 2.4(8)].

Remark 3.2: As a consequence of the above argument, one can deduce that the mono
module lies between purely mono and almost mono modules.

However, the two concepts coincide under certain conditions, as shown in the following.
Proposition 3.3: A module M is almost mono if and only if M is purely mono, provided that
M is F-regular.

Proof: Take 0#N<M. because M is F-regular, then N is pure. In addition, M is purely mono,
therefore, N<,M. So, N is rational and pure, hence N<,.M. The first direction is
straightforward.
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A nonzero submodule T of M is said to be essential (shortly, T<,M) if TNnH=0 for each
0% H < M, ([8], P.15). A nonzero module M is called purely uniform if every nonzero pure
submodule of M is essential in M, [7].

Proposition 3.4: All purely mono are purely uniform modules.
Proof: Since in the purely mono every nonzero pure submodule is rational, and every rational
submodule is essential, therefore, M is a purely uniform module.

T is a P-essential submodule of M (briefly T<,.M) if V U<,,M with TnU=(0) implies
U=(0), [9]. A module M is called P-uniform if every nonzero submodule of M is P-essential,
[6]. In the following, we give a restriction of P-uniform modules.

Definition 3.5: A purely P-uniform is a module in which all nonzero pure submodules are P-
essential.

Remark 3.6: Each purely mono module is a purely P-uniform.

Proof: Take a purely mono module M, that is every nonzero pure submodule of M is rational.
But any rational submodule implies essential, hence P-essential. Thus, the result is achieved.

Recall that a module M is named polyform if all essential submodules of M are rational,
[2]. As a special kind of this known concept, we define the following.

Definition 3.7: A module M is named purely polyform if all nonzero pure and essential
submodules of M are rational.

Remark 3.8: Any purely mono module M is purely polyform.

Proof: Since M is a purely mono module, then every nonzero pure (hence nonzero pure and
essential) submodule of M is rational. Thus, the result is obtained.

An R-module M is said to be fully polyform if each P-essential submodule of M is
rational. That is HomR(%, E(M) = 0 for any P-essential N<M, [6]. There is no direct

implication between purely mono and fully polyform, this motivates the authors to define the
following.

Definition 3.9: A PF-polyform M is a module in which every nonzero pure and P-essential
submodule of M is rational.

Remark 3.10. Each purely mono module is a PF-polyform.

Proof: Take N<.,M. Since M is purely mono then every nonzero (especially each P-
essential) submodule of M is rational, so the result is done.
The following gives characterizations of purely mono

Theorem 3.11: M is purely mono module if and only if any one of the following is achieved:
1. Mis a purely uniform and PF-polyform module.

2. M is a purely P-uniform and PF-polyform module.

Proof:
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1. Take a purely mono module M. By Remarks 3.4 and 3.10, point (1) is obtained. For
sufficiency, taking 0=N<M with N is pure. Now, M is a purely uniform implying that
N<.M, hence N<,.M, [9]. Besides that, M is fully polyform, so N<,.M, this means M is
purely mono.

2. For the necessity, suppose that M is purely mono, by Remarks (3.6) and (3.10), point (2) is
followed. Conversely, taking 0#N<M with N is pure. because M is P-uniform then N<, .M.
In addition, M is fully polyform implying N<,.M. Thus, M is purely mono.

Next, the two modules purely mono and purely uniform are equivalent under certain
conditions, as follows, previously, a module M is named multiplication if each N<M can be
written as N = HM for a certain ideal H of R, [10].

Theorem 3.12: For any multiplication module M with a prime annihilator, M is a purely
mono module iff M is a purely uniform.

Proof: The direction one is clear. For sufficiency, take a nonzero pure submodule N of M. If
N%£,M, then there exists V<M, N<V<M such that HomR(ﬁ, M)#0, i.e., there is

0#£fe HomR(E, M). This implies that there is x+N e % X¢N such that f(x+N)=m#0. Now, M

is purely uniform implying that N<.M, so there exists r#0 with 0#rxeN, ([1], Definition
3.26). It follows that rm=rf(x+N) = f(rx+N)=0, hence rm=0. Besides that, M is multiplication
means Rm=KM for some an ideal K of R. Hence rKM=(0). Thus, rKcanngM. But anngM is
a prime ideal of R, so we have two cases: either reanngM or KcanngM. If reanngM, then
rM=0, and since xeM, thus rx=0, which is a contradiction. The other case is KcanngM,

hence Rm=KM=(0), a contradiction since m#0. Therefore, HomR(ﬁ, M)=0, that is N<,.M,
hence M is a purely mono.

Theorem 3.13: For any module M on a regular ring R, the statements below are equivalent:
1. Misan almost mono;

2.  Mis purely mono;

3. Mis mono;

4. M is a purely P-uniform and PF- polyform.

Proof:
(1)=(2): Itis clear by Remark 3.1.
(2)<=(3): The regularity of R implies M is F-regular, [3]. Additionally, by Remark 2.3(1), the
two concepts, purely mono and mono modules are identical.
(3)=(4): Let 0#N<M, By assumption, N<,M, hence N<.M, so that N<,,.M, [9]. Thus, M is
P-uniform. Now, assume that K<,,M, since M is a mono module then each nonzero pure
(hence each nonzero pure and essential) submodule of M is rational, thus, K<, M, and the
proof is completed.
(4)=(1): Since M is a purely P-uniform and PF-polyform module, then by Theorem 3.11(2),
M is a purely mono module. But R is a regular ring, then M is an F-regular module, [3]. And
by Proposition 3.3, M is an almost mono module.

Next, point (4) of Theorem 3.13 can be replaced with (M is a purely uniform and PF-
polyform R-module) as follows:
Theorem 3.14: The below assertions are identical for any module M over a regular ring R,
1. Misalmost mono.
2. Mis purely mono.
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3. M s mono.
4. M is a purely uniform and PF-polyform.

Proof: Similarly to the proof of Theorem 3.13, the only difference is in depending on
Theorem 3.11(1) instead of Theorem 3.11(2).

The following lemma is needed, it is appeared in ( [1], Exc 8.4, P.284).

Lemma 3.15: Let M be a nonsingular uniform module, then any nonzero submodule of M is
rational in M.

Proposition 3.16: Any nonsingular module M is a purely mono iff M is uniform.

Proof: The direction one is evident. To prove sufficiency, Since M is nonsingular and
uniform, then according to Lemma 3.15, M is mono, and by Remark 2.2, M is a purely mono
module.

quasi-Dedekind is a module in which every nonzero submodule is quasi-invertible, [11]. T is
termed a purely quasi-invertible submodule of M (briefly, T<,,,,M ) if T is pure and satisfies

A quasi-invertible submodule T of M (briefly, T<,,M ) is defined as HomR(¥ ,M)=0.A

HomR(¥ , M) = 0. A module M is said to be purely quasi-Dedekind if every proper nonzero
pure submodule of M is quasi-invertible, [12].

Proposition 3.17: Any purely mono module is purely quasi-Dedekind.
Proof: Take a purely mono module M and a nonzero pure N< M. Because M is purely mono
then N<, M, hence N<,,,M, [11]. In addition, N is pure, thus M is purely quasi-Dedekind.
We think the reverse of Proposition 3.17 is not generally true, but we didn't find an
example. But as the following illustrates, that is valid when M is a multiplication module as
shown below. Firstly, the following lemma is required.
Lemma 3.18: ([11], Theorem 3.11, P.18)
Taking a multiplication module M with its annihilator is a prime ideal. N<M is quasi-
invertible if and only if N is an essential submodule of M.

Proposition 3.19: M is purely mono if and only if it is a purely quasi-Dedekind module,
provided that M is multiplication.
Proof: The direction one is just Proposition 3.17. Conversely, assume that M is purely quasi-
Dedekind and 0#T<,,M. By assumption, N<,., M, hence N<,, M. Moreover, M is a
multiplication, so by Lemma 3.18, N<,.M. hence M is purely mono.

Following [12], if a module M is satisfied anng(M) = anng(N) for each nonzero pure
submodule N of M, then M is called purely prime.

Proposition 3.20: For any R-module M, the implications (1)=(2)=(3) =(4) hold, where:
1. Mis mono

2. M is purely mono.

3. M is purely quasi-Dedekind.

4. M is purely prime.

Proof:
(1)=(2): By Remark 2.2
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(2)=(3): By Proposition 3.17.
(3)=(4): [12].

The following result is satisfied only in the category of rings. Before that, a quasi-
invertibility mono or QI-mono is a module in which every nonzero quasi-invertible
submodule is rational, [6].

Proposition 3.21: Let R be a quasi-Dedekind ring. Consider the following:

1. Ris a polyform ring.

2. R is Ql-mono.

3. Ris mono.

4. R is purely mono.

Then (1) = (2) = (3) = (4).

Proof:

1) = (2): Let | be a nonzero quasi-invertible ideal of a ring R. By ([11], Corollary 2.3,
P.12), I<.R. Since R is polyform, then I<,.R. So that R is a QI-mono ring.

2 = (3): Let R be a QI-mono ring, and | a nonzero ideal of R. Since R is quasi-
Dedekind, then 1<,,R. Besides that, R is a QI-mono ring, therefore, I<,R. Thus, R is a
mono ring.

(3) = (4): It is obvious.

The following are achieved since every integral domain is a quasi-Dedekind ring.
Corollary 3.22: For any integral domain R, the implications (1) = (2) = (3) = (4) hold,
where:.

1. Ris polyform.

2. R is Ql-mono.

3. Ris mono.

4. R is purely mono.

4. Conclusions

This work extends the class of mono into a new class of modules. The term for it is "
purely mono module™. This paper's main finding can be summed up as follows:
1. Several useful properties of purely mono modules have been shown that are analogous to
those found in the concept of mono modules.
2. Other characterizations of purely mono modules are given.
3. Discuss appropriate conditions for the equivalence of mono and mono modules.
4. The connection of the purely mono module with other related concepts has been
established such as almost mono, purely polyform, PF-polyform, purely quasi-Dedekind and
purely prime modules. Nevertheless, the following figure can depict each of these
relationships:

2046



Ahmed and Hasan Iragi Journal of Science, 2025, Vol. 66, No. 5, pp: 2038-2047

Purely Polyform Module

I

Almost Monoform Module = | purely Monoform Module | = PE-Polyform Module

I

Monoform Module = Purely Quasi-Dedekind = Purely Prime

l

Uniform Module wesy Purely Uniform Module
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