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Abstract: As technology advances, cybercriminals adopt more sophisticated strategies to attack weaknesses in 
individual computers, organisational networks, and nation-states. Organisations systematically gather substantial 
quantities of security-relevant data, including log events from individuals, networks, and software applications, for 
further forensic analysis. Conventional security analysis methods are inadequate for handling huge data volumes and 
may generate excessive false alarms, particularly when organisations transition to cloud architectures and accumulate 
more data. Furthermore, the identification of current and more complex assaults, such as persistent and advanced threats 
(APTs), requires ongoing monitoring and analysis of extensive security-related data, with precision and speed. Big Data 
analytics is actively used in several domains, including financial transactions, healthcare, and industrial applications, 
among others. It has recently garnered the interest of the information security community because to its purported 
capability to correlate security-related data and derive insights effectively at an unprecedented scale. In this study, we 
examine the limitations of conventional technology/systems and SIEM tools in handling massive amounts of data and 
complex, advanced threats. We further examine the prerequisites for the effective use of Big Data analytics in the 
domains of cyber threat intelligence and cybersecurity to address extensive data volumes and complex threats. 
Ultimately, we emphasise the issues arising from this adoption and provide solutions to address these challenges in 
future study. 
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1.Introduction  

Merriam-Webster defines cyber-security as 
measures used to protect a computer or 
computer system, particularly on the Internet, 
against unauthorised access or attacks. The 
United States National Initiative for 
Cybersecurity Careers and Studies (NICCS) 
offered a comprehensive definition of 
cybersecurity. Cybersecurity is described as 
the strategy, policy, and standards pertaining 
to the security of and activities in cyberspace, 

including the whole spectrum of threat 
reduction, vulnerability mitigation, deterrence, 
international collaboration, incident response, 
and resilience. [1]. 
 It also encompasses recovery policies and 
practices, including computer network 
operations, information assurance, law 
enforcement, diplomacy, military [2]. There 
were 1,966,324 reported instances of malware 
infections in 2015 that attempted to hack into 
online bank accounts in order to steal money, 
according to the most recent numbers 
provided by Kaspersky in their final statistic 
report [2]. Just looking at just one economic 
sector reveals the enormous threat that 

© Jasim, 2025. This is an open-access article 

distributed under the terms of the Creative 

Commons Attribution 4.0 International license 

 

mailto:mohammed.almaawi.iq@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


157 
 

malware infections pose to the global 
economy annually [3].  
Given the exponential growth of cyberattacks, 
it is evident that current measures to protect IT 
infrastructure, company networks, and online 
applications may be insufficient. Next, we 
need to ask: how can we better defend 
ourselves and identify the exponential rise of 
these cyberattacks? The US federal 
government, energy, and financial services 
were the subjects of an interview by 
International Data Corporation (IDC) in 2015 
with security experts, executives, and 
specialists from each area. Gaining insight into 
how cyber dangers have changed over time 
was the primary goal of the interview [4].  
The interviews led to the conclusion that 
cyber-security dangers are on the rise and that 
businesses should stop responding to security 
incidents after the fact and start proactively 
assessing risks before they can do harm [3]. 
The volume of daily events generated by 
major organisations may reach 100 billion, 
according to [5]. Any growth in data sources, 
personnel, equipment, or software applications 
will inevitably lead to a rise in the total 
number of events. Cybersecurity tools 
including intrusion detection systems, log 
events analysis, and others rely on antiquated 
methods that fail to scale, generate excessive 
false alarms, and are otherwise unsuitable for 
the job [4].  
As more and more data is collected by the 
organisation via cloud infrastructures, the 
situation becomes worse [6]. Thus, cyber 
threat intelligence is necessary to provide the 
continuous real-time gathering and monitoring 
of data streams, which in turn allows for the 
activation of an appropriate risk mitigation 
procedure prior to assaults causing significant 
damages [7]. 
The term "security information and event 
management" (SIEM) refers to a system that 
helps with security operations and analysis by 
collecting and analysing data about network 
flows, security incidents, and logs [5]. Cyber 

threat intelligence incorporates features that 
have been used in security information and 
event management systems, such as the ability 
to manage logs, correlate security events, and 
monitor network activities [6].  
Most organisations use SIEM to monitor risks 
instead of doing conventional security analysis 
and investigations, according to [5]. Having 
said that, SIEM isn't robust enough to handle 
the massive evolution of threats in the modern 
day. These deficiencies, as stated in [5], 
include the following: One issue is that new 
assaults utilise multidimensional strategies and 
vary from system to system. SIEM's event 
correlation depends on data that is normalised 
in respect to predetermined schemas, making 
it difficult to adjust [7].  
Additionally, SIEM-based solutions have a 
hard time keeping up with the ever-increasing 
volume of events since they use fixed storage 
(Schema). Additionally, Third, SIEMs are 
built on top of predetermined context, making 
them situationally particular and requiring the 
time-consuming process of re-definition 
before they can be applied to various 
scenarios; Fourth, adopting new rules 
necessitated reconstructing the whole method 
because to SIEMs' inflexibility. Enterprises 
need a fresh strategy for cyber-security that 
addresses these issues, according to the 
authors in [5]. Information security team 
expertise and Big Data-based security 
analytics-technologies establish an end-to-end 
interaction, according to the new method. 
 
2.Literature Review  

Big Data Analytics, a comprehensive 
information processing and analysis 
methodology, has been actively used across 
several domains. It also captivates the 
attention of the information security 
community due to its promising capability in 
efficiently analysing and correlating security-
related data [4]. Authors in [8] indicated that 
novel and previously unobserved cyberattacks 
are on the rise owing to deficiencies in current 
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security mechanisms. Threats range from the 
dissemination of personal information to 
service disruption and assaults against 
extensive systems, including vital 
infrastructure [7]. 
 It is found that the majority of unidentified 
cyber threats are overlooked because standard 
security technologies rely on basic pattern 
matching and must be addressed within the 
framework of Big Data analytics. Limited Big 
Data analytics-based security solutions were 
identified in the literature, including 
references [8-12]. Authors in [9] examined the 
deployment of cyber-security insurance (CI) in 
cloud-based services and developed a safe 
architecture for cyber event analytics using 
Big Data. 
 The authors said that their methodology was 
developed for aligning various cyber risk 
scenarios, using repository data. The 
simulation results have shown the theoretical 
validity of the framework's adoptability and 
practicality, as asserted by the authors. In [10], 
the writers were inspired by the smart grid, a 
promising system capable of meeting 
renewable energy needs via the integration of 
modern information and communications 
technology (ICT). Consequently, the authors 
asserted that the widespread implementation 
of advanced ICT would provide substantial 
energy data characterised by volume, velocity, 
and diversity, particularly via the use of smart 
metering [11]. 
The development of Big Data offers 
significant advantages for enhanced energy 
conservation, planning, and efficient energy 
generation and distribution; yet, it also 
introduces new security concerns related to 
user privacy and the safe functioning of key 
infrastructure. The produced Big Data may 
provide significant advantages for improved 
energy planning, energy-efficient production, 
and delivery. Nonetheless, these privacy and 
security concerns must be addressed. 
Consequently, the authors examined smart 

technologies for renewable energy sources and 
associated Big Data security concerns [12]. 
 In [10], the authors provided a comprehensive 
study of the current advancements in security 
analytics, including its definition, technology, 
patterns, and tools. Ultimately, the writers 
hoped their work would enlighten readers 
about analytics' potential future use as an 
unrivalled cyber-security solution. If you want 
to safeguard your system against APTs, read 
the authors' proposal in [11]. The proposed 
architecture integrates several methodologies 
grounded in Big Data analytics including 
security intelligence to assist human analysts 
in prioritising hosts with the highest likelihood 
of penetration. 
 In [12], the authors introduced a Cyber 
Security analytics framework designed for 
thorough cyber security monitoring by 
integrating cyber security-related events with 
feature selection to predict user behaviour 
based on diverse sensors. The suggested 
framework for Cyber Security Analytics 
(CSA) utilises Big Data analytics and is 
predicated on Network Log (NetL) and in-
memory Process Log (PrcL) to detect an 
abnormality vector via extensive system 
observations [13]. 
The transition from traditional security 
solutions to Big Data-based security systems 
for long-term, large-scale analytics occurred 
for three primary reasons, as stated in [14]: 
Initially, managing substantial data volumes 
was not economically viable under 
conventional security systems and SIEM; 
hence, some event recordings were often 
purged after a certain period to free up storage 
for new occurrences. Second: the challenge of 
executing data analytics and intricate queries 
on extensive and diverse datasets characterised 
by noisy and missing attributes. Third: 
managing huge data warehouses is costly, 
since their implementation need robust 
business justifications [15]. 
 
3. Cybersecurity and Cyber Threat 
Intelligence 
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Cybersecurity is described as a collection of 
countermeasures, methods, and standards used 
to prevent, detect, and protect against 
vulnerabilities inside systems, organisational 
networks, or the Internet in cyberspace. 
Attack: "An endeavour to unlawfully access 
system resources, services, or information, or 
to undermine system integrity." 1. Advanced 
Persistent Threat (APT): “An opponent 
endowed with advanced skill and substantial 
resources, enabling it to use several attack 
vectors (e.g., cyber, tangible, and deception) to 
fulfil its objectives.” [8]. 
 According to the Gartner dictionary, threat 
intelligence is defined as "evidence-based 
knowledge that encompasses context, 
techniques, indicators, implications, and 
actionable recommendations concerning an 
existing or emerging threat to assets, which 
can inform decisions related to the subject's 
response to that threat." Security Information 
and Event Management (SIEM) is 
characterised by the Enterprise Strategy Group 
(ESG) as “a platform designed to aggregate 
and correlate security events, logs, and 
network flow data for the purposes of security 
analysis and operations.” [11]. 
 
3.1 Conventional Cybersecurity Analysis 
and Management Strategies 
 
Different security analysis and management 
techniques and processes have been utilised to 
defend and safeguard IT systems ever since 
the idea of cyber-security was first introduced. 
It is used to safeguard organisational networks 
and the Internet from many forms of 
cybersecurity attacks. IDC categorises these 
cyber-security risks into ten overarching 
categories, as seen in Figure (1). All risks 
encountered by systems and networks today 
fall into these categories or their derivatives. 
Distributed denial of service attacks (DDoS), 
advanced persistent threats (APTs), and zero-
day assaults are the most complex and 
protracted threats that need timely and precise 
detection. 

 
Fig. (1): Illustrate the Cybersecurity Threats  
 
Throughout the history of information systems 
and network security, several techniques and 
approaches have been developed and 
advanced to protect against and alleviate the 
impacts of cybersecurity threats. Figure (3, 2) 
illustrates the conventional methodologies and 
procedures for cybersecurity management and 
analysis often used in enterprises or individual 
IT systems. A concise overview of each 
method is provided in the following 
paragraphs. 
 

 
 
Fig. (2): Conventional Cybersecurity Management 
and Analytical Methods. 
 
3.2 Risk Management 
 
In the context of business, a risk was defined 
as the potential for an event to diminish the 
value of the business. The incident is 
sometimes referred to as a "adverse event." 
The authors in [13] contended that information 
security involves information risk 
management as well. Furthermore, they said 
that to assess the dangers and efficacy of 
security risk mitigation strategies in the realm 
of information security, some critical data 
must be gathered [12].  
This information encompasses potential 
vulnerabilities in the information security 
system, data pertaining to global business 
security incidents, the direct and indirect 
losses incurred from each incident, and the 
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countermeasures employed to mitigate such 
incidents arising from these vulnerabilities. 
Several risk management frameworks and 
methodologies have been developed in the 
literature on information security [14].  
A recent technique for information security 
risk analysis was described in [14], using 
fuzzy decision theory and event tree analysis. 
The model recognises and assesses the 
sequence of events in an incident scenario 
subsequent to the possible misuse of 
information technology systems. The research 
in [15] introduced a hybrid technique for 
information security risk assessment that 
integrates both quantitative and qualitative risk 
management methodologies.  
The authors evaluated the merits and 
drawbacks of both analytical methods and 
found that no method can attain optimal 
performance independently. Consequently, a 
hybrid methodology that employs precise 
decisions from the quantitative approach may 
be integrated with the qualitative approach 
grounded on judgements and intuitions [16]. 
 
4.Model for Big Data 
 
Big Data has emerged as a critical area of 
contemporary and future study. Gartner [47] 
identified the transformation of Big Data into 
ubiquitous intelligence as one of the three 
components of the top 10 key technology 
trends during 2015. Gartner defines Big Data 
as “high-volume, high-velocity, and/or high-
variety data assets that need cost-effective, 
creative methods of information processing to 
provide improved insight, decision-making, 
and process automation.” A different 
description was provided in [17] as an 
extensive and varied collection of data sets 
that is challenging to analyse using both 
conventional and modern data processing 
tools. Figure 3 illustrates the three aspects of 
Big Data and their respective views. 
Additional studies, such as those in [18], have 
included a fourth "V" into the concept, 
denoting the value of data. 

 
Fig. (3): The three "Vs" of big data are volume, 
velocity, and variety. 
 
The initial "V" denotes volume, signifying the 
generation of terabytes of data records from 
transactions, tables, and files. Massachusetts 
reports that Facebook produces over 500 
terabytes of data each day. In 2014, it was 
stated that Facebook's data warehouse had a 
capacity of 300 PB, with an incoming daily 
data flow of about 600 TB. The second "V" 
denotes velocity, indicating that data is 
characterised by real-time streaming created at 
an exceedingly rapid pace. Massachusetts 
addresses Big Data issues by analysing 2 
million records every day to determine the 
causes of certain data losses. The third "V," 
denoting variety, illustrates the incorporation 
of diverse data types from multiple sources in 
Big Data, including structured data (e.g., 
employee records in an organisation), 
unstructured data (e.g., images, audio, video, 
sensor data), semi-structured data, or a 
combination of these types concurrently [16]. 
 
4.1 Applications of Big Data 
 
Diverse application domains provide as 
sources of data Big Data analytics. 
Applications include, but are not limited to, 
education, scientific fields, retail, history, 
cultural activities, government, healthcare, 
social networking, finance, and transportation. 
Figure (4) illustrates the many application 
domains. A concise overview of the 
implementation of Big Data analytics in 
certain important application domains is 
provided in the following paragraphs. This 
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evaluation does not provide a comprehensive 
explanation of all application areas [18].  
Big Data analytics, as defined in is the 
application of sophisticated analytical methods 
to large data sets. Consequently, Big Data 
analytics integrates two concepts: Big Data 
and analytics. It further integrates the manner 
in which the two concepts might be combined 
to create one of the most prominent paradigms 
in business intelligence (BI) today. The 
following paragraphs succinctly examine 
several application domains of Big Data 
analytics across many facets of human 
existence. For every app, we demonstrate the 
need of embracing the Big Data analytics 
approach [19]. 

 
Fig. (4): The primary sources of big data are 
social, machine, and transactional [13]. 
 
4.2 Big Data Analytics Tools and 
Techniques 
A specialised processing framework is 
required to handle Big Data. In 2004, Google 
introduced MapReduce as a programming 
methodology designed for the generation and 
processing of massive data sets using cluster-
based parallel and distributed algorithms. 
MapReduce has two primary processes: the 
map process and the reduce process. During 
the mapping process, a collection of 
intermediate key/value pairs is produced using 
a user-specified map function [17]. 
During the reduction phase, all intermediate 
value pairs linked to the same intermediate 
key are consolidated using a reduction 

function. Open-source software for 
dependable, scalable, and distributed 
computing, Hadoop revolves on MapReduce. 
The Apache Hadoop software library is a 
platform that facilitates the distributed 
processing of large data sets on computer 
clusters using programming paradigms like 
MapReduce. This program is designed for 
scalability, accommodating configurations 
from a single computer to thousands, with 
each machine possessing its own local 
resources [15]. 
 The service availability of Hadoop is 
predicated on its architecture to identify 
potential faults at the application layer rather 
than depending on the hardware in the 
underlying layers. Consequently, the service 
can be consistently provided atop a cluster of 
computers. The Hadoop project has four 
primary modules: Hadoop Common, Hadoop 
Distributed File System, Hadoop YARN, and 
Hadoop MapReduce. Numerous Hadoop-
related projects provide frameworks for 
distributed and parallel computing, as 
documented in the literature, including 
Ambari, Avro, Cassandra, Chukwa, HBase, 
Hive, Mahout, Pig, Spark, Tez, and 
Zookeeper. For more information on these 
systems, the reader may see [18].  
As stated in [49], current Big Data solutions 
concentrate on three processing categories: 
batch processing, stream processing, and 
interactive analysis. Tools like Mahout and 
Dryad, which rely on batch processing, often 
make use of Apache Hadoop infrastructure. 
Applications that work with stream data in real 
time need the stream processing tools. Storm 
and S4 exemplify distributed and parallel 
streaming data analytics solutions. The 
interactive analysis allows users to analyse 
their data in real-time [19]. 
Each user connects to the computer and may 
engage interactively in an online format. The 
user may examine, contrast, and evaluate the 
data in tabular or graphical formats, or both 
simultaneously. Exceptional processing and 
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analytical methodologies are required for Big 
Data to evaluate vast data volumes within 
limited timeframes. Every Big Data 
application necessitates an appropriate Big 
Data approach, as stated in [17].  
For example, online retail companies like 
Wal-Mart use machine learning and statistical 
methodologies to identify trends in their 
transactional data, so enhancing their 

competitive edge in pricing tactics and 
advertising. Multiple disciplines are engaged 
in Big Data processing and analytical 
methodologies owing to the concept's 
application across several sectors. Figure (5) 
illustrates the main and prevalent disciplines 
for Big Data processing. These fields include 
statistics, data mining, machine learning, 
neurocomputing, signal processing, pattern 
recognition, optimisation, and visualization 
[20]. 
 
Figure (5): Techniques and Disciplines of Big 
Data [21]. 
 
A comprehensive examination of Big Data 
methodologies is available in. Numerous 
statistical methodologies, including cluster 
analysis, factor analysis, correlation analysis, 
and regression analysis, have been used in 
conventional processing systems. They may 
also be adapted for Big Data processing by 
optimising them for high-performance 
computing [19]. Likewise, data mining 
methodologies such C4.5, k-means, SVM, 
Naïve Bayesian, and Belief Bayesian, among 
others, have been used for data processing in 

conventional non-Big Data systems. The 
primary consideration in Big Data processing 
is the extraction of significant information and 
insights from extensive datasets to derive 
conclusions beneficial for organisations and 
individuals. 
 
4.2.1 Machine Learning Techniques  
Machine learning (ML) is a subset of artificial 
intelligence (AI) that focuses on building 
systems that can learn from data and improve 
their performance over time without being 
explicitly programmed. There are various 
machine learning techniques, which can be 
broadly categorized into three main types: 
supervised learning, unsupervised learning, 
and reinforcement learning. Here’s an 
overview of these techniques and some 
common algorithms within each category: 
 
1. Supervised Learning 
Supervised learning involves training a model 
on labeled data, where the input data (features) 
and the corresponding output (target) are 
provided. The goal is to learn a mapping from 
inputs to outputs. It consist of the following : 
 
 Common Techniques: Regression: Predicts 
continuous values. Linear Regression. 
Polynomial Regression. Ridge Regression. 
Lasso Regression 
 
Classification: Predicts discrete labels. 
Logistic Regression. Decision Trees. Random 
Forests. Support Vector Machines (SVM). k-
Nearest Neighbors (k-NN). Naive Bayes. 
Neural Networks 
 
Applications: Predicting house prices 
(regression). Spam detection (classification) . 
Image classification 
 
2. Unsupervised Learning 
Unsupervised learning involves training a 
model on unlabeled data, where the goal is to 
find hidden patterns or structures in the data.  
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Common Techniques: Clustering: Groups 
similar data points together. k-Means 
Clustering. Hierarchical Clustering. 
DBSCAN. Gaussian Mixture Models (GMM). 
Dimensionality Reduction: Reduces the 
number of features while preserving important 
information. Principal Component Analysis 
(PCA). t-Distributed Stochastic Neighbor 
Embedding (t-SNE). Uniform Manifold 
Approximation and Projection (UMAP). 
Anomaly Detection: Identifies unusual data 
points. Isolation Forest. One-Class SVM [20]. 
 
Applications: Customer segmentation 
(clustering). Feature extraction for 
visualization (dimensionality reduction). 
Fraud detection (anomaly detection) 
3. Reinforcement Learning 
Reinforcement learning involves training an 
agent to make decisions by rewarding desired 
behaviors and punishing undesired ones. The 
agent learns by interacting with an 
environment. 
 
Common Techniques: Model-Based RL: 
Uses a model of the environment to plan 
actions. Dynamic Programming. Model-Free 
RL: Learns directly from interactions without 
a model. .Q-Learning. Deep Q-Networks 
(DQN). Policy Gradient Methods. Actor-Critic 
Methods 
Applications: Game playing (e.g., AlphaGo). 
Robotics. Autonomous vehicles 
4. Semi-Supervised Learning: Semi-
supervised learning combines labeled and 
unlabeled data to improve learning accuracy. 
It is useful when labeled data is scarce. 
5. Deep Learning 
Deep learning is a subset of machine learning 
that uses neural networks with multiple layers 
to model complex patterns in data. 
6. Ensemble Learning 
Ensemble learning combines multiple models 
to improve performance and robustness. 
7. Transfer Learning 

Transfer learning involves using a pre-trained 
model on a new, related problem. It is 
especially useful when data is limited. 
8. Natural Language Processing (NLP) 
NLP focuses on enabling machines to 
understand and process human language. 
9. Time Series Analysis 
Time series analysis involves analyzing 
sequential data points collected over time. 
10. Anomaly Detection 
Anomaly detection identifies rare or unusual 
data points that deviate significantly from the 
norm [19]. 
 
4.3 Fundamental Challenges of Big Data 
Despite the allure and potential of Big Data 
analytics across several domains, several 
problems impede its rapid proliferation. 
Several of these problems were examined in 
[66] and may be succinctly summarised in the 
following subsections. We classified these 
difficulties into three primary categories [28]: 
Big Data administration, visualisations, and 
security and privacy. 
 
1.Challenges Associated with Data 
Management: Four primary issues distinguish 
Big Data management from conventional data 
management. The problems are to data 
warehousing, data variation, integration of 
data, and data processing as well as resource 
management. In the context of Big Data 
warehousing, Big Data is often stored as vast 
quantities of unstructured data aggregated 
from many sources. The problem lies in 
efficiently storing and extracting significant 
information from the enormous volume of 
unstructured data [32].  
What is the optimal method for storing such 
data to ensure timely retrieval? Is the existing 
file system technology enough for storing Big 
Data, and what enhancements are necessary to 
optimise its suitability? What techniques 
should be used for migrating Big Data across 
data centres or cloud providers? What is the 
level of transparency of these tactics from the 
user of Big Data? How can one manage 
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extensive unstructured data from diverse 
sources in the context of Big Data diversity? 
How can one efficiently extract pertinent 
extracts from extensive data? What is the 
optimal method for aggregating and 
correlating the retrieved data to get useful 
insights and conclusions? Regarding Data 
Integration: does Big Data necessitate the 
development of new protocols and interfaces 
for handling diverse data kinds from many 
sources? 
 Ultimately, regarding data processing or 
resource management, is there a need to 
develop new programming models to address 
streaming and multidimensional data? How 
may one enhance resource utilisation, 
particularly energy usage, in streaming data 
system applications like wireless sensor 
networks? All these problems must be 
addressed during the planning phase of Big 
Data analytics [19]. All application domains 
have similar issues, but with varied degrees of 
difficulty from one application to another. 
 
2.Challenges Associated with Big Data 
Visualisation: Efficient Big Data processing 
algorithms are essential for real-time 
visualisation of Big Data. Authors observed 
that several computational techniques used for 
Big Data analytics are intricate and need 
meticulous parameter modification to adapt to 
specific real-time scenarios. However, doing 
such actions may be essential and time-
intensive. The authors determined that certain 
strategies must be used in the realm of human-
machine interactions to provide efficient and 
timely data visualisations [18]. These 
strategies encompass: 1- reducing the accuracy 
of outcomes. 2- diminishing the convergence 
within the computational model. 3- limiting 
data scale. Four data points undergoing coarse 
processing. 5- according to the resolution 
limitations of the visualisation equipment. 
Authors emphasised the significance of 
visualisation in the management of computer 
networks or software analytics, particularly in 

relation to large-scale infrastructure data 
analytics [34]. 
 
3.Challenges Concerning Big Data Privacy 
and Security: Separating Big Data security 
from security that makes use of Big Data ideas 
is a good idea. The first one is about making 
sure Big Data is safe from security breaches of 
any type, and the second one is about using 
Big Data ideas to make cyber defences 
stronger. This part provides a high-level 
overview of Big Data privacy and security 
concerns, which are among the most pressing 
problems with Big Data; part 4 delves more 
into the topic of using Big Data analytics to 
strengthen cyber defences [29]. 
 There is a delicate balance between lawful 
data usage and consumer privacy, according to 
the academics that examined Big Data's 
security and privacy concerns. So, from a 
security perspective, the most pressing issue 
with Big Data is how to ensure the privacy of 
its users. This is due to the fact, as the author 
points out, that security breaches using Big 
Data may have far-reaching and multi-faceted 
effects, making them much more disastrous 
than those involving regular data. In order to 
stay in compliance, the author recommended 
that businesses identify the most sensitive 
parts of Big Data, including customer IDs, and 
securely remove them. The old method of 
organising massive datasets made it easy to 
obtain and query any sensitive information [8].  
Nevertheless, sensitive data queries become 
more complicated and time-consuming when 
dealing with Big Data, which includes a mix 
of data that is structured, unstructured, and 
semi-structured. From a security perspective, 
it is possible that different users may need 
access to different subsets of data. In order to 
accommodate such requests, it will be 
necessary to adapt existing encryption and 
access control technologies to meet the needs 
of the new data format. For instance, it is 
important to ensure that only authorised users 
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may access data by designing the access 
control policy accordingly [11].  
As mentioned in, there are five main security-
related factors to consider when working with 
Big Data: data encryption, data 
anonymisation, access control, security policy, 
monitoring, & governance structures. To solve 
privacy issues, anonymisation removes 
sensitive information from Big Data. while it 
comes to encryption, the idea is to use 
encrypted data rather than plaintext data while 
doing operations. To further guarantee 
security and privacy preservation, real-time 
threat intelligence and Big Data monitoring 
are also essential [23]. 
Finding sensitive information in unstructured 
data is a policy concern. As an added 
precaution, it deletes the data from storage the 
moment it is no longer required. The novelty 
of the Big Data idea has delayed the 
development of relevant rules and procedures 
in the realm of governance systems, but new 
approaches are beginning to emerge to address 
this challenge [18]. There is a serious, maybe 
fatal, problem with healthcare data privacy 
and security. That is because protecting 
patients' privacy is just as important as 
following all applicable regulations and 
protocols when dealing with their medical 
records. Mishandling certain patients' data 
might have fatal effects. A number of 
pharmacological datasets are also significant 
intellectual property that need safeguards even 
in controlled settings [24].  
 
4.4 Adoption of Big Data Analytics for 
Cyber-security 
Data-centric information security has been 
used for decades in the realms of bank fraud 
detection and anomaly-based intrusion 
detection systems. Due to the massive 
amounts of data produced by fraud detection 
systems—millions of data instances and 
events each day—for medium and large 
businesses, these systems qualify as Big Data 
analytics solutions. Fraud detection is used in 
several sectors, including credit card firms, 

healthcare, insurance, and 
telecommunications, among others [23].  
Intrusion detection within the realm of data 
analytics has progressed through three 
generations, as seen in Figure (6). 

 
 

Fig. (6): Advancement of Intrusion Detection 
within the Framework of Data Analytics [31]. 
 
As discussed in Section 2, the first version was 
developed to detect security breaches that 
were overlooked by other tools for protecting 
the perimeter of a network, such as risk 
assessments and malware detectors. 
Generation 2: SIEM, or security information 
and event management, adds an extra rule for 
collecting and sorting alerts from various first-
generation sources (i.e., intrusion detection 
systems) [24]. Third generation: Big Data 
security analytics, often regarded as second 
generation SIEM. It enhances the initiatives 
established in the second generation by 
minimising the time required for correlating 
and aggregating security incident data. 
Furthermore, it utilises contextual and long-
term historical data for the forensic study of 
cyber threats [19]. 
 
4.5 Requirements of Big Data Analytics for 
Cyber-security 
Any Big Data analytics-based cybersecurity 
solution must meet certain criteria to address 
the ongoing and fast escalation of complex 
cyber threats [10]. These criteria must account 
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for the inherent properties of Big Data with 
the security considerations. Our analysis 
indicates that the following set of conditions 
must be taken into account [32]. 
 
 
1. Management of Data at a Large Scale: 

If cyber-security solutions based on Big Data 
analytics are to keep up with the ever-
increasing sophistication of cyber-attacks, they 
must meet certain criteria. These standards 
must account for the attributes of Big Data 
with the security necessities [22]. Our analysis 
indicates that the following set of conditions 
must be taken into account. 
 
A. Managing Multi-Sourced Data: There is 
significant expansion in data sources available 
for cyber-security systems within the 
framework of Big Data analytics. Sources 
include, but are not limited to, firewall logs, 
directory access files, operating system event 
logs, SIEM data, Dpi data, SQL server logs, 
NetFlow data, threat analysis data, and more 
resources. Such data sources have existed for a 
considerable duration but were not collectively 
used in the framework of Big Data analytics 
[24]. Integrating data from many sources is 
essential for obtaining valuable insights to 
more effectively identify and prevent cyber-
attacks [33]. 
 
B. Manage data on a grand scale: The 
design of cyber-security systems based on Big 
Data analytics is becoming more challenging 
due to the growing data quantities caused by 
the proliferation of data sources. So, to 
efficiently gather, analyse, and retrieve 
relevant data in a timely way, this need should 
be considered throughout the design of such 
systems. If you are building a cyber-security 
system around big data, you should make 
good use of cloud computing, clustering, and 
grid computing as platforms to store, analyse, 

retrieve, and derive insights from data when 
you need them [27]. 

 
C.  
D. Working with Different Kinds of Data: 
With more and more data sources popping up, 
it is becoming more common to meet a wide 
range of data kinds, from very organised to 
extremely unstructured information. Most of 
the data used in the pats was numerical and 
came from a single data type, which was 
helpful for security analytics. These days, 
nevertheless, it is possible to collect very 
unstructured data from a wide variety of 
sources, including, but not limited to, e-mails, 
blog posts, social network activity, threat 
feeds, and more [28]. 
 
2. The visualisation of data: Visualisation It 
is a crucial element in cyber threat intelligence 
which provides a graphical descriptive 
evaluation of security-related data. The 
visualised relationships among devices, 
events, places, signatures, and IP addresses 
facilitate the identification of data 
abnormalities and intrusions. Consequently, 
visualisation is essential for comprehending 
these relationships and deriving insights about 
the behaviour of network systems [29].  
 
A. Keylines, a visualisation dashboard 
created by Cambridge Intelligence 
Corporation, is a network visualisation tool 
intended to depict cyber hazards, enabling 
users to conduct more efficient and effective 
data analysis. It offers a method to get 
significant insights from intricate 
interconnected cyber data. It has four primary 
capabilities: (i) analysing software risks and 
weaknesses; (ii) detecting unusual logins; (iii) 
identifying trends in data breaches; plus (iv) 
monitoring malware dissemination patterns 
over time. The significance of these 
visualisation apps rests in their ability to 
engage users in identifying patterns and 
anomalies by transforming raw linked data 
into dynamic interactive charts [30]. 
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B. The need for visual analytics was 
highlighted as a tool that assists security teams 
in comprehending relationships and 
monitoring historical trends among security 
data pieces. The Visual Analytics Suites for 
Cyber Security (VACS) is a visual analytics 
system that integrates multi-criteria clustering 
approaches and employs three forms of 
interactive visualisations: treemaps, node-link 
diagrams, and chord diagrams. The VACS, 
like Keylines, sought to get insights from 
diverse threat environments. VACS was 
primarily developed as a dashboard interface 
that offers an overview of host-based 
thumbnails and facilitates querying and 
retrieving information to analyse questionable 
hosts [31]. 

 
 
3- Infrastructure Technology for High 
Performance: It is essential to conduct a 
comprehensive study of the fundamental 
infrastructure technologies that underpin Big 
Data analytics, including online computing, 
distributed computing, computational grids, 
stream processing, Big Data modelling, Big 
Data architecture, and software systems. In 
cybersecurity, like in other Big Data 
applications, it is evident that the data used as 
proof of assaults and security breaches is 
expanding across the three dimensions of Big 
Data: volume, velocity, and diversity. This 
development complicates the detection of such 
assaults using conventional techniques [34]. 
Detecting the most sophisticated APT assaults 
just via conventional information retrieval 
systems used in standard IDS architecture is 
challenging. Instead, modern technologies like 
as the MapReduce framework should be used. 
Utilising a MapReduce implementation 
enhances APT detection systems' capacity to 
effectively manage complex unstructured data, 
which varies in format and is sourced from 
diverse origins such as system logs, IDS, 
NetFlow, as well firewalls, and DNS systems 
over extended durations [35]. 

 
Furthermore, MapReduce's capacity for 
extensive parallel processing enables the 
implementation of very advanced detection 
algorithms that conventional SQL-based data 
systems cannot accommodate. The 
MapReduce architecture, with map and reduce 
functions, facilitates user flexibility in 
integrating additional detection techniques. 
This approach makes the distributions 
apparent to users engaging directly with 
individual data. It may be inferred that the 
deployment of large-scale distributed 
computing systems will facilitate the 
concurrent analysis of vast data volumes, 
hence offering a means to identify additional 
attack vectors and targets for the detection of 
unknown and complex threats such as APTs 
[36]. 
 
4.6 Challenges of Big Data Analytics 
adoption in Cybersecurity 
Variety is one of the aspects that characterises 
Big Data. Big Data analytics systems are 
characterised by several forms of data, 
including structured, semi-structured, and 
unstructured data. Conventional security 
analysis solutions, including log mining, 
intrusion detection, and SIEM systems, 
manage well-structured data derived from a 
singular data source, such as system log files, 
database logs, or Netflow records. 
Nonetheless, the integration of unorganised or 
semi-structured data from diverse information 
sources, including emails, social media, threat 
feeds, and other security-related materials, 
alongside established structured security data, 
remains a difficulty [37]. 
Two primary variables influence the 
management of unstructured data: the velocity 
of data development and the proliferation of 
data sources. Consequently, addressing the 
challenge of unstructured data necessitates the 
simultaneous consideration of both elements. 
Big Data analytics for cybersecurity systems 
must be engineered to accommodate the rapid 
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expansion of data sources and the substantial 
volume of data collected over time [38]. 
 
4.6.1 Real Time Analysis 
Streaming data analysis entails the rapid 
processing of substantial volumes of data in 
near real-time. It is sometimes referred to as 
processing data in motion, which is directly 
related to real-time analytics mentioned above. 
Conventional security analysis systems 
analysed data streams in a batch fashion, 
wherein historical data was analysed after a 
designated interval. An illustration of this is 
the procedure for identifying fraud in financial 
transactions. The data for hours or even a day 
is gathered and analysed at the conclusion of 
that time frame [32]. 
This analysis must be rapid and conducted in 
real time to be effective and to provide timely, 
proactive responses before more harm occurs 
due to malicious acts. Security-related data has 
a streaming characteristic owing to the 
dynamic nature of network architecture. 
Moreover, the progress of infrastructure is 
rapid, particularly with Internet of Things 
(IoT) applications that rely on sensor 
technology. Consequently, this streaming 
analysis capability poses a barrier for Big Data 
analytics when the application necessitates 
real-time analysis and reaction [39]. 
 
4.6.2 Visual analytics 
It is the process of using interactive visual 
interfaces to analyse information for people in 
order to get further knowledge and insights 
from the presented topic. This research 
previously examines the significance of visual 
analytics in cyber threat intelligence. Keylines 
was presented as an example of cyber threat 
intelligence visualisation tools that may be 
used with cybersecurity dashboards to display 
network connection and generate reports on 
the network's status at a specific moment in 
time. Visual analytics poses a problem for Big 
Data analytics-based security solutions, 
particularly for the real-time analysis of 
streaming data [40]. 

The visualisation dashboard must be 
constructed to monitor the variability of events 
produced by motion while offering security 
analysts with previously inconspicuous 
insights, such as atypical incoming or 
outgoing traffic of a host or group of hosts 
inside a network segment. The complexity of 
modelling network connections, particularly in 
large-scale companies, exacerbates the 
challenges faced by visual analytics in Big 
Data cybersecurity systems [38]. 
 
4.6.3 Data Confidentiality 
A significant impediment to the effective use 
of Big Data analytics in cybersecurity is data 
privacy. Privacy concerns contravene the 
concept of reuse, which stipulates that shared 
data should be used only for its intended 
objectives. In the realm of conventional data 
utilisation, privacy pertains to the implications 
arising from the management of sensitive 
datasets. Nonetheless, Big Data analytics 
complicates privacy violations, since it 
enables the extraction of insights and 
conclusions on people or organisations by 
correlating disparate fragments of information 
from many sources [41]. 
Consequently, Big Data analytics solutions 
must be engineered to minimise their effects 
on data reutilization and privacy-preserving 
policies. Furthermore, there exists a further 
concern with data security, namely 
Provenance.  Provenance is defined in the 
literature as the origin of data. This is seen as a 
significant difficulty for Big Data analytics 
systems overall, and specifically for cyber-
security analytics [42]. While Big Data 
enhances the diversification of data sources 
for processing, it remains questionable if these 
sources satisfy the reliability standards 
necessary for the analytics algorithms used by 
the suggested analytical solutions to provide 
accurate and trustworthy outcomes. Generally, 
authenticity and integrity standards must be 
enforced on data from various sources prior to 
its utilisation in analytics. The problem is 
exacerbated when harmful data is introduced 
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into the Big Data pool, hindering the 
extraction of insights essential for making 
significant and key choices [43]. 
 
3. Application examples 
A healthcare organization collects and 
analyzes massive amounts of patient data, 
including medical records, diagnostic reports, 
and treatment histories, stored in a big data 
platform. The organization needs to ensure the 
security of this sensitive data while complying 
with regulations like HIPAA (Health 
Insurance Portability and Accountability Act). 
Proactive Security Model Implementation: 
Threat Intelligence and Predictive Analytics: 
- Use machine learning algorithms to 

analyze historical data breaches and 
identify patterns that could indicate 
potential threats.  

- Deploy predictive analytics to forecast 
possible attack vectors, such as 
ransomware targeting patient records or 
insider threats. 

Real-Time Monitoring and Anomaly 
Detection: 
- Implement real-time monitoring tools to 

track data access and usage patterns. 
- Use anomaly detection systems to flag 

unusual activities, such as unauthorized 
access attempts or large data transfers. 

Data Encryption and Tokenization: 
- Encrypt sensitive patient data both at rest 

and in transit to prevent unauthorized 
access. 

- Use tokenization to replace sensitive data 
with non-sensitive equivalents, reducing 
the risk of exposure during data 
processing. 

Access Control and Authentication: 
- Implement role-based access control 

(RBAC) to ensure only authorized 
personnel can access specific data. 

- Use multi-factor authentication (MFA) to 
add an extra layer of security for user 
logins. 

Automated Patch Management: 

- Regularly update and patch software and 
systems to address known vulnerabilities. 

- Use automated tools to ensure timely 
application of security patches across the 
big data infrastructure. 

User Training and Awareness: 
- Train employees on cybersecurity best 

practices and the importance of protecting 
patient data. 

- Conduct regular phishing simulations to 
educate staff on recognizing and avoiding 
social engineering attacks. 
4. Comparative Analysis Of AI-Based 

Big Data Security Models. 
A comparative analysis of AI-based big data 
security models involves evaluating different 
approaches, techniques, and frameworks that 
leverage artificial intelligence (AI) to enhance 
the security of big data systems. Such an 
analysis typically compares the strengths, 
weaknesses, and applicability of various 
models in addressing security challenges like 
data breaches, unauthorized access, and 
cyberattacks. Below is a structured review of 
such a comparative analysis: 
Key Areas of Comparison in AI-Based Big 
Data Security Models 

1. Techniques and Algorithms Used: 
• Machine Learning (ML): Models 

like decision trees, random forests, 
and support vector machines 
(SVMs) are commonly used for 
anomaly detection and 
classification of threats. 

• Deep Learning (DL): Neural 
networks, including convolutional 
neural networks (CNNs) and 
recurrent neural networks (RNNs), 
are effective for complex pattern 
recognition and real-time threat 
detection. 

• Natural Language Processing 
(NLP): Used for analyzing 
unstructured data, such as logs or 
emails, to detect phishing or social 
engineering attacks. 
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• Reinforcement Learning (RL): 
Applied in dynamic environments 
where the system learns to respond 
to threats through trial and error. 

2. Use Cases and Applications: 
• Anomaly Detection: Identifying 

deviations from normal behavior in 
large datasets. 

• Predictive Analytics: Forecasting 
potential security threats based on 
historical data. 

• Fraud Detection: Detecting fraudulent 
activities in financial transactions or 
user behavior. 

• Intrusion Detection: Monitoring 
network traffic for signs of 
cyberattacks. 

3. Performance Metrics: 
• Accuracy: How well the model 

identifies true threats and avoids false 
positives. 

• Scalability: The ability to handle 
large volumes of data efficiently. 

• Latency: The time taken to detect and 
respond to threats. 

• Resource Efficiency: The 
computational and memory 
requirements of the model

 
4. Comparative Analysis Table: 

  Table (1): Comparative Analysis among the methods and techniques of modelling big 
data. 

Model Technique Strengths Weaknesses Best Use Case 

Machine 
Learning 

Decision Trees, 
SVM 

Interpretable, 
efficient for 
structured data 

Limited scalability, 
struggles with 
unstrucured data 

Fraud detection, 
anomaly detection 

Deep Learning CNNs, RNNs High accuracy, 
handles 
complex 
patterns 

Computationally 
expensive, requires 
large datasets 

Intrusion detection, 
predictive analytics 

Hybrid Models ML + DL Combines 
strengths of 
both 
approaches 

Increased 
complexity, 
resource-
intensive 

Comprehensive 
threat detection 

Reinforcement 
Learning 

Q-learning, 
Deep Q-
networks 

Adapts to 
dynamic 
environments 

Requires extensive 
training, high 
latency 

Real-time threat 
response 

 
5.  The Impact of Potential False 

Positives/Negatives in Predictive AI 
 

The impact of false positives and false 
negatives in predictive AI systems can be 
significant, depending on the application 
domain. These errors arise when the model 
makes incorrect predictions: 
• False Positive (Type I Error): The model 

predicts a positive outcome when the 
actual outcome is negative. 

• False Negative (Type II Error): The 
model predicts a negative outcome when 
the actual outcome is positive. 

 
 
The consequences of these errors vary widely 
based on the context in which the AI system is 
deployed. Below is a detailed analysis of their 
impact across different domains: 
 
1. Healthcare 
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In healthcare, predictive AI is used for disease 
diagnosis, patient monitoring, and treatment 
recommendations. 

A. False Positives: Impact: Unnecessary 
medical interventions, such as surgeries, 
medications, or additional tests, which 
can lead to: Increased healthcare costs. 
Physical and emotional stress for 
patients. Overburdening of medical 
resources. Example: A false positive in 
cancer screening could lead to 
unnecessary biopsies or chemotherapy. 
 

B. False Negatives: Impact: Missed 
diagnoses, which can result in:  Delayed 
treatment, worsening the patient's 
condition. Increased mortality rates. 
Legal and ethical consequences for 
healthcare providers. Example: A false 
negative in COVID-19 testing could 
lead to infected individuals spreading 
the virus. 

 
2. Finance 
In finance, AI is used for fraud detection, 
credit scoring, and investment predictions. 
- False Positives: Impact: Legitimate 

transactions flagged as fraudulent, leading 
to: Customer dissatisfaction and loss of 
trust. Blocked transactions, causing 
inconvenience. Increased operational 
costs for manual review. Example: A false 
positive in fraud detection could block a 
legitimate credit card transaction. 
 

3. Cybersecurity 
 
AI is used to detect cyber threats, such as 
malware, phishing, and network intrusions. 

A. False Positives: Impact: Legitimate 
activities flagged as threats, causing: 
Disruption of normal operations. Wasted 
time and resources investigating non-threats. 
Reduced trust in the security system. 
Example: A false positive in intrusion 

detection could block legitimate users from 
accessing a network. 
 
B. False Negatives: Impact: Actual threats 
going undetected, leading to: Data breaches 
and loss of sensitive information. Financial 
and reputational damage. Legal 
consequences for failing to protect data. 
Example: A false negative in malware 
detection could allow a ransomware attack to 
succeed. 
 

4. Criminal Justice 
 
AI is used for predictive policing, risk 
assessment, and parole decisions. 

A. False Positives: Impact: Innocent 
individuals flagged as high-risk, resulting 
in: Unjust surveillance or arrests. Erosion 
of trust in law enforcement. Social and 
psychological harm to individuals. 
Example: A false positive in predictive 
policing could lead to wrongful targeting 
of individuals. 

B. False Negatives: Impact: High-risk 
individuals not being identified, leading 
to: Increased crime rates. Public safety 
concerns. Criticism of the justice system's 
effectiveness. Example: A false negative 
in risk assessment could release a 
dangerous offender on parole. 
 

5. Marketing and Customer Engagement 
AI is used for customer segmentation, churn 
prediction, and personalized 
recommendations. 
 

A. False Positives: Impact: Incorrectly 
identifying customers as likely to 
churn or interested in a product, 
leading to: Wasted marketing 
resources. Customer annoyance from 
irrelevant offers. Reduced 
effectiveness of campaigns. Example: 
A false positive in churn prediction 
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could result in unnecessary discounts 
to retain loyal customers. 

B. False Negatives: Impact: 
Failing to identify customers who are likely 
to churn or interested in a product, resulting 
in: Lost revenue opportunities. Decreased 
customer satisfaction. Reduced competitive 
advantage. Example: A false negative in 
recommendation systems could miss 
recommending a product a customer would 
have purchased. 

 
Conclusion 
 
Cyber-attacks are becoming more complex 
owing to fast technological breakthroughs, 
complicating the timely and effective 
mitigation of these risks. Conventional cyber-
security systems, including log management, 
traditional IDS, IPS, and SIEM tools, are 
unable to address emerging threats and 
techniques. Moreover, the emergence of Big 
Data, characterised by its vast volume, rapid 
creation rate, and many data kinds, renders 
standard technologies inadequate for detecting 
cyber risks in this setting. Consequently, Big 
Data analytics solutions are essential for 
mitigating such complex hazards in Big Data. 
To be effective, Big Data analytics 
cybersecurity solutions must meet some 
fundamental criteria. They must handle data 
originating from diverse sources and 
implement superior management solutions for 
large-scale data. They must also manage 
various data kinds and effectively visualise it 
to provide quick and straightforward 
conclusions and insights extraction. To meet 
these criteria, Big Data analytics cybersecurity 
solutions must include a robust and high-
performance architecture that enables the 
management of Big Data across many 
contexts. Several Big Data analytics safety 
measures have been developed and 
implemented by major industrial corporations, 
including IBM and Teradata. Nevertheless, 
several problems hinder the comprehensive 
implementation of Big Data analytics for 

cybersecurity. These issues include the 
complexity of managing unstructured and 
intricate data, as well as the need for real-time 
and streaming data analysis. The adoption is 
further impeded by concerns over data privacy 
and provenance, as well as the need for 
adaptation to dynamic changes in data 
behaviours. To promote its adoption, future 
initiatives include improving privacy and 
security measures that conceal important 
security-related information. Furthermore, 
behavioural analytics have to be integrated 
with Big Data analytics to effectively mitigate 
insider risks. Additional visualisation tools are 
essential for security analysts to get valuable 
early insights on cyber threats and security 
breaches for subsequent inquiry. The effective 
adoption must take into account the relevance 
to diverse IoT applications. 
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