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ORIGINAL STUDY

Predicting Earthquake Location Using
Convolutional Neural Network-Attention
Mechanism Approach

Mohammed A. Jaleel Shaneen *, Suhad M. Kadhem

University of Technology – Iraq, Department of Computer Science, Al-Sina’a St., Al-Wehda District, 10066
Baghdad, Iraq

ABSTRACT

In seismically active areas, earthquake prediction is essential for minimizing potential damages
and preserving lives. However, precise forecasts are complicated to achieve because of seismic
events’ complex and unpredictable nature. The current study presents an advanced prediction
approach to address such issues, combining Convolutional Neural Networks (CNNs) and Attention
Mechanism (AM). The primary goal is to improve the accuracy of the earthquake predictions and
the generalizability across various mainland Chinese regions. AM layer emphasizes significant
features for improving the prediction performance, whereas CNNs are utilized to extract spatial
features of seismic data. The efficiency and effectiveness of the proposed approach were evaluated
by comparing it with several well-known models. Results showed that the proposed approach
performed consistently better than others in nine regions, with a reduced Root Mean Square
Error (RMSE) and Mean Absolute Error (MAE) as well as higher R-squared (R2) scores, especially
in substantial seismic variability regions. Moreover, the proposed approach outperformed the
conventional techniques in Region One, achieving an RMSE of 0.020, an MAE of 0.015, and
an R2 value of 0.960. In regions susceptible to seismic events, this all-encompassing approach
presents a promising path for earthquake prediction, boosting readiness and risk management
methods.

Keywords: Convolution neural networks, Earthquake prediction, Attention mechanism, Feature
selection

1. Introduction

Earthquakes are a devastating natural occurrence that can seriously damage human life
and infrastructure. These disasters usually occur suddenly and without warning, causing
severe suffering to people and massive financial costs to communities [1]. Earthquakes
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could lead to direct effects. However, they might set off secondary calamities such as
landslides, floods, and tsunamis [2–4], and they could also have detrimental impacts on the
ecosystems, resulting in issues that include soil liquefaction [5] and surface fault ruptures
[6]. Effective methods of prediction [7, 8] and a comprehensive understanding of their
direct as well as indirect impacts [9] are vital, taking into consideration the significant
damages as well as mortality that are caused by this kind of event.

Accurate earthquake prediction is vital for minimizing its devastating effects, bolstering
preparedness, and improving crisis management efforts [10]. Effective forecasting tech-
niques strive to estimate the magnitude and location of upcoming earthquakes within
a designated timeframe [11], which can ultimately help save lives and lessen economic
damages. Despite numerous proposed methods, accurate earthquake predictions remain
challenging due to earthquakes’ complex and stochastic nature [12].

The main objective of the current study’s proposed approach is to improve the perfor-
mance and accuracy of earthquake prediction in seismic active regions and generalize
the approach to other areas by integrating an attention mechanism with a Convolutional
Neural Network (CNN).

The rest of this study is organized as follows: Section 2 reviews the related works and
examines earlier studies. In Section 3, the preliminary section presents the important
concepts. The suggested approach is explained in Section 4. Section 5 introduces the exper-
imental results, while Section 6 provides a comparative analysis of different approaches.
Finally, the conclusion in Section 7 summarizes the study and offers recommendations for
future research paths.

2. Related works

Numerous techniques are utilized in earthquake prediction research, and they can be
divided into five major groups: mathematical modeling, Shallow Machine Learning (ML),
precursor signal analysis, Deep Learning (DL), and hybrid methods. Table 1 provides an
overview of such investigations.

2.1. Mathematical modeling

Mathematical modeling methods forecast earthquakes by applying mathematical and
statistical methods. Kannan [13] presented a noteworthy research in the category, where
he introduced a spatial correlation hypothesis for predicting earthquake locations in
important seismic regions. Marisa et al. [14] have estimated Sumatra Island’s earthquake
using a Poisson Hidden Markov Model (PHMM), which leveraged the statistical approaches
for predicting seismic event likelihood. Fadaee & Dehghani [15] employed a bivariate
lognormal distribution to create a probabilistic prediction approach and optimize param-
eters through the use of the maximum likelihood approach. Their model was designed
for earthquake prediction in Tehran with magnitudes that range from 6.6 to 6.8 over
the next 10 to 15 years. Mathematical modeling methods are frequently dependent upon
assumptions like linear and stationarity correlations, which might not always hold for
earthquake data, leading to a potential restriction of prediction accuracy [16].

2.2. Precursor signal analysis

Precursor signal analysis focuses on examining some anomalies that could occur before
the earthquakes. For example, Uyeda et al. [17] investigated electromagnetic signals as
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potential short-term earthquake forecast precursors, exploring the potential of the seism-
electromagnetic signals for the predictions. Similarly, Li and Parrot [18] presented an
analysis of the fluctuations in the ionospheric density, suggesting that the alterations in the
ionospheric parameters could play the role of the seismic indicators. In addition, Wikelski
et al. [19] studied farm animal behavior as a short-term earthquake prediction means,
where they looked into how animal behavior shifts might indicate the upcoming seismic
activities. However, the effectiveness of precursor-based methods is usually limited by
these precursors’ unpredictability and detectability.

2.3. Shallow machine learning methods

Data-driven methods utilizing statistical learning algorithms are called shallow Machine
Learning methods. One of the notable research studies in this field was conducted by
Asim et al. [20], who utilized the classifiers of ML in addition to historical seismic
data for earthquake magnitude predictions. They were successful in earthquakes with
5.5 magnitude or more significant. In order to forecast earthquake magnitude, location,
and depth in Indonesia, Murwantra et al. [21] utilized the Naive Bayesian (NB), Support
Vector Machine (SVM), and multinomial logistic regression algorithms. They found out
that the SVM’s performance was superior to the others. Utilizing the historical data for
the purpose of improving the accuracy of predictions, Lin [22] presented a probabilistic
back-propagation NN model for earthquake predictions in Taiwan. Khalil et al. [23] created
a hybrid NN incorporating SVMs with other approaches to predict earthquakes along the
Chaman fault in Baluchistan. Even though shallow Machine Learning techniques can spot
patterns in data, they frequently encounter some difficulties because the earthquake data
is highly complicated, and they might require extensive feature engineering to increase
their accuracy.

2.4. Deep learning methods

The capabilities of earthquake predictions have increased significantly due to the latest
DL developments. Wang et al. [24] utilized Long Short-Term Memory (LSTM) networks
in order to find spatial-temporal correlations between earthquakes in a variety of regions,
which represents a noteworthy method example. Through the use of CNNs for learning
spatial features, Huang et al. [25] utilized CNNs to analyze image data and predict the
magnitudes of significant earthquakes in Taiwan. Bhandarkar et al. [26] employed the
LSTM networks to investigate earthquake patterns by identifying the temporal depen-
dencies in the seismic data. The deep Learning Model for Earthquake Prediction (DLEP)
was presented by Li et al. [27] and utilizes the CNNs for the process of Feature Extrac-
tion (FE) for the integration of the explicit as well as the implicit earthquake features.
Through the application of CNNs to the raw waveform data, Jozinovi et al. [28] focused
on predicting the intensity of ground shaking throughout earthquakes in Italy. Banna
et al. [29] bidirectional LSTM model with attention processes aims to increase prediction
accuracy while predicting earthquakes in Bangladesh. Mao et al. [30] examined monthly
maximum magnitude predictions in China’s North-South Seismic Belt using many DL
models to improve accuracy. Quinteros et al. [31] reported preliminary results from a CNN
architecture model for utilizing High Rate – Global Navigation Satellite System (HR-GNSS)
data to estimate earthquake magnitudes. With the help of the Standard Earthquake Dataset
(STEAD), Manka et al. [32] investigated the use of DL models to predict earthquake
magnitudes. They found that LSTM networks and Bidirectional LSTM architectures perform
better when compared to other models in several metrics of performance.
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2.5. Hybrid methods

Combining LSTMs and CNNs has demonstrated the potential in enhancing prediction per-
formance by utilizing both temporal and spatial data. For instance, a Convolutional Neural
Network – Bidirectional Long Short-Term Memory (CNN-BiLSTM) model was created by
Beroza and Mousavi for estimating earthquake magnitudes using time-frequency features
[33]. Nicolis et al. [34] suggested a CNN-LSTM method for the prediction of seismic events
by using geographic images in Chile. Related studies along with their approaches and
limitations are outlined in Table 1 below.

3. Preliminaries

3.1. Convolutional neural networks

Unlike other methods, DL methods concentrate on extracting high-level aspects [35].
One area of DL is CNNs. Accuracy and great effectiveness are attributes of CNN-based
techniques [36]. CNN is distinguished by its excellent scalability and minimal complexity
[37]. CNNs have proven helpful in several applications, including time series analysis,
image processing, and facial recognition [38]. Pooling, convolutional, and Fully Connected
Layers (FCLs) comprise a CNN’s architecture. Every convolutional layer consists of a set of
learnable filters that automatically extract the local characteristics from the input matrix.
Those filters’ convolution operations use the concepts of weight sharing and local connec-
tivity, which reduce computational complexity and improve the performance of the model
[39]. The pooling layer, which comes after convolutional layers, does downsampling,
which lowers the feature map’s dimensionality and helps avoid overfitting. The final layers
of CNN are usually FCLs, which provide the final output by combining the information that
the convolutional layers have extracted [40].

3.2. Attention mechanism

The human visual system inspires an attention mechanism (AM) technique to amplify
the importance of essential information [41]. Just as human vision does not process an
entire scene simultaneously but focuses on specific areas as needed, AM selects important
information while disregarding fewer details. This approach is widely used in the image
captioning field [42], machine translation [43], and earthquake prediction field [44].

4. The suggested approach’s framework

4.1. Proposed convolutional neural network–attention mechanism

This section describes the architecture and essential elements of the suggested technique
of earthquake prediction, which consists of four primary stages: model training, data
preparation, evaluation, and testing, as shown in Fig. 1.

A new approach integrating CNNs and AMs methods is proposed to improve prediction
accuracy and FE. The FE block, input block, prediction block, and attention block are
the four main parts of the suggested approach, as seen in Fig. 2 and Table 2. The FE
block uses CNNs for the extraction of the spatial features from input data. The AM then
receives such features. The attention module gives the features varying weights at this
point, emphasizing the most important elements and assisting the model in producing more
precise and accurate predictions. The prediction block, which consists of a FCL and output
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Table 1. The related works in earthquake predictions.

Research
Category Ref. no. Approach/Model/Method Limitations

Mathematical
Method

[13] Spatial Correlation It relies on statistical assumptions that may not
accurately reflect geological differences in various
seismic regions.

[14] Poisson Hidden Markov Assumes earthquakes follow a Poisson distribution,
which may not capture the complex dynamics in
regions like Sumatra.

[15] Probabilistic Model Based on historical data, which may not account
for changing seismic patterns over time, limiting
prediction accuracy.

Precursor
Method

[17] Statistical Analysis Method The unpredictability and occasional absence of
precursors can hinder consistent short-term
prediction.

[18] Statistical Analysis Method Variability in ionospheric responses to earthquakes
makes it challenging to establish reliable
correlations.

[19] Statistical Analysis Method Nonseismic factors could influence animal
responses, reducing the method’s specificity for
earthquake prediction.

Shallow ML [21] Multinomial Logistic
Regression (LR), SVM, NB

High reliance on data quality and extensive feature
engineering; struggles with capturing complex
seismic interactions.

[22] Backpropagation NN Limited by insufficient data for accurate modeling,
overfitting can occur with small datasets.

[23] Hybrid Neural Network
(HNN)

Model performance heavily depends on the quality
and variety of historical data, limiting
generalizability.

DL Method [24] LSTM High computational cost and extensive training
time; sensitive to temporal data irregularities.

[25] CNN Requires a large dataset of high-quality images,
which may not be available in all regions.

[26] LSTM It may overlook spatial aspects, as LSTM focuses
primarily on temporal dependencies.

[27] CNN Combining implicit features can introduce noise,
reducing model clarity and accuracy.

[28] CNN Limited generalizability due to training on
region-specific data (Italy), which may not apply
elsewhere.

[29] Attention Mechanism with
Bi-directional LSTM

High sensitivity to data anomalies can skew
attention mechanisms, impacting accuracy.

[30] predict maximum magnitude
using Multiple DL models

Limited to some regions and may not generalize to
other seismic zones.

[31] CNN for estimating
magnitudes of earthquakes
using HR-GNSS

Based on dataset configurations and the quality of
data from different regions, performance may vary.

[32] predict earthquake
magnitudes using LSTM and
BiLSTM model

Performance is significantly influenced by dataset
quality and may need further optimization for
broader use

Hybrid [33] CNN and BiLSTM Requires high computational resources to balance
spatial and temporal aspects.

[34] CNN and LSTM Model accuracy varies with geographic diversity,
as it may not generalize well across different
seismic zones.
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Fig. 1. The flowchart of the suggested approach.

layer, rates the final predictions. Trainable parameters, including loss functions, filter sizes,
kernels, and the number of neurons, are present in every block. Reducing prediction errors
requires optimizing such parameters. The structural elements of the suggested approach
are made to reduce parameters and dimensions of the network. The Rectified Linear Unit
(ReLU) activation function has been utilized in the FE block to improve convergence rates
by addressing gradient vanishing or explosion problems. Batch Normalization (BN) is a
regularization method after every convolutional layer. As seen in Table 2, BN improves
the approach’s performance by regularizing and lowering internal covariate shifts. Each
one of the blocks in the suggested approach is described thoroughly in detail below:

4.1.1. Input block
This block processes earthquake data monthly using duplication, resizing, normalization,

scaling, and denoising. Duplication increases dataset size for better model performance;
resizing adjusts image dimensions for compatibility; normalization standardizes pixel
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Fig. 2. The architecture of the suggested approach.

values to stabilize training; scaling converts pixel values to a uniform range for efficiency;
denoising removes noise to improve image quality and analysis accuracy.

4.1.2. Feature extraction block
Five pooling layers, five convolutional layers, and one flattening layer make up the

eleven layers of the 1D CNN used in the block. The first convolutional layer employs a
higher filter size for effectively attenuating high-frequency signals than the subsequent
layers. Data representation is improved by extracting more complex features that are
made possible by integrating numerous pooling and convolutional layers. One of the
convolution layers is followed by max-pooling layers to enhance the network’s training
and generalization capabilities. Through adapting features to the intended distribution,
BN normalizes and speeds up training layer by layer. The BN approach is computed as
follows: [40]:

µ =
1

Nbatch

N∑
i=1

xi (1)

σ 2
=

1
Nbatch

N∑
i=1

(xi − µ)2 (2)

x̂i =
xi − µ
√
σ 2 + ε

(3)

yi = γ x̂i + β (4)

In such case, yi and xi are the output and input values of ith observation within a mini-
batch, whereas Nbatch denotes the mini-batch size. The symbol µ represents the mini-
batch sample’s mean, its standard deviation by γ , and a small constant called ε added
for numerical stability—additionally, β functions as a bias parameter and γ as a scaling
parameter. The padding type is always used to avoid feature loss throughout convolution
operations. The convolution layer’s multidimensional output must be transformed into 1D
data before being processed and sent to the flattened layer.
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Table 2. Suggested approach structures.

Block Layer No. of Filters × size × Stride

FE Convolution one 16 × 5 × 1
Max-pooling 16/2/1
Convolution two 32 × 3 × 1
Max-pooling 32/2/1
Convolution three 64 × 3 × 1
Max-pooling 64/2/1
Convolution four 128 × 3 × 1
Max-pooling 128/2/1
Convolution five 256 × 3 × 1
Max-pooling 256/2/1

Attention Attention Mechanism –
Prediction Fully Connected 1 32

Fully Connected 2 10
Fully Connected 3 1

4.1.3. Attention block
At the end of sequence learning phase, an attention layer is incorporated into the

attention block. This layer emphasizes the most influential factors affecting the prediction
results, enhancing accuracy. An attention mechanism functions by assigning weights to dif-
ferent components and higher weights to more relevant information, optimizing traditional
models’ performance. The attention function maps the query with a sequence of value-key
pairs. The process of calculating attention involves three steps, as depicted in Fig. 3. In the
first step, the correlation or similarity between each key and query is computed as follows
[42, 43]:

st = tanh
(
Whht + bh

)
(5)

where st represents the attention score value, and bh, Wh, represent the bias and weight
values regarding AM. ht denotes the input vector. The score value that was obtained from
the first stage is normalized in the second phase, and the attention score is converted using
the softmax function, as given in the following formula [43]:

at =
exp (st )∑
t exp (st )

(6)

The final attention value of the weight coefficient is obtained by weighted summation,
as shown below [43]:

s =
∑
t
atht (7)

The attention mechanism technique is typically utilized after Recurrent Neural Network
(RNN) and CNN to focus on an important feature that considerably affects the output
variables and increases and enhances the model performance.

4.1.4. Prediction block
This block consists of two FCLs and one FCL (the output layer). The FCLs perform a

sequence of nonlinear transformations to the features of the attention layer processes. The
final output layer then generates the prediction results.
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Fig. 3. The steps of determining AM [41].

5. Experimental results

5.1. Division of study area

The study focuses on the Chinese mainland area, which is positioned in the southeastern
region of the Eurasian tectonic plate. This region, connected the Indian and Philippine
plates and the Mongolia-Siberia subplate, is one of the most seismically active regions in
the world. Mainland China has experienced numerous significant earthquakes, including
the Xingtai earthquake in 1966, the Daguan earthquake in 1975, the Jilin earthquake in
2002, the Wenchuan earthquake in 2008, the Lushan earthquake in 2013, and the Gorkha
earthquake in 2015 with Moment Magnitude (MW) 7.1, 7.2, 8.0, 7.0, and 7.8, respectively.
Since 1949, catastrophic earthquakes have occurred in this region, resulting in over
275,000 deaths, which represents 55% of total deaths from different natural disasters in
area of mainland China [45]. Given the high frequency of such events, reliable earthquake
predictions are crucial to mitigating damage and casualties. The Chinese mainland is split
into smaller regions to analyze and predict earthquake locations more accurately. Due to
the complex challenge of limited and inadequate data, the study area was segmented into
nine smaller regions. These regions are defined by a range of degrees from 75 to 119 and
a range of longitudes of degrees from 23 to 45.

5.2. The dataset and data preprocessing

5.2.1. Dataset
A comprehensive earthquake dataset is essential to describe regional seismicity ef-

fectively. The United States Geological Survey (USGS) [46], as well as the National
Seismological Center (NSC) [47], provided the data used in this investigation as a unified
dataset. The dataset used in the presented work includes both temporal and spatial data.
A total of 34,326 images that show the geographic distribution regarding earthquakes
make up the spatial data, which allows the model to use CNNs to identify spatial patterns.
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Table 3. Summarizes the approach dataset.

Aspect Details

Data Sources NSC and USGS
Date Range January 15, 1966 - May 22, 2023
Total Images 34,326
Total Records 11,442
Magnitude Threshold ≥ 3.5
Included Information Latitude, Longitude, Date/Time, Magnitude, Depth, Station Number
Monthly Data Samples 665

The dataset includes 11,442 records of earthquakes with magnitudes of 3.5 or greater,
spanning from January 15, 1966, to May 22, 2023. Each record provides details such as
magnitude, longitude range, latitude range, date, depth, time of occurrence, and station
number. The present research is primarily focused on spatial data to enhance the model’s
ability to identify regions that are prone to earthquakes. A summary of key aspects of the
data-set is illustrated in Table 3.

5.2.2. Data preprocessing
A number of the preprocessing steps have been undertaken for data preparation for

modeling. At first, duplicate records were identified and removed to maintain the accuracy
and reliability of the dataset. Data was divided into two subsets: 20% for the testing
and 80% for the training model. The resizing, duplication, scaling, normalization, and
denoising were employed for the preprocessing, as explained in Section 4.1.1.

5.3. Implementation details

In order to create a well-trained model, it is essential to select the correct hyperparame-
ters. The test-and-error approach is utilized to modify the hyperparameters. The Stochastic
Gradient Descent (SGD) technique [48], Root Mean Square Propagation (RMSProp) for
DL [49], and Adam stochastic optimization approach [50] were among the methods of
optimization that have been compared. Adam was chosen as the optimization algorithm
and has been shown to improve the model’s accuracy. The Mean Square Error (MSE) metric
is used as a back-propagation loss function to update bias and weight values. The learning
rate value starts at 0.001 and gradually drops to 0.0001 by the end of the epoch for
maintaining a steady learning speed. Concerning the training phase, the model is trained
for 150 epochs with a 32-batch size. Each experiment is performed multiple times to reduce
random variations. Even though the nine training regions employ the configurations and
settings, the training for each region should be divided since geological features vary by
region. For each of the nine regions, the prediction results on the test data are acquired
independently.

5.4. The evaluation metrics

Three evaluation metrics, i.e., RMSE, MAE, and R-squared (R2), are used to assess the
suggested approach’s performance. Below are the formulas for such metrics [51]:

MAE =
1
n

n∑
i=1

|yi − ŷi| (8)
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RMSE =

√√√√1
n

n∑
i=1

(
yi − ŷi

)2 (9)

R2
= 1−

∑n
i=1
(
ŷi − yi

)2∑n
i=1
(
ȳi − yi

)2 (10)

In the equations, n denotes the number of predicted data points; yi denotes actual
values; ŷ represents predicted values and ȳ denotes the mean regarding actual values. It
is crucial to maximize R2 while minimizing RMSE and MAE values in order to improve
model performance. A complete linear correlation is shown by a value of 1, the R2

metric’s estimate of the strength of linear relation between observed and predicted values.
Approach performance is measured by MAE and RMSE, with zero denoting the ideal result
and lower numbers indicating higher performance. Evaluation criteria, including precision,
accuracy, F1 score, and recall are added along with such metrics for a more thorough
examination of the prediction models. The percentage of accurate predictions amongst
all of the predictions is referred to as accuracy. The percentage regarding true positive
predictions compared to all positive predictions is called the precision. The percentage
regarding true positive predictions among all true positive situations is called the recall.
Lastly, the F1 score balances recall and precision by representing the harmonic mean of
such two criteria. These matrices are computed as follows [51]:

Accuracy =
Correct Predictions
Total Predictions

(11)

Precision =
True Positives

True Positives + False Positives
(12)

Recall =
True Positives

True Positives + False Negatives
(13)

F1 = 2 ×
Precision × Recall
Precision + Recall

(14)

5.5. Comparison methods

Random Forest (RF), SVM, Decision Trees (DT) [20], Multi-Layer Perceptron (MLP),
CNN [25], LSTM [26], and a CNN-Bidirectional LSTM (BiLSTM) combination are among
the models commonly used in earthquake prediction that are included in the comparison.
A comparison between the new model and existing ones took place using same data. The
comparison approaches are divided into distinct classes.

5.5.1. Shallow machine learning models
RF, SVM, MLP, and DT make up this group. Those methods compare the suggested

approach’s FE capabilities against traditional ML approaches.

• SVM: This algorithm is grounded in statistical learning theory and involves hyperpa-
rameters that include the Radial Basis Function (RBF) kernel, a regularization factor
(C) of 1, epsilon (ε) of 0.01, and gamma (γ ) of 0.1.
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• RF: This ensemble learning method utilizes averaging to improve prediction accuracy
and prevent overfitting. In such a study, the maximum depth regarding the trees is
configured to 9, and the trees’ number in the forest is 100.

• DT: This supervised learning method employs a tree structure to create models of
regression or classification based upon decision rules derived from the data features.
The maximum depth of the tree is configured to 10.

• MPL: The input, hidden, and output layers of the MLP are frequently used in earthquake
prediction studies. Two hidden layers, which have 15 neurons each, are utilized in
the presented work. The model has a sigmoid activation function, 150 epochs, and a
learning rate value of 0.01 [52].

5.5.2. Deep learning encompasses techniques
This includes LSTM, CNN, and combining CNN-LSTM. The CNN technique is associated

with the proposed approach by the FE component, while the LSTM technique is akin to the
sequence learning component of the proposed approach, with BiLSTM being used instead
of LSTM. The hybrid CNN-BiLSTM approach integrates both the FE and sequence learning
components.

6. Comparative analysis

6.1. Earthquake frequency analysis

Most previous studies have concentrated on predicting earthquake time, location, and
size using seismic indicators like depth, magnitude, and geographic location as inputs. To
the authors’ knowledge, no research has yet been done on earthquake frequency prediction.
Earthquake frequency might be a critical element for forecasting seismic activity and
providing a more thorough understanding of a region’s seismic behavior. To precisely
forecast the number of anticipated earthquakes monthly, this case study uses the suggested
approach under the same assumptions and conditions. The suggested approach’s efficiency,
effectiveness, and generalizability are evaluated compared to LSTM, CNN, MLP, RF, SVM,
and DT. Table 4 summarizes the findings for predicting the frequency of earthquakes in
nine distinct regions. Results have demonstrated that, across all regions, the suggested
approach consistently produces superior prediction performance, as evidenced by the
greatest R2 scores and the minimal RMSE and MAE values. This shows that the suggested
approach is quite good at predicting the frequency of earthquakes and either beats or is
on par with the other models. For example, the suggested approach displays outstanding
performance in Region 1, whereas other models show significant prediction error rates,
with RMSE of 0.20, R2 score of 0.960, and MAE of 0.015.

The suggested approach performs better than all comparison approaches in Region 7,
which is regarded as one of the most difficult R2 metrics. In particular, it attains R2 values
that surpass the comparison approaches’ maximum and minimum R2 values, respectively.
This outstanding performance demonstrates the efficacy of a suggested approach, espe-
cially amid notable seismic abnormalities. The approach’s three main components—using
CNN to acquire spatial attributes, using AM to highlight the significance of various hidden
states, and the concentrated consideration of the most crucial states—are responsible
for the improved performance. Such characteristics make the suggested approach more
successful than the ML and DL methods. Across all regions, however, the SVM model
performs the worst, with the lowest R2 scores and the greatest MAE and RMSE values.
Long-term dependencies in time series data are difficult for SVM to capture, even if it
can handle non-linear problems. The mean evaluation indicators for each implemented
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Table 4. Evaluation error indexes comparisons for eight approach.

CNN-Bi- Proposed
Regions Metrics SVM DT MLP RF CNNs LSTM LSTM approach

Region One RMSE 0.10 0.09 0.11 0.09 0.10 0.09 0.09 0.020
MAE 0.06 0.04 0.05 0.04 0.05 0.05 0.04 0.015
R2 -0.01 0.16 0.05 0.15 0.14 0.17 0.25 0.960

Region Two RMSE 0.13 0.09 0.15 0.13 0.08 0.07 0.07 0.060
MAE 0.09 0.11 0.09 0.06 0.05 0.04 0.04 0.029
R2 0.60 0.66 0.43 0.58 0.83 0.86 0.88 0.920

Region Three RMSE 0.28 0.26 0.18 0.20 0.20 0.19 0.19 0.065
MAE 0.15 0.15 0.13 0.11 0.11 0.12 0.12 0.028
R2 -0.23 -0.03 0.43 0.37 0.41 0.45 0.47 0.940

Region Four RMSE 0.15 0.15 0.14 0.14 0.13 0.13 0.10 0.090
MAE 0.09 0.08 0.07 0.08 0.07 0.07 0.07 0.060
R2 0.01 0.14 0.26 0.21 0.43 0.50 0.61 0.705

Region Five RMSE 0.20 0.12 0.10 0.11 0.09 0.08 0.09 0.055
MAE 0.13 0.08 0.07 0.08 0.07 0.07 0.07 0.054
R2 -0.05 0.58 0.75 0.68 0.70 0.74 0.72 0.910

Region Six RMSE 0.23 0.20 0.17 0.19 0.20 0.20 0.18 0.085
MAE 0.14 0.13 0.01 0.13 0.14 0.13 0.13 0.058
R2 -0.35 0.02 0.21 0.06 0.05 0.10 0.15 0.810

Region Seven RMSE 0.16 0.16 0.11 0.10 0.09 0.09 0.09 0.089
MAE 0.10 0.14 0.05 0.04 0.03 0.04 0.04 0.025
R2 0.13 0.11 0.22 0.37 0.43 0.46 0.48 0.615

Region Eight RMSE 0.14 0.14 0.13 0.14 0.13 0.13 0.12 0.090
MAE 0.08 0.07 0.07 0.08 0.06 0.06 0.06 0.055
R2 0.08 0.18 0.26 0.18 0.39 0.39 0.43 0.675

Region Nine RMSE 0.12 0.12 0.12 0.12 0.12 0.12 0.10 0.085
MAE 0.08 0.09 0.10 0.09 0.09 0.09 0.07 0.055
R2 0.61 0.51 0.48 0.52 0.56 0.57 0.63 0.815

Fig. 4. Comparison of RMSE evaluation metric between the suggested approach and the compared approaches.

approach are compared to further highlight the benefits of the suggested approach. As
depicted in Fig. 4, there is a notable disparity in performance among various techniques.
DL methods generally exhibit lower average errors and greater predictive potential than
shallow ML approaches. This is due to the relative simplicity of shallow learning structures,
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Table 5. Evaluation metrics results.

Region Accuracy Precision Recall F1 Score

Region 1 86% 83% 78% 80%
Region 2 83% 81% 76% 78%
Region 3 76% 73% 68% 70%
Region 4 78% 75% 70% 72%
Region 5 84% 82% 76% 78%
Region 6 80% 77% 72% 74%
Region 7 79% 76% 71% 73%
Region 8 78% 75% 70% 72%
Region 9 81% 78% 73% 75%

which often fail to model the complex non-linear relationships inherent in earthquake data.
DL approaches, with their multiple hidden layers, are better suited for capturing these
complexities and learning features at various levels of abstraction.

Among DL models, LSTM performs better than CNN in time series prediction, as ev-
idenced by its lower RMSE (0.07 vs. 0.08) and MAE (0.04 vs. 0.05) and higher R2

score (0.86 vs. 0.83). This performance advantage arises because LSTM is more adept at
handling long-term dependencies than CNN. The hybrid CNN-BiLSTM model, combining
the strengths of both LSTM and CNN, shows the lowest error values and the maximum R2

score amongst the DL models. However, the proposed approach, for example, in region
2 (RMSE = 0.06, MAE = 0.029, R2

= 0.920), outperforms the CNN-BiLSTM model in
predicting frequency. Overall, the proposed approach improves RMSE, MAE, and superior
R2 metrics compared with CNN model, highlighting the effectiveness of the integrated AM
techniques. This demonstrates that incorporating AM into the CNN model significantly
enhances the prediction accuracy by capturing the complex relationships within the data.

6.2. Earthquake prediction performance

To ensure a thorough performance evaluation of the prediction model, additional metrics
are introduced, such as Precision, Accuracy, F1, and Recall for each region, as illustrated
in Table 5 and Fig. 5.

Regions with low RMSE and high R2, such as Regions 1 and 2, achieve the highest
accuracy scores (83%–86%), indicating the approach’s adequate predictive strength in
these areas. In contrast, accuracy in regions 3 and 4 is slightly lower (76%–78%), aligning
with higher prediction errors and lower R2 values, indicating more difficulty in accurate
predictions. Precision is notably high (75%–83%) in regions with strong R2 and low RMSE
(e.g., Regions 1, 2, and 5), demonstrating the approach’s capability for avoiding false
positives in areas with higher prediction quality. Regions with higher errors, like region 3,
have somewhat lower precision (73%), reflecting an increase in false positives. Recall val-
ues, ranging from 68%–78%, illustrate the approach’s success in identifying true positives.
Regions with higher R2 values (e.g., Regions 1 and 2) demonstrate stronger recall, whereas
regions facing more significant prediction challenges (e.g., Region 3) exhibit reduced
recall. F1 Scores, which indicate the balance between precision and recall, range from
70% to 80%. Regions 1 and 2 achieve higher scores (∼80%), confirming their balanced
performance, while Regions 3 and 7 show moderate scores (70%–73%), indicating poten-
tial for improvement. These metrics align logically with the error indicators (RMSE, MAE,
and R2) in Table 4. Areas with lower prediction errors (low RMSE and high R2) correspond
to higher values across these metrics, while more difficult-to-predict regions have slightly
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Fig. 5. Evaluation Metrics.

lower scores. Overall, these metrics have provided a realistic assessment of the approach’s
effectiveness, highlighting strengths and opportunities for enhancing prediction accuracy.

7. Conclusion

The present study introduces an earthquake prediction approach that utilizes a CNN-AM,
designed to enhance earthquake location forecasting and magnitude accuracy. Considering
the complex and nonlinear nature of the earthquake data, the present study provides a
significant advancement in the predictive approach. The CNN-AM approach uses a detailed
historical dataset spanning five decades, including monthly earthquake frequency records
and the maximum magnitudes. Through the preprocessing of this data for refining input
features and using CNNs to extract the spatial characteristics, the approach can effectively
identify the relevant patterns. Attention Mechanism integration results in further boosting
the performance through the prioritization of the features holding high predictive value,
which makes sure that the approach is not only accurate but also generalizes well across a
variety of regions. Two case study results demonstrate the CNN-AM approach’s superiority
over conventional shallow ML and DL models. When predicting earthquake frequency,
the suggested approach often beats models like LSTM, CNN, MLP, RF, SVM, and DT.
CNN-AM approach demonstrated its efficiency and robustness in earthquake prediction
by achieving the MAE and RMSE as well as the greatest R2 scores. CNN-AM approach
has excelled particularly in challenging regions and scenarios that have characterized
significant seismic anomalies. Its superior performance in areas with complex seismic
patterns reflects its capability for navigating earthquake data intricacies more effectively
than the other approach. This can result from the advanced FE capabilities and AM of the
approach, collectively enhancing the approach’s proficiency in identifying and utilizing
the critical patterns within data. Future works could implement LSTM or GRU techniques
to sequence data prediction. Employing Transformer Attention could also be utilized to
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recognize key seismic data elements, as well as integrate various data sources, including
seismic and satellite data and others, for advanced model training efficiency.
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