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Abstract : 

Forest ecosystems in this region, particularly within Zakho, and Duhok districts, have experienced 

significant environmental stress due to persistent armed conflicts, fires, climate variability, and 

unsustainable land use. This study assesses forest degradation in Duhok Province, Iraq, from 2000 to 

2024 by employing remote sensing and geospatial techniques. Utilizing satellite-derived spectral 

indices including Normalized Difference Vegetation Index (NDVI), Modified Soil Adjusted 

Vegetation Index (MSAVI2), Normalized Difference Moisture Index (NDMI), and LST, this 

analysis quantifies the extent and severity of vegetation loss, moisture reduction, and increased land 

surface temperatures (LST). Results indicate dramatic forest cover declines: Zakho's forested area 

decreased from 716.6 km² (49.3%) in 2000 to 521.8 km² (35.9%) by 2024. While Duhok forests 

decreased from 622.8 km² (61.4%) to 416.5 km² (41%). Moisture analysis (NDMI) in Zakho showed 

a sharp rise in dry areas from 340.9 km² (23.5%) to 507.7 km² (34.9%) and a reduction of moist 

zones. Land Surface Temperature (LST) increased dramatically, with extreme temperature zones 

(≥50°C) rising from 29 km² (2%) to 235.7 km² (16.2%), indicating intensified desertification and 

heat stress linked to vegetation loss. The analysis underscores significant ecological consequences 

driven by conflict-induced environmental degradation, unsustainable development, and climatic 

stress. This research emphasizes the critical need for targeted reforestation, robust environmental 

governance, sustainable land management, and continuous monitoring to achieve sustainable 

development goals (SDGs) related to climate action and terrestrial ecosystem conservation. 

Keywords: Forest degradation, Remote sensing, Geospatial techniques, NDVI, NDMI, Duhok 

Province, and Iraq. 

 Introduction 

For many years, climate change, characterized 

by global warming, has been a source of 

international worry[1]. Human-caused 

deforestation has been occurring for many 

centuries. Nevertheless, the quick and 

dramatic loss of forests and their degradation 

in recent decades, along with the significant 

environmental, social, and economic 

consequences, have drawn more global 

interest in measuring and monitoring areas 

covered by forests all around[2]. Land 

structures could experience slow changes over 

time (like urbanization or economic growth) 

or sudden shocks (such as socio-economic, 

environmental, and military conflicts)[3], 

[4]Among the most serious concerns that 

might affect a land structure are armed 

conflicts. Armed conflicts have many erratic 
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effects on the environment [4]. They may, for 

instance, affect deforestation rates[5]. change 

land-use intensity and cause land 

abandonment [6]. Research showed, on the 

one hand, that conflict zones have seen 

reforestation and improved biodiversity 

preservation as a consequence of land 

abandonment [7.] 

In many countries that are afflicted by or 

recovering from war, deforestation is a 

recurring issue that is often linked to a 

location-dependent confluence of insecurity-

related issues. While deforestation may have 

short-term benefits, it may have long-term 

negative consequences on biodiversity, local 

livelihoods, weather, and habitability. 

Additional studies are being conducted to 

examine the impact that armed conflict plays 

in the incidence and spread of vegetation fires, 

with some findings revealing links between 

increasing conflict and fires[8]. Although 

there has been a recent increase in interest in 

the topic, research on the environmental 

effects of conflict remains complex and full of 

unknowns. The most significant of these is 

that conflict zones are often inaccessible to 

researchers due to security concerns, 

necessitating the remote collection of data . 

In this context, geographic information 

systems (GIS) and remote sensing have 

proved useful, providing accurate spatial data 

on changes in land cover and the health of 

forests[9].For monitoring changes in land use, 

satellite remote sensing is essential, 

particularly in dangerous areas [10]. By using 

satellite remote sensing and geospatial 

analysis, changes in forest cover and their 

geopolitical contexts may be examined and 

measured. Monitoring of battling land 

ecosystems is becoming almost continual due 

to the increasing quantity of freely available 

Earth observation data with a pretty high 

geographical and/or temporal precision. 

Furthermore, by using extensive satellite data 

sets, including optical data from the Landsat 

archive, we may analyze military conflicts that 

go back to the 1980s [6]. Venema et al. (2005) 

assert that using remote sensing techniques 

and producing spatial representations, such 

maps, to pinpoint the precise locations and 

extent of deforestation is the only way to carry 

out effective forest monitoring and 

management[11]. These tools help academics 

and policymakers create focused interventions 

for forest conservation by providing crucial 

insights into how war, conflict, and climate 

change affect forest ecosystems[12.] 

Numerous researches have examined the 

connection between forest cover and spectral 

indices including NDVI, NDMI, MSAVI2, 

and LST. These indices are often used as 

models for temperature, moisture, water 

content, and cover of vegetation, and their 

correlations with forest cover may provide 

crucial information on how changes in forest 

cover affect the ecosystem. The statistical 

association between forest cover and NDVI in 

the Indian Himalayan area was examined in 

one research by Singh et al.[13].The scientists 

estimated NDVI using remote sensing data 

and discovered a strong positive association 

between NDVI and forest cover, suggesting 

that NDVI may be a trustworthy measure of 

forest cover. The scientists estimated LST 

using remote sensing data and discovered a 

negative correlation between LST and forest 

cover, suggesting that forest cover may aid in 

lowering surface temperatures[14], [15]. The 

authors estimated NDMI using remote sensing 

data and discovered a strong positive 

association between NDMI and forest cover, 

suggesting that NDMI may be a trustworthy 

measure of forest cover[16], [17]. Hossain et 

al. (2020) investigated the connection between 
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spectral indices and forest cover in 

Bangladesh's Sundarbans mangrove forest. 

The authors estimated NDVI, LST, NDMI, 

and TCW using remote sensing data[18]. They 

discovered strong positive correlations 

between these indices and forest cover, 

suggesting that they may be accurate 

predictors of forest cover. To sum up, spectral 

indices like LST, MSAVI2, NDVI, and NDMI 

may be employed as trustworthy measures of 

forest cover. Estimating these indicators and 

examining their statistical correlations with 

forest cover using remote sensing data might 

provide important information about the 

environmental effects of shifting forest cover. 

This study analyzes climate impact on forest 

degradation in Duhok using remote sensing 

and GIS. It explores governance, 

environmental degradation to promote UN's 

SDGs. Goal is to assess forest degradation in 

Duhok using satellite data and GIS. This 

supports sustainable land management and 

forest protection (SDG 15). Analyzing climate 

effect on forest loss through temperature and 

precipitation variations is another goal. 

Climate variability affects vegetation health, 

intensifying forest stress, wildfires, and 

drought (SDG 13 .) 

 

 Materials and Methods 

 

 Study Area 

The research was conducted in Duhok 

Governorate (DU), encompassing Three 

districts: Amadiya, Duhok (Center), and 

Zakho, (Figure 1). DU's climate mirrors that 

of the Mediterranean, characterized by 

moderate to chilly and damp winters and 

warm to scorching and arid summers. The 

average yearly temperature ranges from 

19.3°C to 21.2°C, with winter temperatures 

spanning from 0°C to 15°C and summer 

temperatures from 20°C to 37°C (Figure 2) 

[19], [20]. The annual rainfall averages 

between 500 and 1,000 millimeters. Forest 

encompass 28.4% of the region, with the 

majority of farmlands located near villages 

(Nations, 2010.) 

 Methodology   

The methodology initiated in Figure 3, 

commencing with data acquisition, involves 

satellite imagery from Landsat 5 Thematic 

Mapper (TM), Landsat 7 Enhanced Thematic 

Mapper Plus (ETM+), Landsat 8 Operational 

Land Imager (OLI), and Sentinel 1 & 2, in 

conjunction with field measurements obtained 

through Google Earth. Thermal Infrared 

Sensor (TIRS) data is also harnessed for 

thermal infrared processing. These datasets 

serve as the fundamental inputs for subsequent 

analysis[23], [24], [25]. The satellite imagery 

goes through several procedures during the 

data preparation stage, such as image 

resampling and atmospheric corrections to 

determine bottom-of-atmosphere (BOA) 

reflectance. To improve spatial resolution, 

pan-sharpening is used for Landsat data [23]. 

After defining the boundaries of the study 

area, the area of interest is highlighted using 

mosaicking and sub-setting. By analyzing 

large data sets and seeing patterns and trends, 

machine learning algorithms can recognize 

changes in the forest cover. These detection 

processes have become much more accurate 

and efficient due to the combination of 

machine learning and remote sensing data. 

This has made it possible to precisely monitor 

reforestation efforts, identify deforestation 

hotspots, and automatically classify different 

types of land cover [26]. The second stage is 

the analysis of changes in forest cover, which 

uses models to pinpoint and measure shifts 

over time in both forested and non-forested 

areas . 
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Figure 1 (A) Cartographic representation of Iraq, (B) Cartographic representation of the study 

area in the DU Government 

  
Figure 2 Monthly precipitation, relative humidity, actual evaporation, maximum, minimum, 

and mean temperature of DU Government for the period spanning from 1997 to 2023. 

 

 

 Satellite Image Data   

 Sentinel-2 Data   

The June 2015-launched Sentinel-2A and 

Sentinel-2B satellites include Multi-Spectral 

Instruments (MSI) that can collect data across 

a 290-kilometer area every five days. These 
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sensors cover 13 spectral bands, including 

three 60-meter atmospheric bands, six 20-

meter red-edge, near-infrared, and shortwave 

infrared bands, and four 10-meter visible and 

near-infrared bands. Sentinel-2B MSI's Level-

1C top-of-atmosphere reflectance data were 

used for this analysis. Four Sentinel-2A MSI 

images from 2017 to 2024 were retrieved from 

the ESA Copernicus Sentinels Scientific Data 

Hub and processed utilizing the Sen2Cor 

processor (v2.4.0) to derive Level-2A land 

surface reflectance, rectifying for atmospheric 

effects[27].  To assess temporal changes in 

Duhok Province from 2000 to 2024, a total of 

48 Sentinel satellite images with a spatial 

resolution of 10 meters were utilized, 

comprising two images per year. 

 Landsat Datasets   

For this study, we acquired Landsat images 

(OLI/TIRS C1 Level-1) and Landsat 7 ETM+ 

data from 2000 to 2017 from USGS's GloVis, 

selecting images with less than 10% cloud 

cover  (Figure 3). Atmospheric correction was 

performed using the FLAASH algorithm in 

ENVI 5.3, and vegetation indices like NDVI, 

LST, NDMI, and MSAVI2 were calculated for 

each Landsat image[28.] 

 Spectral Indices 

 NDVI Normalized Difference 

Vegetation Index  

The NDVI index is calculated based on the 

reflectance of the red (Red) and the Near-

Infrared (NIR) bands of the Landsat images, 

using formula 3.6, as follows: 

NDVI=(NIR-Red)/(NIR+Red)   

………………....1                                             

                        

 

Theoretically, NDVI values ranged between 

−1.0 and +1.0. However, the typical range of 

the NDVI index from vegetation and other 

earth surface materials is between 

approximately −0.1 (NIR less than Red) for no 

vegetated surfaces and as high as 0.9 for dense 

vegetative cover. NDVI values increase with 

increasing green biomass, positive seasonal 

changes, and favorable factors (e.g., abundant 

precipitation) [29], [30], [31], [32]. NDVI-

based vegetation density can be classified into 

3 classes based on NDVI values  [31], [32]. 

The USGS remote sensing phenology states 

the following: "NDVI values range from +1.0 

to -1.0. Areas of barren rock, sand, or snow 

usually show very low NDVI values (for 

example, 0.1 or less). Sparse vegetation, such 

as shrubs and grasslands or senescing crops, 

may result in moderate NDVI values 

(approximately 0.2 to 0.5). High NDVI values 

(approximately 0.6 to 0.9) correspond to dense 

vegetation such as that found in temperate and 

tropical forests or crops at their peak growth 

stage‖[31], [33]. Table 1 Based on the USGS 

Remote sensing phenology of NDVI 

vegetation cover class (Nath and Acharjee, 

2013; El-Gammal et al., 2014; Aquino et al., 

2018). Table1. shows the vegetation classes 

and NDVI values. 
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Table1 Vegetation classes and NDVI values . 

Class NDVI Classification Value 

Bare soil and/or water (no vegetation) NDVI ≤ 0 

Very Low NDVI 0 < NDVI ≤ 0.2 

Low to Moderately Low NDVI 0.2 < NDVI ≤ 0.6 

Moderately High to High NDVI 0.6 < NDVI ≤1 

 The Modified Soil-Adjusted Vegetation Index (MSAVI2)

 

The second vegetation index included in this 

study, MSAVI2, is a revision of the modified 

soil-adjusted vegetation index (MSAVI). Like 

the Soil-Adjusted Vegetation Index (SAVI), 

MSAVI2 corrects for areas with a high degree 

of exposed soil. This index is a refinement of 

SAVI that minimizes user error in setting the 

correction factor by more reliably and simply 

calculating a soil brightness correction factor 

[35]. The index also ranges from -1 to +1 and 

is calculated per-pixel according to the 

following formula [36.] 

MSAVI2=  (2ρNIR+1-√((2ρNIR+1)^2-

8*(ρNIR-ρRED)))/2…….2  

Where ρ is the reflectance in the near-infrared 

(NIR) or red (RED)band. By normalizing the 

contribution of background soil signal to the 

integrated spectral reflectance, MSAVI2 is a 

better indicator of the vegetation signal than 

the NDVI in land areas, such as much of our 

study area, where exposed soil can be a 

significant component of the observed surface. 

 Land Surface Temperature (LST) 

The LST fraction images were produced using 

the Landsat thermal bands, which are bands 6 

of the L5 TM, L7 ETM+, and bands 10–11 of 

L8 TIRS. Brightness temperature can be 

calculated using Planck’s law [37]. Using Top 

of the Atmosphere (TOA) radiances obtained 

from TIR sensors. Band 6 of TM/ETM+ and 

Band 10 of OLI images were utilized for 

retrieving the LST images [38]. Equations 

used for converting digital numbers into land 

surface temperature in Landsat 8 are presented 

as follows: 

 

Conversion of DN Digital Number to At 

Satellite Brightness Temperature: 

TB = K2 / ln( (K1 /Lλ)+ 1)............3                 

                                     

Where: 

K1 = Band-specific thermal conversion 

constant 

(In watts/meter squared * ster * μm) 

K2 = Band-specific thermal conversion 

constant (in kelvin) 

Lλ is the spectral radiance at the sensor’s 

aperture, measured in watts/(meter squared * 

ster * μm.) 

Calculation of the Land Surface Temperature 

in Kelvin 

T = TB / [ 1 + (λ * TB / ρ) lnε ] …………4     

                                    

Where: 

λ = wavelength of emitted radiance 

ρ = h * c/σ (1.438 × 10−2m∙K) 

h = Planck’s constant (6.626 × 10−34 J∙s) 

σ = Boltzmann constant (1.38 × 10−23 J/K) 

c = velocity of light (2.998 × 108 m/s) 

ε = emissivity, which is given by the 

following: [39] 

ε = 1.009 + 0.047 ln (NDVI) 

Conversion from Kelvin to Celsius 

Tc= T-273.15  ...................5                             

                                       

T = land surface temperature in Kelvin 

Tc = land surface temperature in Celsius [37]. 

The temperature transformation of the thermal 
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infrared band into the value of ground 

temperature is done used the following 

equations for Landsat 5 and Landsat 7: 

 

Convert DN to radiance = 0.05518*(i1) 

+1.2378 ….  6 

Convert radiance to Kelvin = 1260.56/log 

((666.09/i1) +1)  .. …..7 

Convert Kelvin to Celsius = i1-273.15 

………… 8 

 

Whereas, i1 = the reflectance of the thermal 

infrared band. where L is value of radiance in 

thermal infrared; T is ground temperature (K); 

Q is digital record; K1 and K2 are calibration 

coefficients: K1=666.09 W/ (m2 ster mm) and 

K2=1282.71 K; Lmin=0.1238 W/(m2 ster 

mm); and Lmax=1.500 W/(m2 ster mm.) 

  Normalized Difference Moisture 

Index (NDMI) 

The Normalized Difference Moisture Index 

(NDMI) standardizes the various moisture 

response bands across the near-infrared (NIR) 

and shortwave infrared (SWIR) spectra as per 

Equation (9). The linear relationship between 

the NIR/SWIR ratio and leaf relative water 

content was initially identified by [40]. They 

computed the NDMI utilizing the following 

formula: 

NDMI = (NIR − SWIR) / (NIR + SWIR) ...…. 

9 

NIR corresponds to the Near-Infrared 

spectrum, and SWIR pertains to the Shortwave 

Infrared spectrum. Data for these spectral 

bands can be derived from remote sensing 

technologies, such as satellite imagery. The 

NDMI scale spans from -1 to 1, where values 

closer to 1 signify abundant moisture levels 

within vegetation, whereas values nearing -1 

indicate a moisture deficiency. Typically, 

vegetation undergoing water scarcity exhibits 

diminished NDMI values in contrast to 

thriving vegetation. 
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Figure 3 Flow diagram showing the methodology. 
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 Results and Discussion

 

 Forest Time Series Changes in Zakho 

District 

The data presented in Table 2 reveals notable 

fluctuations in vegetation cover over time as 

indicated by the NDVI data. During the period 

from 2000 to 2001, approximately 716.6 km² 

(49.3%) of the terrain exhibited Forest Land 

coverage (NDVI). This coverage dropped to 

521.8 km² (35.9%) by 2023–2024, indicating a 

significant decline in forests and land 

degradation. Widespread deforestation and 

conversion of forest land to other uses are 

shown by the growth in the area transitioning 

from Forest to Non-Forest (1 > 0) from 64.2 

km² (4.4%) in 2000-2001 to 302.3 km² 

(20.8%) in subsequent years. In the meantime, 

there were a few Non-Forest to Forest (0 > 1) 

conversions, indicating little afforestation. 

Non-forest land (NDVI = 0) increased 

substantially from 639.9 km² (44%) in 2000 to 

839.4 km² (57.8%) in 2023-2024, 

underscoring the expansion of barren and 

urbanized zones. These findings reveal an 

urgent need to curb forest land degradation 

and implement reforestation projects. 

  

Table 2 Time series changes in NDVI for Zakho District from 2000 to 2024. 

  

 Forest Land 
Forest Land to 

Non-Forest Land 

Non-Forest 

Land to Forest 

Land 

Non-Forest 

Land 

Years Area (km²) % Area (km²) % 
Area 

(km²) 
% 

Area 

(km²) 
% 

2000-

2001 
716.6 49.3 64.2 4.4 31.8 2.2 639.9 44.0 

2001-

2002 
710.9 48.9 44.8 3.1 57.0 3.9 640.0 44.0 

2002-

2003 
694.1 47.8 66.0 4.5 57.8 4.0 635.0 43.7 

2003-

2004 
670.4 46.1 63.6 4.4 54.8 3.8 664.1 45.7 

2004-

2005 
657.8 45.3 106.7 7.3 13.9 1.0 674.3 46.4 

2005-

2006 
655.1 45.1 16.5 1.1 85.2 5.9 695.8 47.9 

2006-

2007 
660.9 45.5 79.5 5.5 75.6 5.2 636.7 43.8 

2007-

2008 
654.7 45.1 81.8 5.6 92.7 6.4 623.4 42.9 

2008-

2009 
701.6 48.3 45.8 3.2 55.0 3.8 650.3 44.8 

2009-

2010 
668.6 46.0 90.7 6.2 48.5 3.3 644.9 44.4 

2010-

2011 
630.0 43.4 27.6 1.9 124.1 8.5 671.0 46.2 

2011- 649.4 44.7 104.7 7.2 39.1 2.7 659.5 45.4 
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 Normalized Difference Moisture Index 

(NDMI) Time Series Change 

The data illustrated in Table 3 reveals a 

discernible trend towards increased aridity  

 

in Zakho District over time. The NDMI 

analysis indicates the emergence of a Very 

Dry classification in recent years, marking the 

establishment of new regions characterized by 

severe moisture deficiency. The Dry category 

expanded from 340.9 km² (23.5%) in 2000 to 

507.7 km² (34.9%) in 2023, illustrating an 

alarming increase in dry areas. Conversely, the 

Moderate Moisture zones decreased 

significantly, shrinking from 674.1 km² 

(46.4%) in 2000 to 421.8 km² (29%) in 2023, 

indicating reduced soil and vegetation 

moisture levels. Moist zones similarly 

declined, underscoring the shrinking extent of 

healthy vegetation. The Very Moist category 

initially covered 119.5 km² (8.2%) in 2000 but 

experienced a considerable reduction in 

subsequent years, indicating the gradual 

disappearance of wetlands and water-rich 

regions due to environmental stress. These 

NDMI trends emphasize the urgent need for 

water conservation, sustainable land 

management, and afforestation initiatives to 

mitigate the impact of declining moisture. 

 

 

  

2012 

2012-

2013 
613.6 42.2 74.9 5.2 71.7 4.9 692.5 47.7 

2013-

2014 
648.2 44.6 37.0 2.5 48.8 3.4 718.7 49.5 

2014-

2015 
629.4 43.3 67.6 4.7 44.8 3.1 710.9 48.9 

2015-

2016 
622.9 42.9 51.2 3.5 70.9 4.9 707.7 48.7 

2016-

2017 
581.1 40.0 112.1 7.7 73.9 5.1 684.4 47.1 

2017-

2018 
597.0 41.1 58.5 4.0 54.8 3.8 742.4 51.1 

2018-

2019 
596.7 41.1 55.1 3.8 56.1 3.9 744.8 51.3 

2019-

2020 
568.0 39.1 84.8 5.8 23.5 1.6 776.4 53.4 

2020-

2021 
547.5 37.7 44.0 3.0 87.8 6.0 773.4 53.2 

2021-

2022 
553.2 38.1 82.1 5.7 49.2 3.4 768.1 52.9 

2022-

2023 
542.0 37.3 60.5 4.2 40.2 2.8 810.0 55.7 

2023-

2024 
521.8 35.9 60.4 4.2 31.1 2.1 839.4 57.8 
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Table 3 Time series changes in NDMI for Zakho District from 2000 to 2024. 

 
 Very dry Dry Moderate Moist Very moist 

Years 
Area 

(km²) 
% 

Area 

(km²) 
% 

Area 

(km²) 
% 

Area 

(km²) 
% 

Area 

(km²) 
% 

2000-

2001 
0.0 0.0 340.9 23.5 674.1 46.4 318.3 21.9 119.5 8.2 

2001-

2002 
0.0 0.0 483.8 33.3 624.2 43.0 253.0 17.4 91.8 6.3 

2002-

2003 
0.0 0.0 382.3 26.3 628.7 43.3 331.4 22.8 110.3 7.6 

2003-

2004 
0.0 0.0 380.4 26.2 780.4 53.7 211.6 14.6 80.3 5.5 

2004-

2005 
0.0 0.0 383.4 26.4 693.3 47.7 285.5 19.7 90.5 6.2 

2005-

2006 
5.3 0.4 464.9 32.0 618.4 42.6 282.1 19.4 82.0 5.6 

2006-

2007 
11.5 0.8 502.7 34.6 725.7 49.9 161.9 11.1 50.8 3.5 

2007-

2008 
166.1 11.4 585.1 40.3 435.6 30.0 197.3 13.6 68.7 4.7 

2008-

2009 
318.5 21.9 608.9 41.9 293.2 20.2 173.2 11.9 59.4 4.1 

2009-

2010 
200.2 13.8 610.4 42.0 372.1 25.6 184.8 12.7 85.2 5.9 

2010-

2011 
205.4 14.1 569.5 39.2 408.7 28.1 201.3 13.9 67.8 4.7 

2011-

2012 
0.8 0.1 223.7 15.4 753.8 51.9 333.7 23.0 140.6 9.7 

2012-

2013 
356.3 24.5 600.9 41.4 318.7 21.9 142.9 9.8 33.8 2.3 

2013-

2014 
325.3 22.4 518.8 35.7 301.2 20.7 206.3 14.2 101.1 7.0 

2014-

2015 
336.0 23.1 498.6 34.3 361.2 24.9 181.3 12.5 75.5 5.2 

2015-

2016 
218.7 15.1 505.9 34.8 403.2 27.7 235.8 16.2 89.1 6.1 

2016-

2017 
215.1 14.8 465.3 32.0 444.4 30.6 229.2 15.8 98.7 6.8 

2017-

2018 
84.9 5.8 440.5 30.3 568.6 39.1 283.5 19.5 75.2 5.2 

2018-

2019 
304.4 21.0 564.4 38.8 346.9 23.9 170.8 11.8 66.2 4.6 

2019-

2020 
84.6 5.8 402.7 27.7 566.6 39.0 284.8 19.6 114.0 7.8 

2020-

2021 
220.1 15.1 463.6 31.9 470.7 32.4 220.0 15.1 78.3 5.4 

2021- 236.7 16.3 544.3 37.5 416.5 28.7 196.3 13.5 58.8 4.0 
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Modified Soil Adjusted Vegetation Index (MSAVI2) Time Series Change

 

The data depicted in Table 4 indicates a 

decline in stable vegetation cover. The 

MSAVI2 analysis reveals that Forest Land 

(MSAVI2) initially encompassed 595 km² 

(41%) in 2000 but diminished to 524.7 km²  

 

(36.1 )% by 2024, signifying a gradual 

deterioration in robust vegetation.The area 

transitioning from Forest to Non-Forest 

peaked at 302.3 km² (20.8%), further 

indicating extensive deforestation or land 

degradation. The Non-Forest to Forest 

transition remained minimal, covering only 

18.2 km² (1.3%) in recent years, limited forest 

restoration. Conversely, Non-Forest Land 

expanded to 809.7 km² (55.7%) by 2024, 

representing a significant increase in barren 

areas. The analysis of LST, NDMI, NDVI, and 

MSAVI2 data for Zakho District reveals 

significant increases in surface temperatures, 

dryness, and non-forest land over time. Forest 

land has decreased substantially, indicating the 

detrimental impacts of deforestation, 

urbanization, and climate variability . 

  

 

Table 4 Time series changes in MSAVI2 for Zakho District from 2000 to 2024 . 

  

2022 

2022-

2023 
257.5 17.7 504.8 34.7 436.9 30.1 198.1 13.6 55.3 3.8 

2023-

2024 
272.2 18.7 507.7 34.9 421.8 29.0 188.6 13.0 62.4 4.3 

 Forest Land 

Forest Land to 

Non-Forest 

Land 

Non-Forest 

Land to Forest 

Land 

Non-Forest 

Land 

Years 
Area 

(km²) 
% 

Area 

(km²) 
% 

Area 

(km²) 
% 

Area 

(km²) 
% 

2000-2001 595.0 41.0 49.8 3.4 18.0 1.2 789.8 54.4 

2001-2002 570.0 39.2 43.1 3.0 15.9 1.1 823.7 56.7 

2002-2003 577.0 39.7 8.8 0.6 26.9 1.8 839.9 57.8 

2003-2004 600.7 41.3 3.2 0.2 61.1 4.2 787.7 54.2 

2004-2005 599.8 41.3 62.0 4.3 10.2 0.7 780.7 53.7 

2005-2006 495.4 34.1 114.5 7.9 46.0 3.2 796.7 54.8 

2006-2007 501.1 34.5 40.3 2.8 97.7 6.7 813.6 56.0 

2007-2008 586.3 40.4 12.5 0.9 131.0 9.0 722.8 49.7 

2008-2009 621.9 42.8 11.2 0.8 95.5 6.6 724.2 49.8 

2009-2010 592.4 40.8 124.9 8.6 15.5 1.1 719.8 49.5 

2010-2011 500.4 34.4 107.6 7.4 57.6 4.0 787.1 54.2 

2011-2012 490.5 33.8 67.4 4.6 102.2 7.0 792.5 54.5 

2012-2013 510.7 35.1 82.1 5.6 75.2 5.2 784.8 54.0 

2013-2014 481.6 33.1 104.2 7.2 6.4 0.4 860.5 59.2 

2014-2015 455.8 31.4 32.2 2.2 88.5 6.1 876.2 60.3 

2015-2016 497.2 34.2 47.1 3.2 59.6 4.1 848.8 58.4 

2016-2017 499.8 34.4 57.0 3.9 148.5 10.2 747.4 51.4 

2017-2018 542.3 37.3 105.9 7.3 14.4 1.0 790.0 54.4 
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 Land Surface Temperature (LST) Time 

Series Change (2000–2024 ) 

The data illustrated in Table 5 reveals a 

significant transformation in the district's 

temperature distribution, as indicated by the 

analysis of variations in LST over time. In the 

year 2000, 218.4 square kilometers (15%) of 

the terrain was enveloped by Very Low LST 

(≤ 35°C). But by 2024, this coverage had 

drastically decreased to  

 

 

17.8 km² (1.2%), suggesting that urbanization 

and environmental change were to blame for 

the steep fall in colder zones. The decrease in 

chilly places is further highlighted by 

fluctuations during dry years. In 2000, the first 

coverage for the Low LST (35–40°C) category 

was 250.7 km² (17.3%). Although there was 

some fluctuation, this group continuously 

made up 16% to 20% of the whole region, 

suggesting that it has persisted despite more 

significant environmental changes. Rising 

surface temperatures were reflected in the 

Moderate LST (40–45°C) category, which at 

first spanned 460.2 km² (31.7%) in 2000 but 

then exhibited an increased trend, culminating 

at 754 km² (51.9%) in 2011. Similarly, the 

High LST (45-50°C) category expanded from 

494.3 km² (34%) in 2000 to 848.1 km² 

(58.4%) in 2021, demonstrating intensified 

heat exposure and increased desertification . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2018-2019 546.7 37.6 10.0 0.7 243.1 16.7 652.8 44.9 

2019-2020 540.1 37.2 249.8 17.2 6.6 0.5 656.2 45.2 

2020-2021 536.2 36.9 10.5 0.7 278.2 19.1 627.8 43.2 

2021-2022 512.2 35.2 302.3 20.8 8.0 0.6 630.3 43.4 

2022-2023 496.8 34.2 23.4 1.6 23.4 1.6 886.3 61.0 

2023-2024 524.7 36.1 18.2 1.3 100.0 6.9 809.7 55.7 
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Table 5 Time series changes in LST for Zakho District from 2000 to 2024 . 

 

 

Very low ≤ 

35 
Low <35-40> 

Moderate <40-

45> 
High <45-50> Extreme ≥ 50 

Years 
Area 

(km²) 
% 

Area 

(km²) 
% 

Area 

(km²) 
% 

Area 

(km²) 
% 

Area 

(km²) 
% 

2000-

2001 
218.4 15.0 250.7 17.3 460.2 31.7 494.3 34.0 29.0 2.0 

2001-

2002 
120.9 8.3 244.1 16.8 301.6 20.8 632.7 43.5 153.5 10.6 

2002-

2003 
249.3 17.2 299.2 20.6 528.6 36.4 374.5 25.8 1.1 0.1 

2003-

2004 
409.1 28.2 436.6 30.0 543.1 37.4 61.0 4.2 2.8 0.2 

2004-

2005 
129.2 8.9 237.9 16.4 291.7 20.1 755.8 52.0 38.0 2.6 

2005-

2006 
189.4 13.0 254.6 17.5 460.5 31.7 528.2 36.4 20.0 1.4 

2006-

2007 
110.0 7.6 233.2 16.1 324.1 22.3 604.4 41.6 181.0 12.5 

2007-

2008 
102.9 7.1 221.6 15.2 280.0 19.3 493.8 34.0 354.3 24.4 

2008-

2009 
205.1 14.1 239.8 16.5 445.9 30.7 501.4 34.5 60.5 4.2 

2009-

2010 
254.5 17.5 371.4 25.6 630.6 43.4 192.9 13.3 3.2 0.2 

2010-

2011 
44.1 3.0 169.6 11.7 754.0 51.9 478.7 32.9 6.3 0.4 

2011-

2012 
234.2 16.1 141.2 9.7 592.9 40.8 477.0 32.8 7.7 0.5 

2012-

2013 
89.3 6.1 208.2 14.3 394.5 27.2 710.5 48.9 50.1 3.4 

2013-

2014 
149.8 10.3 247.8 17.1 255.2 17.6 647.7 44.6 152.1 10.5 

2014-

2015 
50.0 3.4 194.2 13.4 305.4 21.0 695.8 47.9 207.2 14.3 

2015-

2016 
103.8 7.1 268.8 18.5 383.4 26.4 592.6 40.8 104.1 7.2 

2016-

2017 
112.1 7.7 265.0 18.2 497.1 34.2 571.5 39.3 7.0 0.5 

2017-

2018 
49.3 3.4 249.2 17.1 620.9 42.7 481.4 33.1 51.9 3.6 

2018-

2019 
51.3 3.5 210.9 14.5 289.2 19.9 558.8 38.5 342.5 23.6 

2019-

2020 
109.5 7.5 256.4 17.6 407.7 28.1 605.4 41.7 73.6 5.1 

2020-

2021 
46.6 3.2 205.4 14.1 317.9 21.9 532.0 36.6 350.7 24.1 

2021- 40.8 2.8 182.6 12.6 278.6 19.2 848.1 58.4 102.6 7.1 
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The Extreme LST (≥ 50°C) category, covering 

29 km² (2%) in 2000, peaked at 235.7 km² 

(16.2%) in 2024, indicating a considerable rise 

in heat-stressed zones due to reduced 

vegetation cover. These trends confirm a 

gradual shift toward hotter surface conditions, 

driven by deforestation, urban expansion, and 

climate stress. 

 Forest Time Series Changes in Duhok 

District Center 

The data illustrated in Table 6 reveals that 

forested areas encompassed 622.8 km² 

(61.4%) in 2000, yet experienced a steady 

decline to 416.5 km² (41%) by 2024, 

indicating a substantial loss of forest cover. 

The transition from forested to non-forested 

areas (1 > 0) has escalated, signifying both 

land degradation and the conversion to urban 

and agricultural utilization. The non-forest to 

forest category remained minimal, indicating 

limited regrowth or afforestation efforts. The 

non-forested land expanded from 283.7 km² 

(28%) to 513.4 km² (50.6%) over the years, 

illustrating an increase in barren and urbanized 

areas. 

 

Table 6 Time series changes in NDVI for Duhok District from 2000 to 2024. 

  

2022 

2022-

2023 
24.4 1.7 147.5 10.2 531.1 36.5 604.1 41.6 145.6 10.0 

2023-

2024 
73.7 5.1 293.4 20.2 676.9 46.6 404.4 27.8 4.3 0.3 

 Forest Land 

Forest Land to 

Non-Forest 

Land 

Non-Forest 

Land to Forest 

Land 

Non-Forest 

Land 

Years 
Area 

(km²) 
% 

Area 

(km²) 
% 

Area 

(km²) 
% 

Area 

(km²) 
% 

2000-

2001 
622.8 61.4 69.0 6.8 38.7 3.8 283.7 

28.

0 

2001-

2002 
589.2 58.1 72.3 7.1 32.6 3.2 320.2 

31.

5 

2002-

2003 
551.2 54.3 70.9 7.0 136.3 13.4 255.9 

25.

2 

2003-

2004 
589.4 58.1 98.1 9.7 53.8 5.3 273.0 

26.

9 

2004-

2005 
545.0 53.7 97.7 9.6 22.5 2.2 349.1 

34.

4 

2005-

2006 
551.9 54.4 15.5 1.5 82.9 8.2 364.0 

35.

9 

2006-

2007 
537.8 53.0 97.0 9.6 59.4 5.9 320.1 

31.

5 

2007-

2008 
528.5 52.1 68.7 6.8 103.4 10.2 313.7 

30.

9 

2008-

2009 
512.5 50.5 119.5 11.8 35.1 3.5 347.2 

34.

2 

2009- 469.1 46.2 78.5 7.7 103.8 10.2 362.9 35.
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 Normalized Difference Moisture Index 

(NDMI) Time Series Change in Duhok 

District Center 

The data depicted in Table 7 reveals a notable 

trend in moisture content. The category of 

"Very Dry" was scarce in the earlier years but 

has sporadically emerged recently, indicating 

a growing moisture deficit. Conversely, the 

category of "Dry" has substantially expanded, 

from 233.7 km² (23%) in 2000 to 349.8 km² 

(34.5%) in 2024, signifying a significant 

increase  

 

 

in aridity. Conversely, moderate zones showed 

a gradual decrease, starting at 559.6 km² 

(55.1%) in 2000 and dropping to 428.4 km² 

(42.2%) in 2024. The moist category also 

declined, from 198 km² (19.5%) in 2000 to 

194.9 km² (19.2%) in 2024, pointing to a 

reduction in healthy vegetation and water 

bodies. The "Very Moist" zones, covering 23 

km² (2.3%) initially, fell to 10.8 km² (1%) by 

2024, further emphasizing a reduction in 

moisture-rich areas due to increasing 

environmental stress. 

2010 8 

2010-

2011 
523.9 51.6 49.1 4.8 55.3 5.4 386.1 

38.

0 

2011-

2012 
481.4 47.4 97.8 9.6 58.0 5.7 377.2 

37.

2 

2012-

2013 
451.0 44.4 88.3 8.7 85.3 8.4 389.6 

38.

4 

2013-

2014 
475.9 46.9 60.5 6.0 34.1 3.4 443.9 

43.

7 

2014-

2015 
483.3 47.6 26.7 2.6 91.1 9.0 413.2 

40.

7 

2015-

2016 
511.2 50.4 63.2 6.2 34.4 3.4 405.5 

39.

9 

2016-

2017 
437.6 43.1 108.0 10.6 60.2 5.9 408.5 

40.

2 

2017-

2018 
451.6 44.5 46.1 4.5 48.3 4.8 468.2 

46.

1 

2018-

2019 
470.5 46.4 29.5 2.9 79.9 7.9 434.4 

42.

8 

2019-

2020 
466.2 45.9 84.1 8.3 20.2 2.0 443.7 

43.

7 

2020-

2021 
438.2 43.2 48.2 4.8 74.9 7.4 452.9 

44.

6 

2021-

2022 
430.8 42.4 82.3 8.1 29.3 2.9 471.8 

46.

5 

2022-

2023 
413.3 40.7 46.8 4.6 46.6 4.6 507.5 

50.

0 

2023-

2024 
416.5 41.0 43.4 4.3 41.0 4.0 513.4 

50.

6 
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Table 7 Time series changes in NDMI for Duhok District from 2000 to 2024. 

  

 Very dry Dry Moderate Moist Very moist 

Years 
Area 

(km²) 
% 

Area 

(km²) 
% 

Area 

(km²) 
% 

Area 

(km²) 
% 

Area 

(km²) 
% 

2000-

2001 
0.0 0.0 233.7 23.0 559.6 55.1 198.0 19.5 23.0 2.3 

2001-

2002 
0.0 0.0 274.2 27.0 502.3 49.5 209.7 20.7 28.2 2.8 

2002-

2003 
0.0 0.0 277.9 27.4 487.1 48.0 220.0 21.7 29.3 2.9 

2003-

2004 
0.0 0.0 287.0 28.3 585.1 57.6 119.4 11.8 22.8 2.2 

2004-

2005 
0.0 0.0 286.1 28.2 510.2 50.3 189.2 18.6 28.9 2.8 

2005-

2006 
0.0 0.0 317.4 31.3 474.0 46.7 188.4 18.6 34.5 3.4 

2006-

2007 
11.5 1.1 331.6 32.7 591.6 58.3 69.0 6.8 10.6 1.0 

2007-

2008 
107.3 10.6 372.0 36.7 387.2 38.1 125.5 12.4 22.3 2.2 

2008-

2009 
189.6 18.7 489.6 48.2 260.9 25.7 60.7 6.0 13.5 1.3 

2009-

2010 
69.9 6.9 399.7 39.4 438.2 43.2 97.3 9.6 9.2 0.9 

2010-

2011 
126.5 12.5 373.9 36.8 375.2 37.0 115.9 11.4 22.9 2.3 

2011-

2012 
0.1 0.0 128.3 12.6 573.7 56.5 279.4 27.5 32.7 3.2 

2012-

2013 
268.1 26.4 474.5 46.7 225.2 22.2 40.2 4.0 6.3 0.6 

2013-

2014 
169.5 16.7 411.2 40.5 303.1 29.9 110.6 10.9 19.9 2.0 

2014-

2015 
267.1 26.3 398.8 39.3 245.9 24.2 82.1 8.1 20.6 2.0 

2015-

2016 
123.9 12.2 351.8 34.7 369.6 36.4 143.6 14.2 25.5 2.5 

2016-

2017 
153.9 15.2 341.6 33.7 334.3 32.9 150.3 14.8 34.2 3.4 

2017-

2018 
50.4 5.0 321.3 31.7 440.0 43.4 175.4 17.3 27.2 2.7 

2018-

2019 
193.5 19.1 436.4 43.0 287.7 28.3 79.6 7.8 17.1 1.7 

2019-

2020 
41.2 4.1 241.8 23.8 447.1 44.0 241.9 23.8 42.3 4.2 

2020-

2021 
123.5 12.2 351.2 34.6 369.8 36.4 140.9 13.9 28.9 2.8 
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 Modified Soil Adjusted Vegetation 

Index (MSAVI2) Time Series Change in 

Duhok District Center 

 The data presented in Table 8 illustrates that 

Forest land initially covered an area of 487.2 

km² (48%), which subsequently decreased to 

409.5 km² (40.3%) by the year 2024, 

indicating a decline in the extent of healthy 

vegetation coverage . 

 

The conversion of forest land to non-forest 

areas experienced a notable surge, reaching a 

peak of 178.2 km² (17.6%), highlighting a 

significant level of forest degradation. Non-

forest to forest transition remained low, with a 

peak of 14.4 km² (1.4%), demonstrating 

insufficient restoration. Non-forest land 

expanded to 571.8 km² (56.3%) by 2024, 

reflecting widespread land degradation. 

Table 8 Time series changes in MSAVI2 for Duhok District from 2000 to 2024. 

  

2021-

2022 
145.9 14.4 446.4 44.0 299.7 29.5 102.4 10.1 19.8 2.0 

2022-

2023 
142.6 14.1 410.6 40.5 356.3 35.1 88.3 8.7 16.4 1.6 

2023-

2024 
159.9 15.8 428.4 42.2 314.5 31.0 94.4 9.3 17.1 1.7 

 Forest Land 
Forest Land to 

Non-Forest Land 

Non-Forest 

Land to Forest 

Land 

Non-Forest 

Land 

Years 
Area 

(km²) 
% Area (km²) % 

Area 

(km²) 
% 

Area 

(km²) 
% 

2000-2001 487.2 48.0 45.0 4.4 43.0 4.2 439.1 43.3 

2001-2002 434.0 42.8 96.2 9.5 7.7 0.8 476.5 46.9 

2002-2003 425.0 41.9 16.7 1.6 31.1 3.1 541.6 53.4 

2003-2004 451.3 44.5 4.8 0.5 68.8 6.8 489.5 48.2 

2004-2005 475.3 46.8 44.7 4.4 23.6 2.3 470.7 46.4 

2005-2006 398.8 39.3 100.1 9.9 50.6 5.0 464.8 45.8 

2006-2007 386.8 38.1 62.6 6.2 106.2 10.5 458.7 45.2 

2007-2008 407.3 40.1 85.8 8.4 70.4 6.9 450.9 44.4 

2008-2009 383.1 37.7 54.4 5.4 94.6 9.3 482.3 47.5 

2009-2010 436.9 43.0 40.7 4.0 97.1 9.6 439.6 43.3 

2010-2011 355.8 35.1 178.2 17.6 50.3 5.0 430.1 42.4 

2011-2012 305.9 30.1 100.2 9.9 109.1 10.8 499.1 49.2 

2012-2013 332.8 32.8 82.2 8.1 92.0 9.1 507.3 50.0 

2013-2014 278.9 27.5 146.0 14.4 5.6 0.5 583.9 57.5 

2014-2015 276.7 27.3 7.7 0.8 170.3 16.8 559.5 55.1 

2015-2016 389.7 38.4 57.4 5.7 29.3 2.9 537.9 53.0 

2016-2017 359.9 35.5 59.1 5.8 134.6 13.3 460.7 45.4 

2017-2018 392.5 38.7 102.0 10.1 10.1 1.0 509.6 50.2 

2018-2019 398.6 39.3 4.0 0.4 279.5 27.5 332.1 32.7 

2019-2020 440.6 43.4 237.5 23.4 2.5 0.2 333.7 32.9 

2020-2021 435.4 42.9 7.7 0.8 245.2 24.2 326.0 32.1 

2021-2022 372.3 36.7 308.3 30.4 7.2 0.7 326.5 32.2 

2022-2023 358.9 35.4 20.7 2.0 62.9 6.2 571.8 56.3 
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 Land Surface Temperature (LST) Time 

Series Change (2000–2024) in Duhok District 

Center 

The data illustrated in Table 9 reveals a 

noteworthy trend in the very low Land Surface 

Temperature (LST) category. Initially 

encompassing 12.3 km² (1.2%) in 2000, this 

category experienced a substantial decrease to 

a mere 1.7 km² (0.2%) by 2024. This decline 

signifies a significant reduction in areas with 

cooler temperatures, likely influenced by 

escalating urbanization and the impacts of 

climate change.The low LST category (35–

40°C) also exhibited a downward trend, 

starting at 112.1 km² (11%) in 2000 and 

fluctuating across the years before settling at 

9.9 km² (1%) in 2024. Meanwhile, the 

moderate LST category (40–45°C) represented 

a substantial  

 

portion of the district, covering 513.2 km² 

(50.6%) initially and fluctuating before rising 

to 489.6 km² (48.2%) by 2024. High LST 

zones (45–50°C) showed an upward trend, 

increasing from 359.8 km² (35.4%) in 2000 to 

471.4 km² (46.5%) in 2024. The extreme LST 

category (≥ 50°C), though initially low at 16.9 

km² (1.7%), expanded to 47.1 km² (4.6%) by 

2024, underscoring the growing prevalence of 

heat-stressed areas. The data depicted in 

Figure 4 illustrates a substantial and consistent 

decline in forest land from 2000 to 2024, as 

evidenced by both the NDVI and MSAVI2 

indices. According to the NDVI data, the 

coverage of forest land decreased from 44.1% 

(4861.3 km²) in the period of 2000–2006 to 

36.2% (3989.1 km²) in the years 2018–2024, 

indicating an overall reduction of 8%. 

Similarly, the MSAVI2 index indicates a 

decline from 38.5% (4235.9 km²) to 35.1% 

(3870.2 km²), albeit suggesting a slight 

recovery in the timeframe of 2018–2024. This 

consistent pattern of forest loss underscores 

the persistent challenges of land degradation 

and deforestation throughout the study period. 

The conversion of forest land to non-forest 

land has increased over time. NDVI data show 

that forest-to-non-forest conversion rose from 

2.2% (242.3 km²) in 2000–2006 to 2.9% 

(317.9 km²) in 2018–2024. MSAVI2 data 

reflects a more pronounced shift, with 

conversion rising from 2.3% (254.1 km²) to 

4.3% (469.2 km²) in the same period. This 

suggests that MSAVI2 may be more sensitive 

to detecting small-scale forest degradation, 

capturing more nuanced changes than NDVI. 

Conversely, non-forest land recovery, 

indicating reforestation, has been minimal. 

NDVI data shows a near-constant rate of non-

forest to forest conversion, remaining around 

2.1% over the study period. In contrast, 

MSAVI2 data present a more optimistic view, 

with recovery increasing from 1.6% (180 km²) 

in 2000–2006 to 4.9% (538.1 km²) by 2018–

2024. However, this recovery still does not 

offset the net forest loss observed in both 

indices. 

 

 

 

 

 

 

 

2023-2024 409.5 40.3 12.4 1.2 115.0 11.3 477.5 47.0 
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Table 9 Time series changes in LST for Duhok District from 2000 to 2024. 

 
Very low ≤ 

35 
Low <35-40> 

Moderate 

<40-45> 

High <45-

50> 

Extreme ≥ 

50 

Years 
Area 

(km²) 
% 

Area 

(km²) 
% 

Area 

(km²) 
% 

Area 

(km²) 
% 

Area 

(km²) 
% 

2000-

2001 
12.3 1.2 112.1 11.0 513.2 50.6 359.8 35.4 16.9 1.7 

2001-

2002 
4.7 0.5 65.1 6.4 350.2 34.5 551.1 54.3 43.3 4.3 

2002-

2003 
22.3 2.2 162.4 16.0 544.6 53.7 284.3 28.0 0.8 0.1 

2003-

2004 
143.8 14.2 368.8 36.3 472.7 46.6 29.1 2.9 0.0 0.0 

2004-

2005 
8.2 0.8 73.4 7.2 311.7 30.7 615.5 60.6 5.5 0.5 

2005-

2006 
22.2 2.2 102.3 10.1 386.2 38.0 464.5 45.8 39.1 3.9 

2006-

2007 
7.6 0.7 77.1 7.6 336.8 33.2 567.2 55.9 25.5 2.5 

2007-

2008 
5.7 0.6 51.7 5.1 257.2 25.3 590.5 58.2 109.2 10.8 

2008-

2009 
13.5 1.3 77.3 7.6 290.0 28.6 599.8 59.1 33.7 3.3 

2009-

2010 
30.8 3.0 289.5 28.5 623.4 61.4 70.0 6.9 0.6 0.1 

2010-

2011 
4.0 0.4 52.9 5.2 534.6 52.7 419.2 41.3 3.7 0.4 

2011-

2012 
29.6 2.9 63.7 6.3 622.8 61.4 297.7 29.3 0.4 0.0 

2012-

2013 
3.4 0.3 28.6 2.8 304.1 30.0 638.3 62.9 40.0 3.9 

2013-

2014 
15.5 1.5 102.7 10.1 466.2 45.9 425.3 41.9 4.5 0.4 

2014-

2015 
4.5 0.4 15.1 1.5 143.1 14.1 573.4 56.5 278.2 27.4 

2015-

2016 
19.2 1.9 133.0 13.1 500.9 49.4 352.1 34.7 9.1 0.9 

2016-

2017 
13.8 1.4 123.4 12.2 567.9 56.0 309.0 30.4 0.3 0.0 

2017-

2018 
1.9 0.2 31.6 3.1 426.6 42.0 550.8 54.3 3.3 0.3 

2018-

2019 
2.7 0.3 39.9 3.9 228.3 22.5 614.0 60.5 129.4 12.7 

2019-

2020 
9.2 0.9 99.9 9.8 369.8 36.4 459.3 45.2 76.1 7.5 

2020-

2021 
2.1 0.2 23.6 2.3 196.5 19.4 564.4 55.6 227.7 22.4 

2021- 1.7 0.2 24.7 2.4 217.3 21.4 751.0 74.0 19.7 1.9 
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Deforestation trends are closely linked to 

changes in land surface temperatures. As 

forest coverage declined, the areas categorized 

as "Extreme" LST zones (≥ 50°C) slightly 

increased from 5.3% (583.4 km²) in 2000–

2006 to 5.1% (565.5 km²) in 2018–2024. 

Additionally, the "High" LST zones (45–

50°C) consistently occupied over 15% of the 

land area, indicating that areas with reduced 

vegetation cover experience higher surface 

temperatures. This reflects the direct 

environmental impact of deforestation, where 

the loss of vegetation leads to an increase in 

heat-stressed zones and exacerbates warming 

trends. The data illustrated in Figure 5 

delineates the trends observed between the 

years 2000 and 2024 about regions with 

diminished vegetation moisture (NDMI) and 

elevated land surface temperatures (LST) 

within the Zakho and Duhok districts. Both 

localities demonstrate a substantial and 

persistent increase in areas characterized by 

environmental stress indicators 

 

 

 

 
Figure 4 Integrated forest percentage and LST class percentage over time. 

2022 

2022-

2023 
0.8 0.1 2.9 0.3 121.0 11.9 656.9 64.7 232.7 22.9 

2023-

2024 
1.1 0.1 42.7 4.2 394.1 38.8 573.4 56.5 3.0 0.3 
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Regarding low vegetation moisture, indicated 

by NDMI values, both Zakho and Duhok have 

seen a consistent upward trend, suggesting an 

increase in vegetation stress due to reduced 

moisture availability. Duhok district displays 

consistently larger areas affected by low 

NDMI, emphasizing a higher degree of 

moisture deficiency compared to Zakho. This 

suggests that Duhok might be more vulnerable 

to drought conditions, potentially exacerbating 

agricultural and ecological stress in the region. 

Simultaneously, the areas characterized by 

high land surface temperatures have notably 

increased in both Zakho and Duhok. Similar to 

the NDMI trend, Duhok district experiences 

larger areas with high LST, reflecting greater 

susceptibility to warming. This rise in land 

surface temperatures likely contributes to 

worsening drought conditions, accelerating 

vegetation degradation, and potentially 

increasing urban heat island effects. The 

simultaneous upward trends in both low 

NDMI and high LST strongly suggest 

interlinked environmental pressures. Rising 

temperatures likely reduce soil and vegetation 

moisture, further intensifying drought stress 

and negatively impacting vegetation health 

and land productivity. Such interlinked 

stresses indicate that both districts are 

experiencing significant environmental 

degradation and climate-driven challenges, 

calling for integrated and proactive 

management approaches. Given these 

findings, targeted mitigation strategies are 

essential . 

Efforts should focus on promoting sustainable 

agricultural practices, reforestation, better 

water resource management, and urban 

planning strategies designed to alleviate heat 

stress and moisture loss. Such interventions 

are particularly critical for the Duhok district 

due to its greater vulnerability, indicated by 

larger affected areas 

 

 
Figure 5 Comparison of low NDMI area and rising temperature area (2000-2024.) 
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aConclusion

 

The results of this study highlight a consistent 

and alarming trend of environmental 

degradation across the Zakho and Duhok 

Districts. From 2000 to 2024, forest land has 

declined markedly, as reflected in NDVI and 

MSAVI2 indices, with conversion to non-

forest areas intensifying due to urbanization, 

agricultural expansion, and climate stress. 

Moisture levels, as shown by NDMI, have 

dropped significantly, signaling worsening 

drought conditions and diminished vegetative 

health . 

Concurrently, Land Surface Temperature 

(LST) data confirm increasing exposure to 

extreme heat, further exacerbating the impacts 

of deforestation and land degradation. 

Although some signs of vegetation recovery 

were detected, particularly in MSAVI2 data, 

these gains remain insufficient to reverse the 

overarching trend of forest loss. The linkage 

between forest decline and rising surface 

temperatures underscores the critical 

ecological consequences of continued 

environmental mismanagement and climate 

variability in the region. 

The analysis highlights a critical trend of 

environmental degradation characterized by 

widespread deforestation, increased land 

aridity, and elevated surface temperatures . 

In Zakho and Duhok, forested areas have 

contracted notably, transitioning into non-

forest or degraded lands, as evidenced by 

shifts in NDVI and MSAVI2 data . 

The NDMI findings further emphasize 

increasing dryness and a loss of moisture-rich 

zones, pointing to heightened vulnerability of 

soils and vegetation to drought stress. 

Meanwhile, the Duhok District Center exhibits 

a similar decline in forest health, with a 

corresponding expansion of barren land and 

urban areas . 

Rising land surface temperatures (LST) 

confirm that once cooler zones have rapidly 

decreased, and extreme heat categories are 

becoming more prevalent, contributing to 

unfavorable conditions for both natural 

ecosystems and human activities. 

Generally, the combined evidence of 

deforestation, diminishing moisture 

availability, and hotter surface temperatures 

underscores the severity of anthropogenic 

impacts, climate variability, and unsustainable 

land-use practices. Without immediate and 

coordinated remedial measures, these districts 

risk further ecological decline, adversely 

affecting biodiversity, water resources, and 

local livelihoods. 

Recommendations

 

Initiate comprehensive reforestation and 

afforestation programs prioritizing native 

species to rehabilitate degraded lands and 

enhance biodiversity. 

Enforce robust legislation and monitoring 

mechanisms to control illegal logging and 

unsustainable urban and agricultural 

expansion. 

Promote sustainable water management 

practices, including rainwater harvesting, 

watershed protection, and irrigation efficiency. 

Implement urban planning strategies 

incorporating green spaces to reduce surface 

temperature and improve microclimatic 

conditions. 

Strengthen continuous environmental 

monitoring and research efforts using remote 
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sensing indices to inform policy and 

management strategies effectively. 

Foster community engagement and awareness 

programs emphasizing conservation and 

sustainable environmental practices to 

facilitate effective local stewardship of natural 

resources. 
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