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Introduction:

Numbers can’t “talk” but they can tell as much as your human sources can. But just
like with human sources, YOU HAVE TO ASK?
By the expression categorical data, we mean data which are presented in the form of
frequencies falling into certain categories or classes. A categorized "variable” may
simply be a convenient classification of a measurable variable into groups, in the
manner already familiar to us. On the other hand it may not be expressible in terms of
an underlying measurable variable at all. For example, we may classify by : (a) their
height, (b) their color,(c) their favorite games. Here (a) is a categorization of
measurable variable, but (b) and (c) are not. There is a further distinction between (b)
and (c) , for hair color itself may be expressed on an order scale ,according to
pigmentation from light to dark. This is not so for (c) .We refer to (b) as an ordered
classification or categorization, and (c) as an unordered one.
There is a further point to be born in mind: on occasion, the two variables being
investigated may simply be the same variable observed on two different occasions, e.g.,(
before and after some events ) or on the related samples e.g., father and son, husband
and wife, etc..).We shall refer to such situation as one with identical categorization.
Identical categorization may, of course, be of any of the types (a) ,(b)or (c).
Our interest in categorical data associated with two or more variables expressed in
categorical form, there expression called a contingency table

Types of variables

(i) Qualitative, ex. Eye color, hair color etc.
(i) Quantitative: ex.  Weight, height etc.

Measures of Association:

In many research associations, the strength and nature of the dependence of variables
is of central concern. No single measure adequately summarizes all possible types of
association. Measures vary in their interpretation and in the way they define perfect and
immediate association. These measures also differ in the way they are affected by
various factors such as marginal, for example: many measures are "margins sensitive"
in that they are influenced by the marginal distributions of rows and columns. Such
measures reflect information about the margins along with information bout
associations.

A particular measure may have a low value for a given table, not because the two
variables are not related, but because they are not related in the way to which the
measure is sensitive. No single measure is best for all situations, the type of data, the
hypothesis of interest as well as the properties of various measures must be considered
when selecting an index of association for a given table. It is not, however, reasonable
to compute a large number of measures and then to report the most impressive as if it
were the only one examined. We conclude the following:

1- Dependence of variables is of central concerned.

2- No single measure summarizes all possible types of associations.

3- Measures vary in their interpretation.
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4- Measures are affected by various factors such as marginal that they are influenced
by the marginal distributions of rows and columns.

Purpose: dependence of variables is of the central concern.
Properties:
% No single measure is best for all situations.
% Measures vary in their interpretations,
« Measures are affected by various factors.
%+ Measures are affected by type of variables such as nominal, ordinal, interval,
and ratio.
Tetrachoric function:
The numerical evaluation of term like h, (X) d (X) , may be carried out by:
+ Directly by finding the polynomial h, (x) multiplied by ¢ (x) such as : hn (X)
b (x).
« From certain tables of so-called Hermitian probability function with negative
index. This give
ha(X) = (-D)™* e ¥2*2 10 10 decimal places from 0to 7.
or x=-7 (0.1) 65 .
British Association of Mathematical Table Vol.1, 1946.
+¢ Similar function was tabulated by Karl Pearson in the form:
hn1(X) §(x)
7 (X) = _
\n!

This was known as a tetrachoric function to estimate p from 2x2 table.
Estimation of Tetrachoric Correlation:

+» Canonical forms Bivariate Normal Distribution; we want to look at the measure of
association in 2x2 table where underline distribution is BSN (x, y, p), bivariate
standard normal distribution:

1 1w’ (x -p(y -w (-
F(R ., p) Seoeereearsoee e e £ e )]

2nox oy (1-p)1/2 2(1-p2) 02 c c 02

In order to do this we must look at series expansion for ¢ (x, y, p) in {f(x,y, p),
where pux = py = 0, ox = oy =1 }. And to facilitate this we have to look at Hermite
Chebyshave Polynomial.

¢ Hermite Chebyshave Polynomial (H.C.P) properties: we define the set of Hermite
Chebyshave Polynomial
d" ¢ (x)
hn(X)p (X)= (-1)" ———n=0,1,2,........
d"x
1
Where d(x) = —e ¥2X2

\2n
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Example: (i) n=0 ho(X) =1

(i) n=1 h(x)dKx)= (-1)E-X) —e—2%2 = x ¢ (x)

\2n
then hy (X) =x,
(i) n=2 hy (X) = x* -1
Hence in general term of h,(x) of H.C.P is
Therefore ho(X) =1 hi(x) = x
ho(x) = x*—1 hs (x) = x3-3x
ha(x) = x*-6x*+3 hs (X) = x° — 0x*+15x

he(X) = x°-15x* + 45x3-15

n(n-1) n(n-1)(n-2)(n-3)
N D G — Ll S —— X"
2.1! 22 2!
n(n-1)(n-2)...... (n-2r+1)
........ A(-1)" e X
2r !

Properties of H.C.P. we have:
theorem (1)  hps1(X) = hn(X)- n hpa(X)

theorem (2)  h'y(X) =nhpg(X) 1
theorem (3)  { ha(x)} orthogonal to ~ (X) = ------- g M2 X2
\2n
Meaning of orthagonality:
0 0 ifr=/=s
I=1] hX)hs(X) dX)dx= &s= {
-0 rn ifr=s

(Proof is available).
Normalized or orthonormal H.C.P ‘s

hn(X)
1) Hn(x) =
n!
00 0 r=/=s
(2) [Hr () Hs (X) d(X) = &5 = {1
-0 r=s
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Now ; If r=s 0
rl = [hy (X) hs (X) b(x) dx

=00

e Mehler Identity:
Mehler (1866) showed that the bivariate standard normal BSN(0,0,1,1,p):

D(X, Yy ,p) =----nn- oo expl -1/ 2(1-p%) { X*-2pxy+y*}]

Could be expressed in the following canonical form involving H.C.B. such as:
DX, y,p) = GO) G(y) ( Z p"Ha(X) Ha(y))

bO)D(Y) (1+Z p" Hn(x) Ha(y))
b() dy) (= p" ha(x) hn(y))

The proof of Mehler Identity is based on the fact that there is a one to one
correspondence between probability distribution and the characteristic function.

To show that Mehler Identity can be used to calculate product moment

about the origin of ¢(X,y, p) by showing that E(x* y*) = 1+ 2 p°

We have:

E’y)=JT x*y*d(xy, p)dxdy

[T (ha(x) +1)(ha(y) + 1) (1+Z p" ha(X) ha(y)) d(X)db(y) dxdy
[T o) d(y)dxdy + T ha(x) ha(y) d(x) d(y) dxdy +

[T ha(x) dO)D(y)dxdy + T ha(y)d(y) b(x)dxdy +

[T (ha(x) ha(y)+ ha(x) + hz(yz! +1)Z p" ha(x) ha(y) d(X)d(y)

= 1 +2p°

Similarly

E(x°y®) = E(hs(x) + 3h1(x)) (hs(y)+10hs(y)+15hy(y)) = 45p + 60p°
And

E(x® y® ) =E(he(x)+15(hs(X)+6ha(X)+3)- 45(ha(x)+1)+15) *

(h6(x)+15(h4(x)+6h2(x)+3) — 45(h2(x)+1)+15)
= 225+p°/61+p*/41+p?/2!
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From these results we are able to construct a table for the product moments

For  E(X'y)= [T X'y dxy.p)dxdy as the following:
E(x'y))
i, j 1 2 3 4 5
1 p 0 3p 0 15p
2 0 1+ 2p° 0 3+12p° 0
3 3p 0 9p+6p° 0 45p+60p°
4 0 |3+12p° 0 9+72p°+24p" 0
5| 15p 0 45p+60p° 0 225+600p°+120p°

R

¢+ Tetrachoric estimation of 2X2 contingency table frequency:

1. We know that bivariate normal implies the marginal are also normal.

2. Fit normal to marginal.

3. Values (h, k ) are not necessarily the centers for marginal they are point of

dichotomy.
ng.
Wehave @ (h)=p(x<h)=] ¢(xX)dx = -----
n..
N.1
ok) = p(y<k) =/ d(y)dy = -
n..
Nig N2 Ny,
N21 N2 Ny
Ni N> n..

Pearson 1900 derived the tetrachoric estimator of p by equating the relative
frequency in any cell to its expected value i.e. consider n y, say:
N22 N22 1 1

n.. n.. n.. n..
or p22: I J. @(X,ylp)dx dy

=11 &) ) (1+ 2 p' hi(x) hiy) ) dx dy

I o) dy [ d(dx+ = ( p_i_l( I hi(y) o) dy) (] hi()d(x)dx )
I

(1-® (k) (- () +Z (o
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(I hiy)ddy) (I hi()d(x)dx) )

N1 Ny, il
= (1 - ) N — )+ 3 p_l' ( -hiad®] ) (-hia()dx)] )
n.. n.. i!
N1 Ny, .
= (L) (1) + 2 0 Rah) a0
n.. n.. i!

......... '.-.'-2-- =pMdk) T o' hia(h)hia(k)

N11 N2 - N12 N21 '
(e = b)) T ol hiah) hiak)

n..

If we truncate w (p); we have a polynomial equation in p, the solution is the
characteristic estimate r; of p thatis:

w(p) == plhialh) hiao() (0
I!

% Maximum likelihood Of p 1n 2X2 table under BSND:

We want to maximize L where:
Njj
L =IIIT Pij
i
to do this we need estimate of p;j | we have already shown that

P22 = [I d(xy.p) dxdy
N2. N2 Nij Njj
= - + w(p) or Pij = ----emeee- w(p) foralli,
n.. n..

now consider logL o XX nj log pjj

i
Therefore dlogL = X X _nj_ dlog pj
dp ij pj dp
put dlogL =0 toget:

dp
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Ny dpir + Ny dpip + N1 dpyn + Nz dpy = 0
pur dp Pz dp padp p2 dp

To solve for p we need to find expression for the p;; and dpj; -

dp
ni, n; dpj;
Recall that ST —— +W(p) and p’ij = e =+ w(p)
n.? dp
Forall i=1,2 and j=1,2
N1 N2 N21 N2
We have then: (------ - -=------ - —-m-mome- + —eeeeeeee ) Wwi(p)=0
P11 P12 P21 P22
N1 N12 N21 N22
Since w’ (p) = 0 then: (=mmmmm e e + - ) =0
P pr P21 P22
If we replace pj; in this equation and simplifying we get:
ni.n.j Nij
------- soeeee w(p) = ------—- +u(p) , To obtain the following equation:
n n

n® u3(p) + 2n(N11 N2z — N12 N2t ) U2(P) — (N11 N2a(N12 +N1)+N12 Ny (a1 +N22))u(p)=0

The maximum likelihood equation admits three values for p thatis p; , p2, and ps
Where p; , is obtained from u(p) =0 , while p, and ps are obtained from the
second part of the solution. Thus there three values for the MLE. of p , we can show
that p, and pzare terminal maximal, then p; can be proved easily that it is the MLE
for p.

N11 N22 - N12 N21
Therefore  w (py) = ----------=-mmemmmeee- and  pr -

Example(1) :
Find the tetrachoric estimator of p in the following table of classification of milk
(gallon’s) and age of cows:

Age years
3-5 >5 Total
Milk 8-18 1407 1078 2485
Gallon’s > 18 881 1546 2427
Total 2288 2624 4912

10
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Pearson’s tables for statistician and Biometrician, Vol.2 ,(1931) are tabulated
where nj, corresponds to the smallest frequency. If ny, is not in the desired
position change rows and columns, odd numbers if change effects of the sign of

Tr(x).
We have
Age years
>5 3-5 Total
Milk 8-18 1078 1407 2485
Gallon’s >18 1546 881 2427
Total 2624 2288 4912
Noo 881
-=-- -=0.1794
n 4912
N1 2624
oK) = = = 0542 —+tence k=0.11
n 4912
ni. 2485
¢ (h) = = = 0.5059 —hence h=0.015
n 4912
N22
The tables are entered with triple ( -h, k) = (0.1794, 0.11, 0.015)

n
Therefore  pt =0.32. which correspond to ¢ = 0.201 according to X?
Example (2) :

The following table summarizes hypothetical ratings by two raters on presence (+) or
absence (- ) of schizophrenia.

Rater 2
Rater 1 + - total
P T 50
- 20 30 50
ol 60 4 100

for these data ,the tetrachoric correlation pt = 0.6072 ,which is much larger than
pearson correlation of r = 0.4082 calculated for same data.

11
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