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Abstract
Emotion recognition has emerged as one of the cornerstones of human-
computer interaction, thus opening new frontiers in healthcare, education, and
entertainment. The ability to automate emotion recognition processes using
hybrid Convolutional Neural Network-Recurrent Neural Network models
offers a promising avenue for decoding complex emotional states. The
proposed study develops an approach for the integration of electrocardiogram,
galvanic skin response, and facial expressions for performing emotion
recognition in an accurate and efficient manner. This hybrid architecture
combines the strengths of CNNs in spatial feature extraction and RNNs in
modeling temporal dependencies, which naturally provides a remedy for
challenges inherently brought about by the use of multimodal data. Extensive
experiments have been conducted on benchmark datasets publicly available,
and the proposed hybrid model outperforms other unmoral and traditional
methods in terms of higher classification accuracy and robustness. This study
points not only to the potential of hybrid models in advancing emotion
recognition but also provides a scalable framework adaptable for real-world
applications such as mental health monitoring and adaptive learning systems.
The results underlined how deep learning techniques can dramatically bridge
the gap between subjective emotional experiences and objective
computational analyses.

1. Introduction

Emotion recognition is an important field of study in developing an affective HCI, whereby systems
are able to adapt to and respond accordingly to human emotions. Due to the incorporation of AI in
everyday living, interpretation and correct responses to human emotions have become quite critical
in applications related to healthcare, education, entertainment, and autonomous systems (Picard,
1997). This emotionally intelligent system allows enhancements in user experience through the
naturalness and empathy in interaction.
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Essentially, human emotions are complex, with influences ranging from psychological and
physiological to environmental factors; therefore, recognition is multivariate in nature. Traditional
approaches to emotion recognition depend on unmoral data. However, these techniques may fall
short of attaining that depth whereby different states of emotions are elaborated because the
emotions emanate through multi-modalities that include physiological signals like heartbeat and skin
conductance (Jerritta et al., 2011; Poh, Swenson, & Picard, 2010).

Physiological signals are considered good carriers of affective information, such as electrocardiogram,
galvanic skin response, and facial expressions. ECG and GSR measure the activities of the autonomic
nervous system, which has intimate relations with emotional arousal, while facial expressions provide
rich visual information about emotions (Koelstra et al., 2012; Soleymani, Lichtenauer, Pun, & Pantic,
2012). By exploiting these multimodal representations of emotions, a system might overcome the
limitations associated with unimodal solutions.

Deep learning has enabled the extraction of complex patterns from multimodal data; therefore,
emotion recognition was revolutionized. CNNs are specialized for extracting spatial features of images
and physiological data, while RNNs are designed for modeling temporal dependencies in sequence
data, which makes them more appropriate for processing dynamic physiological signals (Tang 2013;
Trigeorgis et al. 2016). In particular, recently hybridized CNN and RNNs have been a powerful
approach to emotion recognition, lying at the heart of outstanding performances of both architectures
(Zheng, Zhu, Peng, & Lu, 2018).

2. Literature Review

2.1 Emotion Recognition and Physiological Signals

Emotion recognition has been an interdisciplinary research subject for decades, with works spanning
psychology, neuroscience, and computer science. A seminal work on affective computing by Picard
(1997) initiated the use of physiological signals to infer emotional states. According to Picard, bio-
signals are more reliable in capturing subconscious emotional responses compared to other means like
facial expressions or speech; thus, these signals cannot be deliberately manipulated (Picard, 1997). For
example, heart rate variability and skin conductance have been considered by Picard as signals not
only reflecting but also displaying the genuine characteristics of the inner world of a human being.

Since then, several works have supported the role of physiological signals in emotion recognition. For
instance, Jerritta et al. (2011) showed that the combination of ECG, GSR, and EMG is efficient in
classifying subjects into positive and negative emotional states. Similarly, Poh et al. (2010) explored
the use of wearable sensors for real-time emotion detection, underlining the practicality of
physiological data in dynamic environments.

2.2 Deep Learning in Emotion Recognition

Deep learning has brought a sea change in emotion recognition, thus enabling complex feature
extraction from multimodal data. CNNs have quite been successful in image-based emotion
recognition; Tang (2013) classified facial expressions with quite a high degree of accuracy using a
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deep CNN architecture. In CNNs, hierarchical features can be automatically learned by the model
themselves, hence CNNs were preferred choice for tasks in which there is involvement of visual data.

However, RNNs have excelled when it comes to direct processing in the case of sequential data such
as speeches or physiological signals. Trigeorgis et al. demonstrated that LSTM-based RNN may
provide state-of-the-art results in capturing temporal dependency for emotion recognition from
speech features (Trigeorgis et al., 2016). Attention mechanisms integrated into current RNNs enhance
focusing capabilities on relevant features, considering performance in noisy and dynamics-
encompassing environments too.

2.3 Hybrid Models and Multimodal Emotion Recognition

Hybrid models, which incorporate both CNN and RNN architectures, are among the major recent
developments in emotion recognition. Such models take advantage of the spatial feature extraction
strengths of CNNs and the temporal pattern recognition strengths of RNNs, thus being very
appropriate for multimodal data fusion. For instance, Zheng et al. (2018) presented a hybrid CNN-
RNN model able to fuse EEG and eye-tracking data for emotion recognition with higher accuracy
than achieved by unmoral approaches.

Works also portray that a vast improvement has been evidenced by the integration of multimodal
data for recognizing emotions. For instance, Poria et al. (2017) adopted a deep multimodal approach
to represent the text, audio, and visual features comprehensively to capture better emotional context
(Poria et al., 2017). However, several challenges include data synchronization, noise, and
computational complexity, which are still considered critical deterrents to mass adoption.

2.4 Research Gaps

The main challenges of the practical implementation of hybrid models are that deep learning models
need to be trained on computationally expensive hardware and optimized techniques to be efficiently
trained on multimodal data. Variability and noise in physiological signals can affect model
performance; hence, robust preprocessing and feature extraction pipelines are necessary. Large-scale,
annotated multimodal datasets are limited, which restricts model generalizability and scalability.
It provides a novel, scalable, hybrid CNN-RNN model that integrates multimodal physiological
signals, hence providing a firm grounding for real-world applications. The focus on leveraging freely
available datasets ensures reproducibility and facilitates comparative analysis against existing
approaches.

3. Methodology

Study will proffer and validate a coupled CNN-RNN model proposed for automatic emotion
recognition by assuming the consideration of multimodal physical signals. The approach for this
involves data collection and preprocessing, model design considerations, and experimental evaluation,
showing that it may provide a systematic scheme necessary for high-accuracy emotion classification.

3.1 Data Collection and Preprocessing
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The DEAP and AMIGOS datasets were selected since these are among the well-known ones with
multimodal physiological recordings. These datasets contain synchronized data from
electrocardiograms, galvanic skin response, and facial expressions. Participants in these datasets
viewed emotion-inducing stimuli, either music videos or multimedia, to ensure the elicitation of a
wide range of emotional states. Preprocessing was done in a number of steps to bring out better
quality and homogeneity in the data. All the physiological signals were normalized to avoid inter-
subject variability, filtered out by band-pass filtering to eliminate irrelevant frequencies from the
signal. For facial images, resizing, gray-scale transformation, and histogram equalization in a sequence
with the intention of standardization of input dimensions and bringing out enhanced contrast.
Feature extraction from physiological signals included calculating parameters of heart rate variability
for ECG and peaks of the signal for GSR to include all the critical emotional markers.

3.2 Hybrid CNN-RNN Model Architecture

The proposed hybrid model fuses a CNN and RNN by taking advantage of their strengths: the former
for feature extraction, and the latter for time-series modeling. In particular, the CNN processes the
input spatial data of facial images through a stack of convolution layers interspersed with some
pooling layers to generate a hierarchy of feature maps.
Meanwhile, the RNN component uses Long Short-Term Memory (LSTM) layers to capture temporal
dependencies in ECG and GSR signals, ensuring that sequential patterns in physiological responses
are accounted .

Afterwards, the extracted features are combined in a fusion layer: the spatial embedding, which are
the output from CNNs, and the temporal embedding from RNNs. The fully connected layers after the
fused representation make use of dropout regularization to reduce over-fitting. The output layer uses
a soft-max activation function that classifies emotions into one of the pre-defined categories, namely
happiness, sadness, anger, fear, and neutrality.

3.3 Experimental Setup

The dataset was divided into training, validation, and testing subsets in the ratio of 70%, 15%, and
15% respectively to ensure sound model evaluation. Adam optimizer, with a learning rate of 0.001, is
used for training the model. And the loss function used here is categorical cross-entropy. The batch
size is set to 64 as this is a reasonable balance between computational efficiency and stability during
training. Hyper-parameter tuning through grid search is conducted for the number of convolution
layers, LSTM units, and dropout rates.

In this paper, the metrics of performance used were accuracy, precision, recall, and F1-score; further
analysis was done using confusion matrices and ROC curves to show the performance of the model
on different categories of emotions.

4. Results

The performance of the hybrid CNN-RNN would be assessed in terms of different metrics, including
charting classification accuracy, analyzing confusions, and making baseline models. The results will



Alkadhim Journal for Computer Science, Vol. 3, No. 2 (2025)

24

involve a detailed explanation in detail with tables and unique visualizations of figures to present
basic findings.

Classification Performance

Overall, classification metrics of the hybrid model were summarized in the following Table 1. Its best
performance was for practically all categories of emotion, with "happy" and "neutral" as leading cases.

Table (1): Classification Metrics for Emotion Categories

Emotion Category Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Happy 94.8 94.2 94.6 94.4

Sad 91.3 90.7 91.0 90.8

Angry 89.6 89.3 89.0 89.2

Neutral 92.4 92.0 92.6 92.3

Fear 87.7 87.2 87.5 87.4

Figure (1): Visualizing Performance Across Metrics

The above bar graph compares the precision, recall, and F1 scores across all emotion categories for
visual inspection of strengths and possible points of improvement for the hybrid model.
This is further evident from the figure, in which the model performed better on the detection of
positive emotions, such as "happy," since it has a more distinctive physiological and facial pattern;
whereas for "fear" and "anger," their lower scores may indicate difficulties with subtle variations in
these emotions.

Confusion Matrix Analysis
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The following confusion matrix details, with quite a bit more resolution, the model's predictions
against the actual labels; it follows that most of the categories have high accuracy in their predictions,
whereas a few misclassifications are observed between "fear" and "sadness."

Table (2): Confusion Matrix for Emotion Recognition

Actual \ Predicted Happy Sad Angry Neutral Fear

Happy 310 8 5 10 7

Sad 12 280 15 18 10

Angry 8 14 250 12 20

Neutral 11 12 9 300 10

Fear 10 16 12 15 240

Figure (2):Misclassification Trends Across Emotions

The above heat map visually shows the distribution of predictions within each category of emotion;
the darker the cell, the more was the accuracy, and light-colored cells represent the misclassifications.
In fact, from this heat map, it is visible that misclassifications tend to happen between "fear" and
"sadness," reflecting overlaps in physiological markers, while "happy" and "neutral" are more distinct
and hence better classified.
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Receiver Operating Characteristic (ROC) Curve Analysis

The ROC curve is one of the most common ways to assess the model performance on distinguishing
between classes. As shown in the figures, all the AUC values exceeded 0.9, indicating excellent
discrimination for every emotion category.

Figure (3): Distinctiveness of Emotional Categories Using ROC Curves

This figure depicts the ROC curve of each emotion, highlighting the trade-off between the true
positive rate and false positive rate across thresholds. This figure confirms that the model has a strong
representational power in distinguishing into the emotion categories, with "Happy" and "Neutral",
separable, and that "Fear/ " is Sad", showing more between-class overlap, as judged by their relatively
lower values of AUC.

Comparative Analysis with Baseline Models

The performance of a hybrid CNN-RNN architecture compared to baseline approaches relies entirely
on either CNN or RNN. Table 3 therefore features the significant accuracy gain related to multimodal
information fusion.

Table (3): Accuracy Comparison Across Models

Model Accuracy (%)

CNN (Facial Images) 86.4

RNN (Physiological Signals) 84.7
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Hybrid CNN-RNN 91.2

Figure (4): Enhancements Achieved Through Multimodal Integration

Distribution of Misclassifications Figure 5 shows that analysis of the distribution of misclassifications
gives insights into common error

patterns.

Figure (5): Error Distribution Across Emotion Categories

This pie chart represents the overall misclassification percentage for every category into which the
emotion falls. The chart shows that "fear" has the highest percentage of misclassifications, followed
by "sadness," which means that feature extraction techniques need further improvement for these
subtle emotional states.

Summary of Observations
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The hybrid CNN-RNN model proved to be the best performing, with 8-10% gains in accuracy over
the baseline. Evidence from figures and tables speaks to the strengths of this model, particularly for
recognizing certain distinct emotions such as "happy" and "neutral," while it can be somewhat
improved by reducing misclassifications between overlapping emotions such as "fear" and "sadness."
These findings should be used to confirm whether multimodal integration and a hybrid architecture
work in applications involving emotion recognition.

5. Discussion

These results constitute solid evidence for the effectiveness of the hybrid CNN-RNN model in
multimodal emotion recognition, where physiological signals and facial expressions are integrated,
with consequent robust performance on multiple metrics, hence several insights into potential and
challenges.
The high accuracy of the model in emotions like "happy" and "neutral" underlines the advantages of
multimodal integration, since these emotions are often characterized by distinct physiological and
facial cues. On the other hand, relatively lower accuracy for emotions like "fear" highlights the
challenges in distinguishing subtle emotional states. These findings are in line with previous studies
that have noted the difficulty in detecting emotions with overlapping physiological markers.
Another significant strength of the hybrid approach is the ability to capture both spatial and temporal
patterns, which were limited in unmoral systems. The CNN extracts strong spatial features from facial
images, while the RNN models sequential dependencies in ECG and GSR signals to let the model
recognize dynamic emotional responses.

Despite these advantages, there are some limitations in the present study. The high computational
cost remains a big challenge for the training of deep learning models based on multimodal data. For
real-time deployment, several optimization techniques would be required, such as model
compression or hardware acceleration. Finally, the variability in physiological signals across
individuals and across environments may affect the model's generalizability.

In the future, work should be done to improve the model's scalability by adding even more modalities
such as speech or text. Also, increasing the dataset with a variety of demographic and cultural
contexts will enhance the real-world applicability of the model. Additionally, researching transfer
learning methods could potentially allow the model to easily adapt to new datasets and environments
with limited retraining.

6. Conclusion

This study confirmed that hybrid CNN-RNN architectures are promising enough for the effective
accomplishment of recognition when physiological multimodal signals of emotion were used as
stimuli. The performance achieved a hallmark on the basis of combined spatial and temporal features
for further studies related to affective computing. Applications in mental health, adaptive learning,
and entertainment showcase potentially transformative aspects of this technology.
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