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Abstract: The Heating, Ventilation, Air Conditioning, 
and Refrigeration (HVAC&R) system is a complex, 
nonlinear behavior with a high uncertainty control system 
that equips the thermal comfort desired but consumes 
significant electrical energy and costs in different types of 
buildings, such as residential, commercial, and industrial. 
This paper introduces a new approach for online 
controlling of HVAC&R systems using model-based 
reinforcement learning (MB-RL) style to diminish energy 
usage and energy cost, maintain the occupants’ comfort 
levels by controlling the buildings' indoor temperature, 
and maintain the desired carbon dioxide levels 
simultaneously. For this purpose, a new model based on 
energy and mass conservation laws is presented to model 
the dynamic variations of temperature and CO2 
concentration levels. The HVAC&R system control trouble 
is defined as a specific Markov Decision Processes (MDPs) 
model. The reward function balances the ability to 
increase energy conservation while preserving the interior 
comfort requirements of occupants. Employing the 
deterministic policy algorithm (DP), the proposed 
methodology can manage the dimensionality curse 
problem due to increased state-action space. Then, it 
overcomes the nonlinearity and the control system 
uncertainty. The MB-RL algorithm, which uses a unique 
DP called DP-MB-RL, can select the best decisions instead 
of stochastic policy to reduce the calculation time. A real 
case, a building in Basra City, Iraq, is simulated using 
MATLAB software. Devoting the MB-RL and DP-MB-RL 
techniques to online control of an HVAC&R system, the 
simulation results for both methods are provided. For 
instance, the parameters, like electrical power, internal 
comfort levels, energy consumed, and energy cost at 
different pricing schemes, such as fixed pricing (FP), time-
of-use (TOU), and real-time pricing (RTP), are assessed. 
The results indicated that the suggested DP-MB-RL 
methodology had better indoor thermal and air quality 
satisfaction levels, energy-saving (more than 15%), and 
reduced the cost of electricity by more than 15%, 13%, and 
10% for FP, TOU, and RTP pricing schemes, respectively, 
compared to the benchmark MB-RL style controller. The 
DP-MB-RL controller also performed better than the 
Takagi-Sugeno Fuzzy (TSF) controller for the same 
building, saving more than 21% energy. 
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باستخدام  تحسين كفاءة ومستويات الراحة لنظام التدفئة والتهوية وتكييف الهواء 
 أساليب التحكم القائمة على التعلم الآلي 

 3رضا حاتمي علي ، 2حمود رعد زعلان  ، 1داودسرور مؤيد  
 . العراق – البصرة / قسم الهندسة الكيميائية وتكرير النفط/ كلية هندسة النفط والغاز / جامعة البصرة للنفط والغاز  1
 . العراق –البصرة  / قسم هندسة النفط والغاز/ كلية هندسة النفط والغاز / جامعة البصرة للنفط والغاز  2
 . إيران /قسم الهندسة الكهربائية/ كلية الهندسة / جامعة بو علي سينا  3

 الخلاصة 
وغير خطي مع تحكم صعب لوجود عوامل عالية الريبة  ( نظاماً ذو سلوك معقد  HVAC&Rيعد نظام التدفئة والتهوية وتكييف الهواء والتبريد )

يستهلك طاقة كهربائية وتكاليف كبيرة في أنواع مختلفة من المباني مثل السكنية والتجارية والصناعية.    لتوفير الراحة الحرارية المطلوبة. علمًا انه
ئم على النموذج  تقدم هذه الورقة نهجًا جديدًا للتحكم عن بعد في أنظمة التدفئة والتهوية وتكييف الهواء والتبريد باستخدام أسلوب التعلم المعزز القا

(MB-RL  لتقليل استخدام الطاقة وتكلفتها، وللحفاظ على مستويات راحة الساكنين من خلال التحكم في درجة الحرارة الداخلية للمباني والحفاظ )
ي آن واحد. ولهذا الغرض، تم تقديم نموذج جديد يعتمد على قوانين الحفاظ على  على درجة الحرارة وثاني أكسيد الكربون ضمن الحدود المطلوبة ف

ظام التدفئة  الطاقة والكتلة لنمذجة التغيرات الديناميكية في درجات الحرارة ومستويات تركيز ثاني أكسيد الكربون. حيث تم تعريف مسألة التحكم في ن
(. تعمل وظيفة المكافأة على موازنة  MDPs( على أنها نموذج محدد لعمليات اتخاذ قرار ماركوف )HVAC&Rوالتهوية وتكييف الهواء والتبريد )

(، يمكن للمنهجية  DPالقدرة على زيادة الحفاظ على الطاقة مع الحفاظ على متطلبات الراحة الداخلية للساكنين. باستخدام خوارزمية السياسة الحتمية )
يادة مساحة عمل الحالة، ومن ثم التغلب على اللاخطية وعدم اليقين في نظام التحكم. يمكن لخوارزمية  المقترحة إدارة مشكلة لعنة الأبعاد بسبب ز

MB-RL  التي تستخدم ،DP    وتسمىDP-MB-RL  ،تحديد أفضل القرارات بدلاً من السياسة العشوائية لتقليل وقت الحسابات. في الحالة الواقعية ،
العراق، باستخدام برنامج   تقنيات  MATLABتمت محاكاة مبنى في مدينة البصرة،    DP-MB-RLو  MB-RL. من خلال تخصيص كل من 

معلمات مثل الطاقة الكهربائية، ومستويات الراحة  تم تقييم  ، وبعد استخراج نتائج المحاكاة لكلا الطريقتين،  HVAC&Rللتحكم عن بعد في نظام  
المستهلكة، وتكلفة الطاقة استنادا لأنظم الثابت )الداخلية، والطاقة  (، والتسعير في  TOU(، ووقت الاستخدام )FPة تسعير مختلفة مثل التسعير 

المقترحة تتمتع بمستويات رضا أفضل لدرجات الحرارة الداخلية وجودة الهواء،    DP-MB-RL. تشير النتائج إلى أن منهجية  (RTP)الوقت الفعلي  
، على التوالي،  RTPو  TOUو  FP. لمخططات تسعير  %10، و%13، و%15(، وتقليل تكلفة الكهرباء بأكثر من  %15وتوفير الطاقة )أكثر من  

 Takagi-Sugenoأيضًا بشكل أفضل من وحدة التحكم    DP-MB-RLالقياسية. تعمل وحدة التحكم    MB-RLمقارنةً بوحدة التحكم في نمط  
Fuzzy (TSF لنفس المبنى، من خلال توفير طاقة أكبر بنسبة )21%. 

 . التعلم التعزيزي القائم على النموذج  ، الآليالتعلم   ، والتبريدنظام التدفئة والتهوية وتكييف الهواء   ، الطاقةتوفير  ،الحتميةالسياسة  الدالة:كلمات ال
 

1.INTRODUCTION
In recent years, due to environmental issues, 
optimizing electrical energy consumption from 
different aspects, particularly demand 
response programs, has gained more attention 
[1, 2]. Most of the people’s time is spent in 
buildings, causing about 40% of total energy 
usage and one-third of the greenhouse gas 
(GHG) emissions in the world [3, 4]. The 
Heating, Ventilation, Air Conditioning, and 
Refrigeration (HVAC&R) and lighting systems 
consume more than half of the electricity in 
commercial and 40% of residential buildings 
[5, 6]. World energy demand rise is estimated 
to reach 30% in 2040 [7]. Therefore, improving 
efficiency on the above side can decrease 
energy consumption and CO2 emission. These 
are the most critical factors affecting studies’ 
motivation to develop an HVAC&R system for 
optimal energy management. Numerous 
studies have been done to reduce buildings’ 
energy usage and achieve the users’ thermal 
comfort by controlling the HVAC systems [8-
10]. Some researchers have also considered 
demand response programs [11-13]. Several 
studies have demonstrated that machine 
learning (ML) methods can be used 
successfully to control HVAC systems [14, 15]. 
There are four ML categories of approaches: 
reinforcement learning (RL), supervised, semi-
supervised, and unsupervised [16]. Recently, 
RL has gained ground because it enhances 
performance and energy management with 
accurate control for all building types [11]. RL 
can be applied as model-based (MB), called 

MB-RL, [8, 17, 18] or model-free (MF), called 
MF-RL [3, 11, 19, 20]. In an MF-RL method, the 
training operation takes a lot of time and 
requires a large volume of data [4]. In addition, 
the algorithm is trained in simulation 
environments before being used in real ones. 
The MF-RL methods have been presented in 
[19, 21], which use the Q-learning function for 
the HVAC&R system control. In [22], using the 
linear RL in energy saving of the building has 
been discussed. A neural-fitted RL technique 
has been proposed to get the desired 
temperature thresholds [23]. The articles [24- 
26] presented an MF batch RL method applied 
to high-dimensional state-action spaces, but 
the batch update algorithm requires a high 
computational cost. For enhancement of its 
performance, the MF-RL method has been 
combined with a rule-based controller [19] and 
with a model predictive controller (MPC) [27]. 
MF-RL has also been combined with neural 
networks (N.Ns) [13, 17, 28, 29] to obtain a 
Deep RL (DRL), involving the cost and 
efficiency of the learning process as the main 
challenges. Polydoros and Nalpantidis [30], a 
comprehensive and detailed survey has been 
presented on applying ML and DRL methods 
used for the energy management of different 
systems. Polydoros and Nalpantidis [30] 
indicated the high usage, importance, and 
considerable capability of ML and DRL 
methods for analyzing energy management 
systems problems. These methods are 
becoming valuable for numerous applications 
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as they have played an important role in 
recognizing subtle structures of high-
dimension data sets [31]. On the other side, the 
learning cost and efficiency are the primary 
difficulties of the DRL controllers to practice 
[8]. In Ref.[32], an MF-RL controller was 
developed to observe the stochastic behavior of 
occupants and PV power production while 
minimizing energy consumption, ensuring 
tenants' comfort levels and water hygiene. The 
results showed that the suggested framework 
successfully learned and predicted its aim by 
reducing energy consumption without violating 
hygiene and comfort. Based on [33], hybrid and 
DL-based models provide the highest score for 
robustness in terms of energy consumption 
prediction. In [34], the authors assessed four 
RL methods for continuous control of an open-
source environment: Twin Delayed Deep 
Deterministic Policy Gradients (TD3), Proximal 
Policy Optimization (PPO), Soft Actor-Critic 
(SAC), and Trust Region Policy Optimization 
(TRPO). The results confirmed the controllers’ 
performance in terms of thermal stability, 10% 
more energy savings, and data efficiency than 
the baseline control method. MB-RL method 
has been successfully used to keep the thermal 
comfort level conditions and save 45% energy 
for multi-chiller HVAC&R systems in the Basra 
airport environment compared with the 
traditional PID controller for a typical day [35]. 
In [36], a deep MB-RL controller was proposed, 
which uses the nonlinear autoregressive 
exogenous NN (NARX-NN) as an 
approximation function to form a hybrid DP-
NARX-RL controller. The results demonstrated 
the improved performance of the DP-NARX-
RL controller compared to some controllers in 
terms of maintaining the comfort levels of the 
building occupants, reduction in the electric 
energy usage, energy costs, and training time 
for various pricing schemes. The authors of [37] 
proposed a system layout for a thermal energy 
comfort control system that maximizes comfort 
levels for tenants and simultaneously 
minimizes consumed energy, considering the 
people of different ages by using different 
regression ML algorithms, like Support Vector 
Machine (SVM), Multiple Linear (ML), 
Decision Tree (DT), and Random Forest (RF). 
The results showed that the SVM performancd 
better than the others due to its smallest 
evaluation error and more flexibility. However, 
it needs a large amount of database and a long 
time to improve accuracy. Jiang et al. [38] 
evolved a Deep Q-Network (DQN) by defining 
a single-zone building environment as a 
partially observable MDP with a reward 
function by a trade-off between minimizing 
energy cost and discomfort levels of 
punishment. The results showed the 
outperforming of DQN against the rule-based 
control by saving up to 6% and 8% energy costs 

with and without demand charges, 
respectively. Ref. [39] reduced the energy usage 
of HVAC&R simultaneously with improving 
thermal energy comfort limits in smart 
buildings using Deep Deterministic Policy 
Gradients (DDPG), while it requires a lot of 
time to converge into a fixed policy in the 
HVAC&R system control problem. Ref.[40] 
showed a day-ahead economic dispatch model 
used for water-cooled multi-chiller and ice 
storage unit systems' co-optimization to save 
total energy using GAMS (Generalized 
Algebraic Mathematical Modeling Language 
System). The results demonstrated that 
applying short-term scheduling to the total 
plant reduces energy consumption remarkably.  
In an MB-RL algorithm, the environmental 
behavior is known for the RL agent (controller). 
To resolve the above issues, the hybrid MB-
DRL approach has been proposed for the 
commercial multizone building control 
problem [8]. The findings indicated that the 
suggested algorithm increased training 
proficiency and reduced learning cost periods 
compared to classical DDPG. MB-RL methods 
use their previously learned dynamics models 
to generate or schedule new training sets. 
Despite less training data, the MB-RL method 
has a high efficiency, expressed in [41]. The 
authors of [17] proposed an MB-RL method 
that learned the HVAC system dynamics using 
an N.N. and reduced the training data 
significantly compared to the MF-RL 
technique. In [18], the MB-RL method was used 
to control multizone buildings, where the 
training data was reduced by 10.52x to obtain 
performance comparable with the MF-RL 
method. In summary, in an MF-RL method, the 
characteristics of the environment are 
unknown for the RL agent (treated as a black 
box), and the agent learns its optimal behavior 
through a tedious trial and error style [42]. 
Therefore, MF-RL strategies require large 
amounts of operating data to converge in the 
HVAC system to enhance the users’ comfort 
levels. However, collecting and providing such 
data is complicated and time-consuming in a 
real-world system [17]. Therefore, in this paper, 
the MB-RL method is adopted. In this article, 
an integrated white-box model for the HVAC&R 
system is presented, wherein the internal heat 
and CO2 concentration levels are modeled. The 
developed model's derivative relations are 
based on energy and mass conservation laws. 
Meanwhile, the CO2 level is represented by a 
Lagrange polynomial model. Then, using the 
developed model, the process control of the 
HVAC&R system is introduced as a Markov 
Decision Process (MDP) by defining the 
collections of states and actions, and the reward 
function. By adopting the MDP as a 
mathematical framework for describing the 
environment, an RL method based on the 

https://tj-es.com/


 

 

Suroor M. Dawood, Raad Z. Homod, Alireza Hatami / Tikrit Journal of Engineering Sciences 2025; 32(2): 1614. 

Tikrit Journal of Engineering Sciences │Volume 32│No. 2│2025  4 Page 

developed model, called MB-RL, is introduced 
for online controlling the HVAC&R systems. In 
the MB-RL method, the agent faces high-
dimensional state-action spaces in its learning 
process, leading to highly time-consuming, 
probably diverging, and undesired final results. 
To solve this problem, the MB-RL method uses 
a deterministic policy (DP) in its learning 
process called DP-MB-RL. The DP learns the 
optimal policy by selecting the best future 
decisions. Indeed, it is a function mapping the 
conditions of the environment to the group of 
selected actions. In the presented approach, the 
reward function consists of three components: 
the first and second components penalize the 
agent if the interior heat and the carbon dioxide 
(CO2) concentration limits are outside 
allowable values, respectively. By the third 
component in the reward function, as the 
energy consumption is increased, the penalty of 
agents is increased exponentially. Since the 
energy consumption is not directly visible in the 
thermal model, the chilled water flow has been 
used in the reward function as an index for 
energy consumption. Adjusting the coefficients 
of different components in the reward function 
allows a trade-off between the thermal comforts 
and energy usage of an HVAC&R system. To 
evaluate the proposed approach, a real case, a 
building in Basra City, Iraq, has been analyzed. 
Both approaches, MB-RL and DP-MB-RL were 
used to control the HVAC&R system. The 
results demonstrated the superior performance 
of the suggested strategy compared to MB-RL. 
Meanwhile, the energy consumption in a day 
has been computed. The results showed a 
15.03% reduction in energy consumption of the 
suggested approach compared to the MB-RL 
method.  
In summary, the following are the present 
paper's main contributions: 

• Formulating the HVAC&R control issue 
as an exact MDP where the reward trades 
off minimizing energy consumption, CO2 
concentration, and temperature 
violations.  

• Proposing a DP-MB-RL method for 
online control of HVAC&R systems 
where the DP algorithm can avoid the 
cumbersome dimensionality curse due to 
high action-state spaces. 

• A real-case residential building has been 
simulated using MATLAB software. The 
simulation results for DP-MB-RL and the 
MB-RL methods were provided and 
compared. The results showed a) the 
energy usage during the day was 
decreased by 15.03% by applying the 
proposed approach compared to the MB-
RL method; b) the proposed controller 
had a saving of 15.10%, 13.3%, and 10% in 
electricity prices compared to benchmark 

controller for fixed pricing (FP), time-of-
use (TOU), and real-time pricing (RTP) 
pricing schemes, respectively c) the 
introduced approach had improved 
performance for providing comfort levels 
compared with the MB-RL method. 

The rest of this manuscript is constructed as 
follows: Section Two addresses the problem 
definition and system representation. Section 
Three presents and analyzes the simulation 
results. Finally, Section Four addresses the 
conclusions.  
2.PROBLEM DEFINITION AND SYSTEM 
REPRESENTATION 
The HVAC system model was developed based 
on thermodynamic principles. In this model, 
cooling was provided by a primary cooling coil 
(air-water heat exchanger) situated at a central 
air handling unit (AHU). The AHU supplies air 
into the conditioned space through the 
fresh/return air dampers employed to regulate 
the provided air supply flow rate. The HVAC&R 
system control problem has been formalized as 
MDPs. In this framework, a DP-MB-RL has 
been proposed for controlling the HVAC&R 
system to diminish the overall use of energy 
while preserving the users’ indoor thermal and 
air quality within the desired levels over time. 
Figure 1 illustrates the relationships between 
the environment, including the thermal design 
of a building, the HVAC&R system, the CO2 
concentration sensor, and the agent, i.e., the 
DP-MB-RL controller. In the following, each 
section is described in detail. 
2.1.The Integrated Model of the HVAC 
System 
In classical research, the temperature with or 
without humidity was modeled and controlled 
by an HVAC system [43, 44]. Some other 
researchers considered humidity and 
temperature continuous states, while CO2 
concentration was a discrete state [45, 46]. In 
this section, an integrated model for the HVAC 
system is presented in which the dynamic 
variations of the temperature and CO2 
concentration levels are modeled. Figure 2 
demonstrates the block diagrams of subsystems 
for the planned model. As exposed in Fig. 2, the 
proposed model comprised submodels, such as 
heat exchanger, building fixture, and CO2 
sensor. The input signals of the model were the 
chilled water flow, damper ratios for returned 
air/fresh air, outside temperature, open/closed 
windows and doors, on/off lights, time, and 
supply temperature. The DP-MB-RL agent’s 
learning process adjusted the values of these 
variables until they reached an acceptable level. 
The indoor conditions (concentration of carbon 
dioxide and room temperature) were the 
outputs of the HVAC&R system model. The 
values of parameters and the allowable values 
of variables for the HVAC&R system model are 
described in Table 1. 
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Fig. 1 Overall Block Diagram of the DP-MB-RL Algorithm with the HVAC&R System. 

 
Fig. 2 HVAC&R Subsystems Block Diagram. 

2.1.1.The Modeling of Heat Exchanger 
(Cooling Coil)  
The control volume of a heat exchanger can be 
implemented to get the transfer function of 
supply temperature using the energy 
conservation law and the first law of 
thermodynamics, Eq. (1) [43, 47], which is 
transferred from the Time-domain into the S-
domain, as shown in Eq. (2). 

𝑴𝑯𝒆𝒄𝒑𝑯𝒆
𝒅𝑻𝒔𝒖𝒑(𝒕)

𝒅𝒕
= �̇�𝒂𝒓(𝒕)𝒄𝒑𝒂𝒓𝑻𝒎(𝒕) −

�̇�𝒂𝒓(𝒕)𝒄𝒑𝒂𝒓𝑻𝒔𝒖𝒑(𝒕) +

�̇�𝒘𝒓(𝒕)𝒄𝒑𝒘𝑻𝒘𝒊(𝒕) − �̇�𝒘𝒓(𝒕)𝒄𝒑𝒘𝑻𝒘𝒐(𝒕)  (1) 

𝑻𝐬𝐮𝐩⁡(𝒔) =
𝑫𝒓𝒂(𝒔)×𝑻𝒓𝒎(𝒔)

(𝝉𝒉𝒔+𝟏)
+

𝑫𝒇𝒂(𝒔)×𝑻𝒐𝒖𝒕(𝒔)

(𝝉𝒉𝒔+𝟏)
+

𝑪𝒉𝒇(𝒔)×𝜟𝑻𝒘𝒊𝒐(𝒔)×𝒄𝒑𝒘𝒐

�̇�𝒂𝒓(𝒔)×𝒄𝒑𝒂𝒓×(𝝉𝒉𝒔+𝟏)
  (2) 

 

https://tj-es.com/


 

 

Suroor M. Dawood, Raad Z. Homod, Alireza Hatami / Tikrit Journal of Engineering Sciences 2025; 32(2): 1614. 

Tikrit Journal of Engineering Sciences │Volume 32│No. 2│2025  6 Page 

Table 1 The Parameters and the Allowable Values of Variables for the HVAC System Model [43, 47, 
48]. 

Component Value Component Value 

�̇�𝑎𝑟(𝑡) = �̇�𝑎𝑠𝑟(𝑡) = �̇�𝑎𝑣𝑟(𝑡) 0.84 𝛥𝑇𝑤𝑖𝑜(𝑡) 5 
𝐶ℎ𝑓(𝑡)  [0   1] 𝑐𝑝𝑤𝑜 4200 

𝐷𝑟𝑎(𝑡)  [0.25  0.75] 𝜏ℎ 4.7 
𝐷𝑓𝑎(𝑡)  [0.25  0.75] 𝜏𝑏 381.58 

𝑊𝑛𝑂𝑁(𝑡) 0 or 1 𝜏𝑐 985.6 
𝐿𝑛𝑂𝑁(𝑡) 0 or 1 𝑡0 − 𝑡𝑖  [0    24] 
𝑇𝑟𝑚(𝑡) [16   30] 𝐶𝑜2𝑜𝑢𝑡 600

 
 

𝑇𝑜𝑢𝑡(𝑡)  [20   36] 𝐹𝑎𝑚 0.437 
𝑇𝑠𝑢𝑝 [12   15] 𝑣𝑟

•(𝑡) 0.626 

𝐺(𝑡𝑖) [550   1000] 𝑣𝑟𝑜𝑜𝑚 616 
𝑐𝑝𝑎𝑟 1.005 𝛥𝑥𝑏 0.4 
K 0.7 𝐴𝑏 173.6 

 
where 𝑀𝐻𝑒(kg) is the heat transfer unit mass, 
𝑐𝑝𝐻𝑒(𝐽/𝑘𝑔.℃) is the specific heat of the cooling 
coil, 𝑇𝑊𝑖(𝑡)(℃) and 𝑇𝑊𝑜(𝑡)(℃) are water in/out 
temperatures of the heat exchanger, 𝑇𝑚(𝑡)(℃) 
and 𝑇𝑠𝑢𝑝(℃) are the supply air and mixing 

temperatures at time t, �̇�𝑤𝑟(𝑡) = 𝐶ℎ𝑓(𝑡)(𝑘𝑔/

𝑠𝑒𝑐.) is the mass flow of chilled water at time t, 
𝐷𝑟𝑎(𝑡) and 𝐷𝑓𝑎(𝑡)(%) are the fresh and return 

air ratios via damper at t, 𝑇𝑟𝑚(𝑡)(℃) is the room 
heat at time t, 𝑇𝑜𝑢𝑡(𝑡)(℃) is the external heat at 
t, 𝛥𝑇𝑤𝑖𝑜(𝑡)(℃) is the difference of water’s output 
and input temperatures, 𝑐𝑝𝑤𝑜 and 𝑐𝑝𝑎𝑟(𝐽/
𝑘𝑔.℃) are the specific heat of air and water, 
�̇�𝑎𝑟(𝑡)(𝑘𝑔) is the mass flow rate of outdoor air 
at time t, and 𝜏ℎ(𝑠𝑒𝑐.) is the time delay for the 
cooling coil. 
2.1.2.Building Model 
By utilizing the mass and energy conservation 
laws in the control volume of a building 
structure, the changes in room temperature 
over time t can be given as in Eq. (3) [43]. It 

depends on thermal load components, such as 
walls, doors, lights, windows, and ceilings. 

𝑻𝒓𝒎(𝒔) =
�̇�𝒂𝒔𝒓(𝒔)𝒄𝒑𝒂𝒓𝑻𝒔𝒖𝒑(𝒔)

(
𝑲𝑨𝒃
𝚫𝒙𝒃

+𝟐�̇�𝒂𝒔𝒓(𝒔)𝒄𝒑𝒂𝒓)(𝝉𝒃𝒔+𝟏)
+

�̇�𝒂𝒗𝒓(𝒔)𝒄𝒑𝒂𝒓𝑻𝒐𝒖𝒕(𝒔)×𝑾𝒏𝑶𝑵(𝒔)

(
𝑲𝑨𝒃
𝚫𝒙𝒃

+𝟐�̇�𝒂𝒔𝒓(𝒔)𝒄𝒑𝒂)(𝝉𝒃𝒔+𝟏)
+

𝑲𝑨𝒃𝑻𝒐𝒖𝒕(𝒔)(𝟏+𝟎.𝟔)

𝚫𝒙𝒃(
𝑲𝑨𝒃
𝚫𝒙𝒃

+𝟐�̇�𝒂𝒔𝒓(𝒔)𝒄𝒑𝒂𝒓)(𝝉𝒃𝒔+𝟏)
+

𝟒𝟎×𝑳𝒏𝑶𝑵(𝒔)

(
𝑲𝑨𝒃
𝚫𝒙𝒃

+𝟐�̇�𝒂𝒔𝒓(𝒔)𝒄𝒑𝒂𝒓)(𝝉𝒃𝒔+𝟏)
  (3) 

where �̇�𝑎𝑣𝑟(𝑡) and �̇�𝑎𝑠𝑟(𝑡)(𝑘𝑔) are the mass 
flow rate of ventilation and supply air at t, 
𝜏𝑏(𝑠𝑒𝑐.)⁡is the time delay for the air-conditioned 
area. 𝐾 is the conductivity, 𝛥𝑥𝑏(𝑚) is the 
thickness, and 𝐴𝑏(𝑚

2) is the surface area. The 
𝑊𝑛𝑂𝑁(𝑡) and 𝐿𝑛𝑂𝑁(𝑡) are the open/close 
windows and on/off lighting at time t. Figure 3 
depicts the residential building with an overall 
area of 220 m2 used in an analytical case study 
[49]. 

 
Fig. 3 The Building’s Geometry Selected. 

https://tj-es.com/
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2.1.3.CO2 Concentration Level Model 
Some researchers have reported that in some 
cases, the interior air can be more seriously 
polluted than outside air [50, 51]. Given the 
assumption that the outdoor CO2 concentration 
is constant (600ppm [52]), the indoor CO2 
emissions comprise the building tenants’ CO2 
quantity and the CO2 released from the indoor 
appliances. Based on the first law of energy and 
using the ordinary differential equations in 
mixing flow [53], the CO2 generation level can 
be determined (Eqs. (4) and (5)). In steady-
state conditions, the CO2 generation level can 
be described by a Lagrange polynomial model 
for a given time horizon. A detailed description 
of the physical behavior for the two output 
values (IAQ and heat) is given by combining the 
above three sub-model equations, as presented 
in Appendix A [36]. 

𝑪𝑶𝟐𝒓𝒎(𝒔) =
𝒗𝒓𝒐𝒐𝒎𝑪𝑶𝟐𝒐𝒖𝒕𝑫𝒓𝒂(𝒔)𝑭𝒂𝒎

�̇�𝒓(𝒔)(𝝉𝒄𝒔+𝟏)
⁡+

𝒗𝒓𝒐𝒐𝒎𝑪𝑶𝟐𝒈𝒎(𝒔)

�̇�𝒓(𝒔)(𝝉𝒄𝒔+𝟏)
  (4) 

𝑪𝑶𝟐𝒈𝒎(𝒕) =∏(
𝒕 − 𝒕𝒋

𝒕𝒊 − 𝒕𝒋
)𝑮(𝒕𝒊)

𝑿

𝒋=𝟎
𝒋≠𝒊

 (5) 

where 𝐶𝑂2𝑔𝑚(𝑡)(𝑝𝑝𝑚) is the indoor generated 

CO2 concentration level, 
)(2 ppmCO out  is the 

outside carbon dioxide concentration, 

𝐹𝑎𝑚 (𝑚
3

𝑠𝑒𝑐.⁄ ⁡) is the volumetric airflow rate, 

�̇�𝑟(𝑡)(
𝑚3

𝑠𝑒𝑐.⁄ ) is the volume rate of the room, 
𝑣𝑟𝑜𝑜𝑚(𝑚

3) is the volume of the building, 
𝜏𝑐(𝑠𝑒𝑐.)⁡is the time delay for the CO2 sensor, 𝑡 −
𝑡𝑖(ℎ𝑜𝑢𝑟𝑠) is the time, and 𝐺(𝑡𝑖)(𝑝𝑝𝑚) is the 
indoor CO2 concentration at time t.  
2.2.Problem Formulation and MB-RL 
Controller Design Architecture  
The main components of the online MB-RL 
control method can be defined as a tuple (S, A, 
ꞵ, ρss’, and ℜ). S and A are the groups of states 
and actions, respectively. ꞵ is the discount 
factor used to discount the value of future 
rewards. ρss’ and ℜ are the matrix of state-to-
state transition probability and reward 
functions, respectively. In a series of episodes, 
the MB-RL agent (controller/decision-maker) 
communicates with its environment. Each 
episode starts with the RL agent in state Sin and 
ends once the agent makes the best decisions. 
The agent picks an action a ∈ A at state s ∈ S 
after observing the state. Consequently, the 

instant reward R is received by the RL agent ( 
Fig. 4). The main target of the RL agent is to 
optimize the overall predicted reward obtained 
over time [54]. 

 
Fig. 4 MB-RL Algorithm’s Flowchart. 

2.2.1.State–Action Space 
The states are the mathematical representation 
of the environment that is important and useful 
in decision-making. In this work, three states 
have been considered: Trm(t) =state (1), 
Tout(t)=state (2), and CO2rm(t)=state (3), as 
exposed in Fig. 5. The boundaries of the indoor 
occupants’ comfort levels are included in the 
state-space values to prevent excessive energy 
consumption. Actions are the decisions made 
by the MB-RL agent to control its environment. 
The set of selected actions, A, contains four 
control factors: chilled water flow valve position 
for the heat transfer unit, ON-AND-OFF lights, 
open/close windows/doors for ventilation 
purposes, and position damper actuator of the 
fresh/returned air, respectively. Therefore, the 
outputs of controller action are A=[Chf(t), 
LnON(t), WnON(t), Dfa(t)]T. To reduce the 
disturbance effects on the MB-RL controlled 
state-space values, which are constantly 
altering in line with the dynamic cooling load, 
the agent’s action-space values are adjusted for 
each time slot. 

https://tj-es.com/
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Fig. 5 Schematic Diagram of the MB-RL Controller. 

2.2.2.Reward-Function 
The reward function (ℜ) estimates the instant 
rewards of making an action at a specific state. 
In this work, the designed MB-RL agent’s ℜ 
consisted of three parts, as shown in Eq. (6), 
including punishment for the HVAC system 

energy consumption (X(t)=𝑒𝑥𝑝(𝐶ℎ𝑓(𝑡))) and 

penalties for indoor air quality (IAQ) 

(Y(t)=|
2𝐶𝑂2𝑚(𝑡)−𝐶𝑂2𝑚−𝑑𝑒𝑠(𝑡)−𝐶𝑂2𝑚−𝑑𝑒𝑠(𝑡)

2
|) and 

residents’ thermal discomfort levels 

(Z(t)=|
2𝑇𝑟𝑚(𝑡)−𝑇𝑟𝑚−𝑑𝑒𝑠(𝑡)−𝑇𝑟𝑚−𝑑𝑒𝑠(𝑡)

2
|). The agent 

must be penalized if the HVAC system 
consumes more electricity or the tenants are 
dissatisfied with the building’s air quality and 
temperature conditions.  

𝕽 = −𝜹 × [𝒁(𝒕) + 𝑫𝒇𝒂(𝒕) × 𝒀(𝒕)]
𝟐
− 𝑿(𝒕) (6) 

The exponential function (exp (Chf(t))) 
indicates the importance of the On-and-Off 
switching of the HVAC&R system. In summary,
  has been used as the agent’s guideline based 
on energy savings and internal occupants’ 
comfort levels to get the optimal value function 
by Bellman’s equation. By adjusting the 
coefficient δ in Eq. (6), a trade-off between 
energy consumption and thermal comfort 
conditions can be made.  
2.2.3.Discount Parameter, Value, and 
Policy Functions 
The value function (V) is composed of the 
accumulative rewards of several future steps 

that the RL agent will take based on 
implementing a fixed policy that starts with 
S(0) and continues until the end, i.e., S 
(desired) [6]. Utilizing Bellman’s equation, V 
can be expressed as in Eq. (7). In this equation, 
ꞵ ∈ [0, 1) ensures that the summation of all 
discounted future rewards is always a finite 
number and prevents it from reaching infinity. 

𝑽𝝅⁡(𝒔) =𝕽(𝒔, 𝝅(𝒔)) + 𝜷∑𝝆ss′𝑽
𝝅⁡(𝒔′) (7) 

The MB-RL agent that follows the optimal 
policy can achieve the optimal V, calculated 
from Eq. (8). 

𝑽∗(𝒔) = 𝒎𝒂𝒙𝝅[𝕽(𝒔, 𝝅(𝒔)) +

𝜷∑𝝆ss′𝑽
𝝅⁡(𝒔′)⁡]  

(8) 

The best policy has been described as one that 
significantly improves V for any state s and can 
be calculated utilizing the formula below. 
𝝅∗(a/s) ⁡= 𝒂𝒓𝒈𝒎𝒂𝒙𝒂∈𝑨∑𝝆ss′𝑽

∗⁡(𝒔′)  (9) 
Depending on Eq. (9) and the current state, the 
MB-RL agent chooses the actions used to 
manipulate the HVAC system’s inputs. The 
optimal V and the best policy can be computed 
using two algorithms: value and policy 
iterations. In the present paper, the optimal 
value-iteration was applied, and DP was used 
for optimal scheduling of the indoor building 
services. The parameters applied in the DP-
MB-RL controller are indexed in Table 2. 
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Table 2 Descriptions of the Proposed Controllers’ Parameters. 

Par. Definition Value Unit 

ꞵ The discount index 0.990 - 

ẟ A trade-off between the energy-saving of reward’s part and residents’ 
comfort condition part 

0.980 - 

𝑇𝑟𝑚−𝑑𝑒𝑠𝑎𝑛𝑑𝑇𝑟𝑚−𝑑𝑒𝑠 The desired boundaries of indoor heat [20  24] °C 

𝐶𝑂2𝑚−𝑑𝑒𝑠𝑎𝑛𝑑𝐶𝑂2𝑚−𝑑𝑒𝑠 The desired boundaries of internal CO2 [750 850] Ppm 

ℜ(s,a) Reward --- - 

ꞵVπ(s’) The summation of discounted future rewards --- - 
Vπ(s) Value-function --- - 
V*(s) Optimal V-value --- - 
π*(a/s) Optimal policy --- - 

Note: --- Signifies a variable 

2.3.Deterministic Policy for the MB-RL 
Algorithm 
Based on the MDP model, two approaches have 
been adopted to specify an appropriate action-
selection strategy. Typically, these approaches 
involve stochastic and deterministic policy 
functions. The significant difference between 
these two algorithms can be expressed as the 
stochastic policies are integrated over state-
action spaces, while deterministic policies only 
incorporate over state-spaces. Therefore, the 
stochastic policy requires more testing samples 
to compute the state-action space function [55, 
56]. In summary, for the stochastic policy, every 
state in the state-space has a probabilistic 
distribution of action in that state. The DP 
describes the behavior that realizes the 
maximum anticipated reward over time and at 
any number of episodes [36]. The decision-
maker manipulates the action space values to 
track desired indoor conditions (temperature 
and air quality) while optimizing performance 

to maximize energy-saving. The MB-RL 
controller’s policy samples the DP and sets its 
parameters to achieve the best scheduling, as 
illustrated in Fig. 6. Meanwhile, the pseudo-
code, as exposed in Table 3, is applied as the 
agent’s guide to follow internal conditions 
changes. In other words, after computing the 
optimal V for the MB-RL control technique 
using the value-iteration process and 
optimizing the V-value calculated by Bellman’s 
equation, a DP technique is used to obtain the 
optimum action space and update the policy-
function factors. In summary, the DP maps 
every state in states set to a particular action in 
actions set, i.e., π(s)=a. The agent detects the 
reward function and then enters the next state 
to store the information in its memory M. This 
method is used periodically until the optimum 
state-space S is found. If this criterion is not 
satisfied, the DP-MB-RL agent will go to the 
next episode and repeat the above procedures. 

 
Fig. 6 DP-MB-RL Algorithm’s Flowchart. 
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3.PERFORMANCE EVALUATION 
In this section, the performance of the 
suggested DP-MB-RL controller applied to the 
HVAC&R system has been evaluated and 
compared with that of the benchmark 

controllers. The simulation results for all 
controllers have been carried out in MATLAB 
software. The main evaluation parameters are 
V-value, thermal and IAQ levels, and finally, the 
energy and cost savings. 

Table 3 The DP-MB-RL Algorithm Pseudo-Code. 
1.) procedure MDP (S, A, ꞵ, ρss', ẟ, and ℜ)  

  S→ [Trm(t), Tout(t), CO2m(t)]                                                          

  A→ [Chf(t), Dfa(t) , LnON(t) , WnON(t)] 

  ℜ (S, A) → Eq. 5 

2.) For each element in state-space S, set the initial value for π(S) of each element in V(S) and A  

3.) For I= 1 to 5  

4.) Repeat for each element of S and A 

5.) Repeat for Vπ(S) and then V*(S) → Eqs. 6 & 7. 

6.) Based on the D.P.- method, for each state, find π*(S) =A 
End For 

7.) Make the following steps for continuing control 
a) Get Scnt from the HVAC&R system  
b) Compute a’(Scnt) from π∗’(Scnt) 
c) Set the HVAC&R at a’(Scnt) 
d) Go to the first step a) 

End procedure 

 
3.1.The Performance of the DP-MB-RL 
Controller 
This section covers and evaluates the different 
features of two controllers, MB-RL and DP-MB-
RL. As shown in Fig. 3, a building is considered 
for an analytical case study. This real case is in 
Basrah City, Iraq. The controllers have been 
applied to the HVAC&R system to provide 
thermal comfort conditions and maximize 
energy saving. Figures 7 (a) and (b) show the 
simulation results for optimal V of MB-RL and 
DP-MB-RL controllers, respectively. These 
values were calculated using the value iteration 
technique. As shown in Fig. 7 (a), the optimal V 
of the DP-MB-RL controller has a smoother 
surface than the optimal V of the MB-RL 
controller, meaning that the DP-MB-RL agent 
had selected more appropriate action space 

values with greater consistency than MB-RL 
[57]. It is necessary to mention that three states, 
Trm(t), Tout(t), and CO2rm(t), affect the optimal 
V. However, the state CO2rm(t) has less effect on 
optimal V than Trm(t) and Tout(t). To avoid 
unnecessary complexity, the CO2rm(t) effect has 
not been considered in calculating the optimal 
V. The smoother surface of the optimal V, as 
shown in Fig. 7 (b), reduced the period of the 
oscillations in the actions-space chosen by the 
DP-MB-RL agent and provided accurate 
sequential decisions. As a result, the solenoid 
valve and air dampers' chattering effects were 
minimized, reflecting the steady state of the 
required indoor comfort ranges in the building 
and allowing the agent to achieve its purpose as 
quickly as possible. 

  

(a) V of MB-RL (b) V of DP-MB-RL 

Fig. 7 The Controllers' Optimal V-value. 

After optimizing the V function, the DP-MB-RL 
agent chooses the best action-space values to 
warrant the maximum adaptation of the control 
policy. For each control time step, after 
performing actions, the reward received by this 
agent depends on the energy and violations of 
both temperature and CO2 concentration. The 

performances of DP-MB-RL and MB-RL 
methods for controlling the interior heat at each 
hour of the day have been evaluated, as shown 
in Fig. 8. In this figure, the outdoor temperature 
and the minimum and maximum acceptable 
indoor temperatures are also given. As shown 
in Fig. 8, the DP-MB-RL and MB-RL 
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controllers kept the building residents’ thermal 
comfort levels within the required bounds (20 
°C to 24 °C). However, the adjusted set points 
for the DP-MB-RL method are more rapid, have 
lower oscillations, and are closer to the mean 
temperature, i.e., the mean value of minimum 
and maximum acceptable indoor temperatures, 
compared to the MB-RL method. Therefore, 
compared to MB-RL, the DP-MB-RL approach 
performs better at controlling the degree of 
interior temperature. In Fig. 9, the 
performances of DP-MB-RL and MB-RL 
methods are evaluated for controlling the CO2 
concentration level at each hour of the day. As 
shown in Fig. 9, the IAQ for MB-RL and DP-
MB-RL methods has been managed to meet the 
desired satisfaction levels, as determined by 
CO2 concentration level. An acceptable CO2 
concentration level inside the room (the black 
line in Fig. 9) has been continuously 
represented for 24 hrs., using the Lagrange 
polynomial model. Indoor-acceptable CO2 
ranges between 550 and 1000 parts per million, 

which is profoundly affected by indoor 
personnel’s consumed time [52, 58]. Numerous 
time points were selected to show carbon 
dioxide changes in concentration. Firstly, from 
midnight to 7:00 AM, the internal CO2 
concentration displayed an increasing tendency 
(the highest level from 800-1000 ppm) due to 
indoor residents. Then, between 7:00 AM and 
3:30 PM, the people inside began leaving the 
place, and the CO2 level decreased quickly to the 
smallest value (i.e., 550 ppm). Between 3:30 
PM and midnight, the occupants started to 
enter the house and the carbon dioxide 
increased to maximum value [59]. The desired 
CO2 concentration range was chosen between 
750 and 850 ppm based on [58] since any value 
outside this range harms the occupants’ health. 
The CO2 concentrations were monitored, and 
those greater than 850 ppm were avoided. 
Figure 9 shows that the DP-MB-RL agent offers 
better stability and faster response 
performances than the MB-RL controller. 

 
Fig. 8 The Comparison of HVAC System Thermal Response for MB-RL and DP-MB-RL. 

 
Fig. 9 HVAC System CO2 Concentration-Response for MB-RL and DP-MB-RL.
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3.2.Evaluation of Energy Savings and 
Energy Costs 
This section uses the HVAC system's energy 
usage to evaluate the DP-MB-RL and MB-RL 
controllers’ efficiency throughout the day. It is 
necessary to mention that the electricity 
consumed by an HVAC system is directly 
relative to the cooling coil valve position. The 
chilled water flow rates are controlled by this 
valve. The position of this valve is controlled by 
DP-MB-RL and MB-RL agents. Figure 10 shows 
the position of the chilled water valve for both 
agents. As illustrated in this figure, the Chf(t) 
action is characterized by temperature control 
via regulating the flow rate of this cooling coil 
water based on Trm(t) and Tout(t). When Tout(t) 
is low and between the desired set points of 
Trm(t), the DP-MB-RL exploits this chance to 
open windows for the building ventilation 
process while switching off the lights. 
Therefore, to avoid the DP-MB-RL agent 
punishment, the HVAC&R system is switched 
off by closing the chilled water flow rate valve to 
save more energy than that without using the 
DP algorithm. Figure 11 represents the 
application of mass and energy conservation 
principles to the heat exchanger's control 
volume in an HVAC&R system to create a 

comprehensive energy equilibrium for this sub-
system, as given by Eqs. (1) and (2). This control 
volume has been used to compute the energy 
usage of the HVAC&R system for a day. By 
specifying the position of the chilled water valve 
during the planning horizon for both 
controllers, as shown in Fig. 10, considering the 
control volume of the heat exchanger shown in 
Fig. 11, and using the relations of the heat 
exchanger model (Eqs. (1) and (2)), the cooling 
coil load can be determined, as shown in Fig. 12. 
To calculate the overall system’s energy of the 
cooling coil load, iterative approaches have 
been applied to solve the related equations. 
Figure 12 summarizes the cooling coil load 
results for energy variation in the building for 
two controllers. This result shows the electrical 
power consumption (Kw) of an HVAC system 
by applying both controllers for 24 hrs. The 
power consumption increases, especially at 
peak times, to maintain the occupants’ comfort 
levels in acceptable ranges. However, the 
energy expended by the HVAC&R system 
controlled by DP-MB-RL is lower than that of 
the MB-RL controller as it has a shorter 
duration of maximum power absorbed by the 
plant. 

 
Fig. 10 Action of the Supplied Chilled Water for MB-RL and DP-MB-RL. 

 
Fig. 11 Thermal Variation Through Heat Exchanger. 
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Fig. 12 HVAC System Cooling Coil Load for DP-MB-RL and MB-RL Controllers. 

The HVAC&R energy usage during 24 hrs. 
period, can be seen in Fig. 13 for both 
controllers. Specifically, Fig. 13 illustrates the 
energy consumed for cooling the building in 
which the HVAC system is controlled by both 
controllers. As exposed in Fig. 13, using the DP-
MB-RL and MB-RL controllers, 107.4 kWh/d 
and 126.4 kWh/d of energy, respectively, were 
used to cool the building for a day. Due to this 
fact, the proposed (DP-MB-RL) controller 
achieved the work’s primary goal, which is more 
energy-saving. The system's energy efficiency 
has been calculated to be higher by 15.03% for 
this controller than the MB-RL strategy. As the 
temperature drops less than the upper level of 
the desired temperature at night, the DP takes 
advantage of this feature to open windows and 
allows the ventilation process into indoor 
space. Furthermore, at late time of night, the 
occupants do not require the extra lighting so 
that it will switch off indoor/outdoor nighttime 

running lights. The above actions reduce 
system energy consumption using the DP-MB-
RL controller. Also, in this study, the cost-
saving performance of both controllers was 
achieved under different electricity pricing 
schemes using FP, RTP, and TOU schemes. 
Figure 14 displays electricity pricing for an 
average day [60]. The HVAC&R system's 
energy expenses are analyzed by implementing 
the recommended and benchmark controllers, 
as shown in Fig. 15, depending on the cooling 
coil loads (kW) depicted in Fig. 12 and the 
electricity pricing ($/kWh). As illustrated in 
Fig. 15, the proposed method outperforms the 
MB-RL method since it uses less energy cost to 
run the HVAC&R system for the three pricing 
schemes. For the RTP, TOU, and FP schemes, 
the recommended controller reduced energy 
costs by 10%, 13.3%, and 15.1%, respectively, 
compared to the benchmark controller. 

 
Fig. 13 Energy Consumed by the Building Model for Both Controllers. 
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Fig. 14 Electricity Market Schemes. 

 
Fig. 15 Comparison of the Two Controllers' Electricity Costs. 

3.3.Validation and Verification of the 
Proposed Controllers 
For validation and verification of the proposed 
controllers’ performances, the optimal method 
was used to determine the acceptable thermal 
circumstances inside the building based on the 
outdoor temperature. This method has been 
recommended by [59]. It is also applied in [60], 
[6]. The present study’s control system 
performance has been compared with ASHRAE 
standard 55 suggested ranges for interior 
temperatures. Where ASHRAE standard 55 
states the criterion for accepted operative 
temperature (Topr(t)) limits into the air-
conditioned areas [61], and it can be calculated 

using Eq. (10). Wherever, Topr(t) is the average 
of the inside air heat Trm(t) and the mean 
radiant heat Trd(t), respectively. Topr(t) can be 
calculated using the relationship below with 
acceptable accuracy [49]: 

𝑻opr(𝒕) =
𝑻rm(𝒕)-Trd(𝒕)

𝟐
  (10) 

As shown in Fig. 16, 90% acceptability limits 
were used for higher thermal comfort levels. 
obviously, the proposed controllers confirmed 
very good satisfaction as the indoor operative 
temperature within and interconnects with the 
ASHRAE standard recommended area [61, 62], 
as exposed in Fig. 17. 
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Fig. 16 Indoor Air Operative Temperature for MB-RL and DP-MB-RL Controllers. 

 
Fig. 17 Comparison of Indoor Air Operative Temperature for Two Controllers with ASHRAE Standard 

Acceptable Levels. 

Also, the energy efficiency assessments of three 
MB-RL and Takagi-Sugeno Fuzzy (TSF) are 
represented in Fig. 18 for an HVAC system to 
verify the controllers’ performance. This figure 
depicts the collective energy usage over 24 hrs 

for the MB-RL, DP-MB-RL control methods, 
and TSF controller reported in [47]. The DP-
MB-RL agent performs better than the TSF 
controller for the same building, as shown in 
Fig. 18, by saving 21% more energy. 

 
Fig. 18 Comparison of Energy Consumed by the Building for Three Controllers. 

https://tj-es.com/


 

 

Suroor M. Dawood, Raad Z. Homod, Alireza Hatami / Tikrit Journal of Engineering Sciences 2025; 32(2): 1614. 

Tikrit Journal of Engineering Sciences │Volume 32│No. 2│2025  16 Page 

4.CONCLUSIONS AND 
RECOMMENDATIONS 
This study provides the HVAC&R system best 
control via energy consumption minimization 
with maintaining indoor thermal and air 
quality simultaneously with minimizing energy 
costs for different electricity pricing schemes. 
First, a simple HVAC&R system 
thermodynamic model was designed and 
verified with two of the most significant terms 
for occupants’ comfort levels: First) indoor air 
temperature, and second) CO2 concentration 
level. For controlling the developed HVAC&R 
model, this research used two control methods: 
online traditional MB-RL and DP-MB-RL. 
Using the MB-RL algorithm makes the agent 
easily interact with its environment to increase 
control effectiveness simultaneously with less 
data and time and without the tedious trial-
and-error process. To overcome the substantial 
increase in training data of the HVAC&R 
system control, a DP algorithm was employed 
to provide a DP-MB-RL control method for 
selecting the best actions within the MB-RL 
method. The simulation results revealed the 
superiority of high-dimensional and nonlinear 
HVAC&R control with no additional 
calculations, reducing the cost and time of the 
computations. Where the DP-MB-RL controller 
had to preserve indoor temperature tightly, IAQ 
with energy-saving was calculated to be higher 
by 15.03% and 21% than the MB-RL and TSF 
controllers, respectively. In addition, the energy 
cost for DP-MB-RL was cheaper than the MB-
RL approach. To provide more stable indoor 
comfort levels, increase daily energy and cost 
savings, and further reduce calculation time, 
optimizing the proposed DP-MB-RL control 
method using deep learning methodologies is 
recommended. Also, in the future, this work can 
be applied to multizone HVAC&R systems or 
other types of buildings. The control method 
can also be expanded into a multi-agent system 
deep learning control methodology.  

ACKNOWLEDGEMENTS 
The authors are grateful for the financial 
support towards this research by the 
Department of Chemical and Petroleum 
Refining Engineering, College of Oil and Gas 
Engineering, Basra University for Oil and Gas. 
Department Research Grant (PGRG) 
No.153/HK/ (2024-3-26)/pg.43. 

NOMENCLATURE 
𝐴𝑏 Surface area, m2 
𝑐𝑝𝐻𝑒 Specific heat of the cooling coil, J/(kg ℃) 
𝑐𝑝𝑎𝑟 Specific heat of air, J/(kg ℃) 
𝑐𝑝𝑤𝑜 Specific heat of water, J/(kg ℃) 
𝐶𝑂2𝑔𝑚 Indoor generated CO2 concentration level, 

𝑃𝑝𝑚 
𝐶𝑂2𝑜𝑢𝑡 Outside carbon dioxide concentration, 𝑃𝑝𝑚 

𝐶𝑂2𝑚−𝑑𝑒𝑠⁡ 
𝑎𝑛𝑑⁡ 

𝐶𝑂2𝑚−𝑑𝑒𝑠 

Desired boundaries of internal CO2, 𝑃𝑝𝑚 

𝐷𝑟𝑎 &𝐷𝑓𝑎 Fresh and return air ratios via damper 

𝐹𝑎𝑚 Volumetric airflow rate, (𝑚
3

𝑠𝑒𝑐.⁄ ⁡)  

𝐺(𝑡𝑖) Indoor CO2 concentration at time t, 𝑃𝑝𝑚 
𝐾 Conductivity 
𝐿𝑛𝑂𝑁 On/off lighting 
𝑀𝐻𝑒 Heat transfer unit mass, kg 
𝑚𝑤𝑟

• = 𝐶ℎ𝑓 Mass flow rate of chilled water, kg/(sec.) 

𝑚𝑎𝑟
•  Mass flow rate of outdoor air, kg/(sec.) 

𝑚𝑎𝑣𝑟
•  Mass flow rate of ventilation air, kg/(sec.) 

𝑚𝑎𝑠𝑟
•  Mass flow rate of supply air, kg/(sec.) 

𝑇𝑊𝑖 ⁡𝑎𝑛𝑑⁡𝑇𝑊𝑜 Water in/out temperatures of the heat 
exchanger, ℃ 

𝑇𝑚 Mixing temperature, ℃ 
𝑇𝑠𝑢𝑝 Supply air temperature, ℃ 

𝑇𝑟𝑚 Room heat, ℃ 
𝑇𝑜𝑢𝑡 External heat, ℃ 
𝜏ℎ Time delay for the cooling coil, sec. 
𝜏𝑏 Time delay for the air-conditioned area, sec. 
𝜏𝑐 Time delay for the CO2 sensor, sec. 
𝑡 − 𝑡𝑖  Time, ℎ𝑟𝑠. 
𝑇𝑟𝑚−𝑑𝑒𝑠⁡ 
𝑎𝑛𝑑⁡ 

𝑇𝑟𝑚−𝑑𝑒𝑠 

Desired boundaries of indoor heat, ℃ 

𝛥𝑇𝑤𝑖𝑜 Difference of water’s output and input 
temperatures, ℃ 

Topr Operative temperature, ℃ 
Trd Mean radiant heat, ℃ 
𝑣𝑟
• Volume rate of the room, 𝑚

3

𝑠𝑒𝑐.⁄  
𝑣𝑟𝑜𝑜𝑚 Volume of the building, 𝑚3 
Vπ(s) Value-function 
V*(s) Optimal V-value 
𝛥𝑥𝑏 Thickness, m 
𝑊𝑛𝑂𝑁 Open/close windows 

Greek symbols 
ꞵ Discount index 
ẟ A trade-off between the energy-saving of 

reward’s part and residents’ comfort      
condition part. 

ℜ(s,a) Reward 
ꞵVπ(s’) The summation of discounted future rewards 
π*(a/s) Optimal policy 

Subscripts 
𝑎𝑚 airflow 
𝑎𝑟 air 
𝑎𝑠𝑟 supply air 
b base 
𝑑𝑒𝑠 desired 

𝑓𝑎⁡𝑎𝑛𝑑⁡𝑟𝑎 fresh and return air 

𝑔𝑚 generated 
𝐻𝑒 Heat exchanger 
m mixing 
𝑜𝑢𝑡 outside 
opr operative 
rm room 
rd radiant 
sup supply 
𝑎𝑣𝑟 ventilation air 
𝑤𝑟 water 
𝑊𝑖⁡ 
𝑎𝑛𝑑⁡ 
𝑊𝑜 

water in/out 
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