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Abstract: The Heating, Ventilation, Air Conditioning,
and Refrigeration (HVAC&R) system is a complex,
nonlinear behavior with a high uncertainty control system
that equips the thermal comfort desired but consumes
significant electrical energy and costs in different types of
buildings, such as residential, commercial, and industrial.
This paper introduces a new approach for online
controlling of HVAC&R systems using model-based
reinforcement learning (MB-RL) style to diminish energy
usage and energy cost, maintain the occupants’ comfort
levels by controlling the buildings' indoor temperature,
and maintain the desired carbon dioxide levels
simultaneously. For this purpose, a new model based on
energy and mass conservation laws is presented to model
the dynamic variations of temperature and CO2
concentration levels. The HVAC&R system control trouble
is defined as a specific Markov Decision Processes (MDPs)
model. The reward function balances the ability to
increase energy conservation while preserving the interior
comfort requirements of occupants. Employing the
deterministic policy algorithm (DP), the proposed
methodology can manage the dimensionality curse
problem due to increased state-action space. Then, it
overcomes the nonlinearity and the control system
uncertainty. The MB-RL algorithm, which uses a unique
DP called DP-MB-RL, can select the best decisions instead
of stochastic policy to reduce the calculation time. A real
case, a building in Basra City, Iraq, is simulated using
MATLAB software. Devoting the MB-RL and DP-MB-RL
techniques to online control of an HVAC&R system, the
simulation results for both methods are provided. For
instance, the parameters, like electrical power, internal
comfort levels, energy consumed, and energy cost at
different pricing schemes, such as fixed pricing (FP), time-
of-use (TOU), and real-time pricing (RTP), are assessed.
The results indicated that the suggested DP-MB-RL
methodology had better indoor thermal and air quality
satisfaction levels, energy-saving (more than 15%), and
reduced the cost of electricity by more than 15%, 13%, and
10% for FP, TOU, and RTP pricing schemes, respectively,
compared to the benchmark MB-RL style controller. The
DP-MB-RL controller also performed better than the
Takagi-Sugeno Fuzzy (TSF) controller for the same
building, saving more than 21% energy.
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1. INTRODUCTION

In recent years, due to environmental issues,
optimizing electrical energy consumption from
different  aspects, particularly demand
response programs, has gained more attention
[1, 2]. Most of the people’s time is spent in
buildings, causing about 40% of total energy
usage and one-third of the greenhouse gas
(GHG) emissions in the world [3, 4]. The
Heating, Ventilation, Air Conditioning, and
Refrigeration (HVAC&R) and lighting systems
consume more than half of the electricity in
commercial and 40% of residential buildings
[5, 6]. World energy demand rise is estimated
toreach 30% in 2040 [7]. Therefore, improving
efficiency on the above side can decrease
energy consumption and CO, emission. These
are the most critical factors affecting studies’
motivation to develop an HVAC&R system for
optimal energy management. Numerous
studies have been done to reduce buildings’
energy usage and achieve the users’ thermal
comfort by controlling the HVAC systems [8-
10]. Some researchers have also considered
demand response programs [11-13]. Several
studies have demonstrated that machine
learning (ML) methods can be used
successfully to control HVAC systems [14, 15].
There are four ML categories of approaches:
reinforcement learning (RL), supervised, semi-
supervised, and unsupervised [16]. Recently,
RL has gained ground because it enhances
performance and energy management with
accurate control for all building types [11]. RL
can be applied as model-based (MB), called

MB-RL, [8, 17, 18] or model-free (MF), called
MF-RL[3, 11, 19, 20]. In an MF-RL method, the
training operation takes a lot of time and
requires a large volume of data [4]. In addition,
the algorithm 1is trained in simulation
environments before being used in real ones.
The MF-RL methods have been presented in
[19, 21], which use the Q-learning function for
the HVAC&R system control. In [22], using the
linear RL in energy saving of the building has
been discussed. A neural-fitted RL technique
has been proposed to get the desired
temperature thresholds [23]. The articles [24-
26] presented an MF batch RL method applied
to high-dimensional state-action spaces, but
the batch update algorithm requires a high
computational cost. For enhancement of its
performance, the MF-RL method has been
combined with a rule-based controller [19] and
with a model predictive controller (MPC) [27].
MF-RL has also been combined with neural
networks (N.Ns) [13, 17, 28, 29] to obtain a
Deep RL (DRL), involving the cost and
efficiency of the learning process as the main
challenges. Polydoros and Nalpantidis [30], a
comprehensive and detailed survey has been
presented on applying ML and DRL methods
used for the energy management of different
systems. Polydoros and Nalpantidis [30]
indicated the high usage, importance, and
considerable capability of ML and DRL
methods for analyzing energy management
systems problems. These methods are
becoming valuable for numerous applications
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as they have played an important role in
recognizing subtle structures of high-
dimension data sets [31]. On the other side, the
learning cost and efficiency are the primary
difficulties of the DRL controllers to practice
[8]. In Ref.[32], an MF-RL controller was
developed to observe the stochastic behavior of
occupants and PV power production while
minimizing energy consumption, ensuring
tenants' comfort levels and water hygiene. The
results showed that the suggested framework
successfully learned and predicted its aim by
reducing energy consumption without violating
hygiene and comfort. Based on [33], hybrid and
DL-based models provide the highest score for
robustness in terms of energy consumption
prediction. In [34], the authors assessed four
RL methods for continuous control of an open-
source environment: Twin Delayed Deep
Deterministic Policy Gradients (TD;), Proximal
Policy Optimization (PPO), Soft Actor-Critic
(SAC), and Trust Region Policy Optimization
(TRPO). The results confirmed the controllers’
performance in terms of thermal stability, 10%
more energy savings, and data efficiency than
the baseline control method. MB-RL method
has been successfully used to keep the thermal
comfort level conditions and save 45% energy
for multi-chiller HVAC&R systems in the Basra
airport environment compared with the
traditional PID controller for a typical day [35].
In [36], a deep MB-RL controller was proposed,
which uses the nonlinear autoregressive
exogenous NN  (NARX-NN) as an
approximation function to form a hybrid DP-
NARX-RL controller. The results demonstrated
the improved performance of the DP-NARX-
RL controller compared to some controllers in
terms of maintaining the comfort levels of the
building occupants, reduction in the electric
energy usage, energy costs, and training time
for various pricing schemes. The authors of [37]
proposed a system layout for a thermal energy
comfort control system that maximizes comfort
levels for tenants and simultaneously
minimizes consumed energy, considering the
people of different ages by using different
regression ML algorithms, like Support Vector
Machine (SVM), Multiple Linear (ML),
Decision Tree (DT), and Random Forest (RF).
The results showed that the SVM performancd
better than the others due to its smallest
evaluation error and more flexibility. However,
it needs a large amount of database and a long
time to improve accuracy. Jiang et al. [38]
evolved a Deep Q-Network (DQN) by defining
a single-zone building environment as a
partially observable MDP with a reward
function by a trade-off between minimizing
energy cost and discomfort levels of
punishment. The results showed the
outperforming of DQN against the rule-based
control by saving up to 6% and 8% energy costs

with and without demand charges,
respectively. Ref. [39] reduced the energy usage
of HVAC&R simultaneously with improving
thermal energy comfort limits in smart
buildings using Deep Deterministic Policy
Gradients (DDPG), while it requires a lot of
time to converge into a fixed policy in the
HVAC&R system control problem. Ref.[40]
showed a day-ahead economic dispatch model
used for water-cooled multi-chiller and ice
storage unit systems' co-optimization to save
total energy using GAMS (Generalized
Algebraic Mathematical Modeling Language
System). The results demonstrated that
applying short-term scheduling to the total
plant reduces energy consumption remarkably.
In an MB-RL algorithm, the environmental
behavior is known for the RL agent (controller).
To resolve the above issues, the hybrid MB-
DRL approach has been proposed for the
commercial multizone building control
problem [8]. The findings indicated that the
suggested algorithm increased training
proficiency and reduced learning cost periods
compared to classical DDPG. MB-RL methods
use their previously learned dynamics models
to generate or schedule new training sets.
Despite less training data, the MB-RL method
has a high efficiency, expressed in [41]. The
authors of [17] proposed an MB-RL method
that learned the HVAC system dynamics using
an N.N. and reduced the training data
significantly compared to the MF-RL
technique. In [18], the MB-RL method was used
to control multizone buildings, where the
training data was reduced by 10.52x to obtain
performance comparable with the MF-RL
method. In summary, in an MF-RL method, the
characteristics of the environment are
unknown for the RL agent (treated as a black
box), and the agent learns its optimal behavior
through a tedious trial and error style [42].
Therefore, MF-RL strategies require large
amounts of operating data to converge in the
HVAC system to enhance the users’ comfort
levels. However, collecting and providing such
data is complicated and time-consuming in a
real-world system [17]. Therefore, in this paper,
the MB-RL method is adopted. In this article,
an integrated white-box model for the HVAC&R
system is presented, wherein the internal heat
and CO, concentration levels are modeled. The
developed model's derivative relations are
based on energy and mass conservation laws.
Meanwhile, the CO, level is represented by a
Lagrange polynomial model. Then, using the
developed model, the process control of the
HVAC&R system is introduced as a Markov
Decision Process (MDP) by defining the
collections of states and actions, and the reward
function. By adopting the MDP as a
mathematical framework for describing the
environment, an RL method based on the
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developed model, called MB-RL, is introduced
for online controlling the HVAC&R systems. In
the MB-RL method, the agent faces high-
dimensional state-action spaces in its learning
process, leading to highly time-consuming,
probably diverging, and undesired final results.
To solve this problem, the MB-RL method uses
a deterministic policy (DP) in its learning
process called DP-MB-RL. The DP learns the
optimal policy by selecting the best future
decisions. Indeed, it is a function mapping the
conditions of the environment to the group of
selected actions. In the presented approach, the
reward function consists of three components:
the first and second components penalize the
agent if the interior heat and the carbon dioxide
(CO.) concentration limits are outside
allowable values, respectively. By the third
component in the reward function, as the
energy consumption is increased, the penalty of
agents is increased exponentially. Since the
energy consumption is not directly visible in the
thermal model, the chilled water flow has been
used in the reward function as an index for
energy consumption. Adjusting the coefficients
of different components in the reward function
allows a trade-off between the thermal comforts
and energy usage of an HVAC&R system. To
evaluate the proposed approach, a real case, a
building in Basra City, Iraq, has been analyzed.
Both approaches, MB-RL and DP-MB-RL were
used to control the HVAC&R system. The
results demonstrated the superior performance
of the suggested strategy compared to MB-RL.
Meanwhile, the energy consumption in a day
has been computed. The results showed a
15.03% reduction in energy consumption of the
suggested approach compared to the MB-RL
method.

In summary, the following are the present
paper's main contributions:

e Formulating the HVAC&R control issue
as an exact MDP where the reward trades
off minimizing energy consumption, CO,
concentration, and temperature
violations.

e Proposing a DP-MB-RL method for
online control of HVAC&R systems
where the DP algorithm can avoid the
cumbersome dimensionality curse due to
high action-state spaces.

e A real-case residential building has been
simulated using MATLAB software. The
simulation results for DP-MB-RL and the
MB-RL methods were provided and
compared. The results showed a) the
energy usage during the day was
decreased by 15.03% by applying the
proposed approach compared to the MB-
RL method; b) the proposed controller
had a saving of 15.10%, 13.3%, and 10% in
electricity prices compared to benchmark

controller for fixed pricing (FP), time-of-
use (TOU), and real-time pricing (RTP)
pricing schemes, respectively c) the
introduced approach had improved
performance for providing comfort levels
compared with the MB-RL method.
The rest of this manuscript is constructed as
follows: Section Two addresses the problem
definition and system representation. Section
Three presents and analyzes the simulation
results. Finally, Section Four addresses the
conclusions.
2, PROBLEM DEFINITION AND SYSTEM
REPRESENTATION
The HVAC system model was developed based
on thermodynamic principles. In this model,
cooling was provided by a primary cooling coil
(air-water heat exchanger) situated at a central
air handling unit (AHU). The AHU supplies air
into the conditioned space through the
fresh/return air dampers employed to regulate
the provided air supply flow rate. The HVAC&R
system control problem has been formalized as
MDPs. In this framework, a DP-MB-RL has
been proposed for controlling the HVAC&R
system to diminish the overall use of energy
while preserving the users’ indoor thermal and
air quality within the desired levels over time.
Figure 1 illustrates the relationships between
the environment, including the thermal design
of a building, the HVAC&R system, the CO.
concentration sensor, and the agent, i.e., the
DP-MB-RL controller. In the following, each
section is described in detail.
2.1.The Integrated Model of the HVAC
System
In classical research, the temperature with or
without humidity was modeled and controlled
by an HVAC system [43, 44]. Some other
researchers  considered  humidity and
temperature continuous states, while CO.
concentration was a discrete state [45, 46]. In
this section, an integrated model for the HVAC
system is presented in which the dynamic
variations of the temperature and CO,
concentration levels are modeled. Figure 2
demonstrates the block diagrams of subsystems
for the planned model. As exposed in Fig. 2, the
proposed model comprised submodels, such as
heat exchanger, building fixture, and CO,
sensor. The input signals of the model were the
chilled water flow, damper ratios for returned
air/fresh air, outside temperature, open/closed
windows and doors, on/off lights, time, and
supply temperature. The DP-MB-RL agent’s
learning process adjusted the values of these
variables until they reached an acceptable level.
The indoor conditions (concentration of carbon
dioxide and room temperature) were the
outputs of the HVAC&R system model. The
values of parameters and the allowable values
of variables for the HVAC&R system model are
described in Table 1.
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2.1.1.The Modeling of Heat Exchanger
(Cooling Coil)

The control volume of a heat exchanger can be
implemented to get the transfer function of
supply temperature using the energy
conservation law and the first law of
thermodynamics, Eq. (1) [43, 47], which is
transferred from the Time-domain into the S-
domain, as shown in Eq. (2).

dT gy () .
My.cpye d:, = Mg (£)CP oy T (E) —

mar (t) cparTsup (t) +

mwr(t)cprwi(t) - mwr(t)cprwo(t) (1)
T _ Dya(8)XTrm(s) Dfa(s)xTout(S)

Sup () T (g541) (tps+1)
Crf(s)XATyio(s)XCPwo (2)
Mar(S)XCParX(Ths+1)
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Table 1 The Parameters and the Allowable Values of Variables for the HVAC System Model [43, 47,

48].
Component Value Component Value
mar(t) = masr(t) = Thavr(t) 084 ATwia(t) 5
Chf(t) [O 1] CPwo 4200
Dra(t) [0.25 0.75] T 4.7
Dgq(t) [0.25 0.75] Ty 381.58
Whon () oori T, 985.6
Lpon () oori to — t; [0 24]
T (1) [16 30] Cozout 600
Toue (1) [20 36] Fum 0.437
Toup [12 15] vy (t) 0.626
G(t) [550 1000] Vroom 616
CPar 1.005 Ax, 0.4
K 0.7 A, 173.6

where My, (kg) is the heat transfer unit mass,
cpue(J /kg.°C) is the specific heat of the cooling
coil, Ty,; () (°C) and Ty, (t)(°C) are water in/out
temperatures of the heat exchanger, T, (t)(°C)
and T;,,(°C) are the supply air and mixing
temperatures at time t, m,,,(t) = Cpr(t)(kg/
sec.) is the mass flow of chilled water at time t,
D, (t) and Dy, (t)(%) are the fresh and return
air ratios via damper at t, T, (¢) (°C) is the room
heat at time t, T,,,;(t)(°C) is the external heat at
t, 4T,,;, (t)(°C) is the difference of water’s output
and input temperatures, cp,, and cpg (J/
kg.°C) are the specific heat of air and water,
My (t)(kg) is the mass flow rate of outdoor air
at time t, and 7, (sec.) is the time delay for the
cooling coil.

2.1.2.Building Model

By utilizing the mass and energy conservation
laws in the control volume of a building
structure, the changes in room temperature
over time t can be given as in Eq. (3) [43]. It

M

depends on thermal load components, such as
walls, doors, lights, windows, and ceilings.
Trm (S) — KAbmas-r(S)CparTsup(s)
(At 2riasr (S)epar  (zps+1)
Mayr (S)CParT out () XWnon ()
(IA(T/lII,)+2masr(s)CPa>(Tbs+1)

KApT o (5)(1+0.6) +
KA .
Axp (FZ"‘Z"‘asr(S)Cpar) (tps+1)

40X Lyon (s)

(%+2masr(s)5par)(fbs+1) (3)
where mg,,(t) and my, (t)(kg) are the mass
flow rate of ventilation and supply air at t,
Tp(sec.) is the time delay for the air-conditioned
area. K is the conductivity, 4x,(m) is the
thickness, and A4, (m?) is the surface area. The
Whon(t) and L,on(t) are the open/close
windows and on/off lighting at time t. Figure 3
depicts the residential building with an overall
area of 220 m2 used in an analytical case study
[49].

20
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>

1.26*1.68:
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>| € 15 28 4 —>|
I >

Living Room

2.52*1.68

All Dimensions in Meters

Bedroom No.1
1.26*%1.68

891971
959

Bedroom No.2
1.26*1.68

Fig. 3 The Building’s Geometry Selected.
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2.1.3.CO: Concentration Level Model
Some researchers have reported that in some
cases, the interior air can be more seriously
polluted than outside air [50, 51]. Given the
assumption that the outdoor CO, concentration
is constant (600oppm [52]), the indoor CO2
emissions comprise the building tenants’ CO2
quantity and the CO2 released from the indoor
appliances. Based on the first law of energy and
using the ordinary differential equations in
mixing flow [53], the CO2 generation level can
be determined (Egs. (4) and (5)). In steady-
state conditions, the CO2 generation level can
be described by a Lagrange polynomial model
for a given time horizon. A detailed description
of the physical behavior for the two output
values (IAQ and heat) is given by combining the
above three sub-model equations, as presented
in Appendix A [36].
COZrm(s) — VroomCO20utDra(S)Fam +

U (8)(Tes+1)
VroomCO2gm(S) (4)
Vr(8)(Tes+1)
X
COsym(®) 1_[<t_t")a(t)
2gm = _ i
. ti—t; (5)
J#i

where €0, 4, (t)(ppm) is the indoor generated

CO. concentration level, COx0ui (PPM) is the
outside carbon dioxide concentration,

3 . . .
Fym (m / sec.) is the volumetric airflow rate,

7,(t) (mg/ sec.) is the volume rate of the room,
Vroom(M3) is the volume of the building,
T.(sec.) is the time delay for the CO, sensor, t —
t;(hours) is the time, and G(t;)(ppm) is the
indoor CO, concentration at time t.
2.2.Problem Formulation and MB-RL
Controller Design Architecture

The main components of the online MB-RL
control method can be defined as a tuple (S, A,
B, pss, and R). S and A are the groups of states
and actions, respectively. B is the discount
factor used to discount the value of future
rewards. psy and R are the matrix of state-to-
state transition probability and reward
functions, respectively. In a series of episodes,
the MB-RL agent (controller/decision-maker)
communicates with its environment. Each
episode starts with the RL agent in state Sin and
ends once the agent makes the best decisions.
The agent picks an action a € A at state s € S
after observing the state. Consequently, the

instant reward R is received by the RL agent (
Fig. 4). The main target of the RL agent is to
optimize the overall predicted reward obtained
over time [54].

Repeat
Until
Get
the
Best
State

Fig. 4 MB-RL Algorithm’s Flowchart.

2.2.1.State—Action Space

The states are the mathematical representation
of the environment that is important and useful
in decision-making. In this work, three states
have been considered: Tmm(t) =state (1),
Tou(t)=state (2), and CO.m(t)=state (3), as
exposed in Fig. 5. The boundaries of the indoor
occupants’ comfort levels are included in the
state-space values to prevent excessive energy
consumption. Actions are the decisions made
by the MB-RL agent to control its environment.
The set of selected actions, A, contains four
control factors: chilled water flow valve position
for the heat transfer unit, ON-AND-OFF lights,
open/close windows/doors for ventilation
purposes, and position damper actuator of the
fresh/returned air, respectively. Therefore, the
outputs of controller action are A=[Chu(t),
Loon(t), Wion(t), Dmn(t)]T. To reduce the
disturbance effects on the MB-RL controlled
state-space values, which are constantly
altering in line with the dynamic cooling load,
the agent’s action-space values are adjusted for
each time slot.
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Policy Compute Next Action

h L.

States

1-Chilled Water Flow Rate
2-Lighting

3 Windows
4-Fres/Return Air Damper Ratios

Reward Function
1- Energy Consumption Minimization

2- Occupants’ Thermal Comfort Level |5
3- Coz: Concentration Comfort Level

Actions

Target Environment

1-Indoor Air Temperature
2-COz Concentration HVAC&R+Building
3-Outside Temperature

Fig. 5 Schematic Diagram of the MB-RL Controller.

2.2.2.Reward-Function

The reward function (R) estimates the instant
rewards of making an action at a specific state.
In this work, the designed MB-RL agent’s R
consisted of three parts, as shown in Eq. (6),
including punishment for the HVAC system
energy consumption (X(t)=exp(Chf(t))) and
penalties for indoor air quality (IAQ)

2C0m(t)—CO2m—des(t)—CO2m—des(t)

(Y(t)= m(t) 2 d2 ( LU2 des( )
residents’ thermal discomfort levels

(Z(t)= | ZTrm(t)_Trm—dezs(t)_Zrm—des(t) | ) . The agent

must be penalized if the HVAC system
consumes more electricity or the tenants are
dissatisfied with the building’s air quality and
temperature conditions.

R = —8 X [Z(£) + Dya(t) X Y(B)]" = X(£) (6)
The exponential function (exp (Cni(t)))
indicates the importance of the On-and-Off
switching of the HVAC&R system. In summary,

and

R hasbeen used as the agent’s guideline based
on energy savings and internal occupants’
comfort levels to get the optimal value function
by Bellman’s equation. By adjusting the
coefficient 6 in Eq. (6), a trade-off between
energy consumption and thermal comfort
conditions can be made.

2.2.3.Discount Parameter, Value, and
Policy Functions

The value function (V) is composed of the
accumulative rewards of several future steps

that the RL agent will take based on
implementing a fixed policy that starts with
S(o) and continues until the end, ie., S
(desired) [6]. Utilizing Bellman’s equation, V
can be expressed as in Eq. (7). In this equation,
B € [0, 1) ensures that the summation of all
discounted future rewards is always a finite
number and prevents it from reaching infinity.

V™ () =R(s, () + B ) puV () ()
The MB-RL agent that follows the optimal
policy can achieve the optimal V, calculated
from Eq. (8).

V*(s) = max,[R(s,m(s)) + )
BYpss V" (s) ]
The best policy has been described as one that
significantly improves V for any state s and can
be calculated utilizing the formula below.

T (a/$) = argmaxee, L peV (s)  (9)
Depending on Eq. (9) and the current state, the
MB-RL agent chooses the actions used to
manipulate the HVAC system’s inputs. The
optimal V and the best policy can be computed
using two algorithms: value and policy
iterations. In the present paper, the optimal
value-iteration was applied, and DP was used
for optimal scheduling of the indoor building
services. The parameters applied in the DP-
MB-RL controller are indexed in Table 2.
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Table 2 Descriptions of the Proposed Controllers’ Parameters.

Par. Definition Value Unit
B The discount index 0.990 -
5 A trade-off between the energy-saving of reward’s part and residents’  0.980 -

comfort condition part

Ty desANAT r_des The desired boundaries of indoor heat [20 24] °C
COom—es@MACOy_gos The desired boundaries of internal CO- [750 850] Ppm
R(s,a) Reward — -
BVn(s) The summation of discounted future rewards - -
Vn(s) Value-function — -
V*(s) Optimal V-value — -
n*(a/s) Optimal policy — -

Note: --- Signifies a variable

2.3.Deterministic Policy for the MB-RL
Algorithm

Based on the MDP model, two approaches have
been adopted to specify an appropriate action-
selection strategy. Typically, these approaches
involve stochastic and deterministic policy
functions. The significant difference between
these two algorithms can be expressed as the
stochastic policies are integrated over state-
action spaces, while deterministic policies only
incorporate over state-spaces. Therefore, the
stochastic policy requires more testing samples
to compute the state-action space function [55,
56]. In summary, for the stochastic policy, every
state in the state-space has a probabilistic
distribution of action in that state. The DP
describes the behavior that realizes the
maximum anticipated reward over time and at
any number of episodes [36]. The decision-
maker manipulates the action space values to
track desired indoor conditions (temperature
and air quality) while optimizing performance

to maximize energy-saving. The MB-RL
controller’s policy samples the DP and sets its
parameters to achieve the best scheduling, as
illustrated in Fig. 6. Meanwhile, the pseudo-
code, as exposed in Table 3, is applied as the
agent’s guide to follow internal conditions
changes. In other words, after computing the
optimal V for the MB-RL control technique
using the value-iteration process and
optimizing the V-value calculated by Bellman’s
equation, a DP technique is used to obtain the
optimum action space and update the policy-
function factors. In summary, the DP maps
every state in states set to a particular action in
actions set, i.e., n(s)=a. The agent detects the
reward function and then enters the next state
to store the information in its memory M. This
method is used periodically until the optimum
state-space S is found. If this criterion is not
satisfied, the DP-MB-RL agent will go to the
next episode and repeat the above procedures.

@D

‘ Define MDP (S, A, %, and p) ‘

l

Obtain s € $ From the (HVAC&R &Building)
Environment System

l
Make an Actionac A on
Environment System
Repeat f
Until Calculate H(S, A), V(8), and m(S)*
Reach Based on DP-Algorithm
the i
Best Get Next s' € § from the Building
State Environment System Based On T
Value I

‘ Save S, A, R into memory M ‘

No_Ts this the Best
State?

Yes

Make A on Environment then get S, and ﬂ

End )

Fig. 6 DP-MB-RL Algorithm’_ Flowchart.
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3.PERFORMANCE EVALUATION

In this section, the performance of the
suggested DP-MB-RL controller applied to the
HVAC&R system has been evaluated and
compared with that of the benchmark

Table 3 The DP-MB-RL Algorithm Pseudo-Code.

controllers. The simulation results for all
controllers have been carried out in MATLAB
software. The main evaluation parameters are
V-value, thermal and IAQ levels, and finally, the
energy and cost savings.

1.) procedure MDP (S, A, B, pss, 5, and R)
S% [Trm(t), Tout(t), COzm(t)]

A— [Cri(t), Dsa(t) , Luon(t) , Wron(t)]
R (S, A) — Eq. 5

3.)Forl=1tos
4.) Repeat for each element of S and A
5.) Repeat for Vi(S) and then V*(S) - Egs. 6 & 7.

End For
7.) Make the following steps for continuing control
a) Get Sent from the HVAC&R system
b) Compute a’(Scat) from 7tx’(Sent)
¢) Setthe HVAC&R at a’(Sent)
d) Go to the first step a)
End procedure

2.) For each element in state-space S, set the initial value for 71(S) of each element in V(S) and A

6.) Based on the D.P.- method, for each state, find *(S) =A

3.1.The Performance of the DP-MB-RL
Controller

This section covers and evaluates the different
features of two controllers, MB-RL and DP-MB-
RL. As shown in Fig. 3, a building is considered
for an analytical case study. This real case is in
Basrah City, Iraq. The controllers have been
applied to the HVAC&R system to provide
thermal comfort conditions and maximize
energy saving. Figures 7 (a) and (b) show the
simulation results for optimal V of MB-RL and
DP-MB-RL controllers, respectively. These
values were calculated using the value iteration
technique. As shown in Fig. 7 (a), the optimal V
of the DP-MB-RL controller has a smoother
surface than the optimal V of the MB-RL
controller, meaning that the DP-MB-RL agent
had selected more appropriate action space

ap-RL:
yalue fanction of MB

-50

Optimal Value

2 0

2 :
(a) Vof MB-RL

values with greater consistency than MB-RL
[57]. It is necessary to mention that three states,
Tim(t), Tout(t), and CO.mm(t), affect the optimal
V. However, the state CO.m(t) has less effect on
optimal V than Tmm(t) and Tow(t). To avoid
unnecessary complexity, the CO.m(t) effect has
not been considered in calculating the optimal
V. The smoother surface of the optimal V, as
shown in Fig. 7 (b), reduced the period of the
oscillations in the actions-space chosen by the
DP-MB-RL agent and provided accurate
sequential decisions. As a result, the solenoid
valve and air dampers' chattering effects were
minimized, reflecting the steady state of the
required indoor comfort ranges in the building
and allowing the agent to achieve its purpose as
quickly as possible.

cpp-MBRE
lue funetion of DE-D
val

Optimal Value

(b) V of DP-MB-RL

Fig. 7 The Controllers' Optimal V-value.

After optimizing the V function, the DP-MB-RL
agent chooses the best action-space values to
warrant the maximum adaptation of the control
policy. For each control time step, after
performing actions, the reward received by this
agent depends on the energy and violations of
both temperature and CO2 concentration. The

performances of DP-MB-RL and MB-RL
methods for controlling the interior heat at each
hour of the day have been evaluated, as shown
in Fig. 8. In this figure, the outdoor temperature
and the minimum and maximum acceptable
indoor temperatures are also given. As shown
in Fig. 8, the DP-MB-RL and MB-RL
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controllers kept the building residents’ thermal
comfort levels within the required bounds (20
°C to 24 °C). However, the adjusted set points
for the DP-MB-RL method are more rapid, have
lower oscillations, and are closer to the mean
temperature, i.e., the mean value of minimum
and maximum acceptable indoor temperatures,
compared to the MB-RL method. Therefore,
compared to MB-RL, the DP-MB-RL approach
performs better at controlling the degree of
interior temperature. In Fig. o9, the
performances of DP-MB-RL and MB-RL
methods are evaluated for controlling the CO2
concentration level at each hour of the day. As
shown in Fig. 9, the IAQ for MB-RL and DP-
MB-RL methods has been managed to meet the
desired satisfaction levels, as determined by
CO. concentration level. An acceptable CO.
concentration level inside the room (the black
line in Fig. 9) has been continuously
represented for 24 hrs., using the Lagrange
polynomial model. Indoor-acceptable CO,
ranges between 550 and 1000 parts per million,

which is profoundly affected by indoor
personnel’s consumed time [52, 58]. Numerous
time points were selected to show carbon
dioxide changes in concentration. Firstly, from
midnight to 7:00 AM, the internal CO,
concentration displayed an increasing tendency
(the highest level from 800-1000 ppm) due to
indoor residents. Then, between 7:00 AM and
3:30 PM, the people inside began leaving the
place, and the CO; level decreased quickly to the
smallest value (i.e., 550 ppm). Between 3:30
PM and midnight, the occupants started to
enter the house and the carbon dioxide
increased to maximum value [59]. The desired
CO, concentration range was chosen between
750 and 850 ppm based on [58] since any value
outside this range harms the occupants’ health.
The CO. concentrations were monitored, and
those greater than 850 ppm were avoided.
Figure 9 shows that the DP-MB-RL agent offers
better  stability and faster response
performances than the MB-RL controller.

(%)
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=eo=Conditioned space temperature for MB-RL
=== Qutdoor temperature
== Recommended indoor temperature set-point
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Fig. 8 The Comparison of HVAC System Thermal Response for MB-RL and DP-MB-RL.
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Fig. 9 HVAC System CO2 Concentration-Response for MB-RL and DP-MB-RL.
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3.2.Evaluation of Energy Savings and
Energy Costs

This section uses the HVAC system's energy
usage to evaluate the DP-MB-RL and MB-RL
controllers’ efficiency throughout the day. It is
necessary to mention that the electricity
consumed by an HVAC system is directly
relative to the cooling coil valve position. The
chilled water flow rates are controlled by this
valve. The position of this valve is controlled by
DP-MB-RL and MB-RL agents. Figure 10 shows
the position of the chilled water valve for both
agents. As illustrated in this figure, the Cu(t)
action is characterized by temperature control
via regulating the flow rate of this cooling coil
water based on Tim(t) and Tou(t). When Tou(t)
is low and between the desired set points of
Tim(t), the DP-MB-RL exploits this chance to
open windows for the building ventilation
process while switching off the lights.
Therefore, to avoid the DP-MB-RL agent
punishment, the HVAC&R system is switched
off by closing the chilled water flow rate valve to
save more energy than that without using the
DP algorithm. Figure 11 represents the
application of mass and energy conservation
principles to the heat exchanger's control
volume in an HVAC&R system to create a

comprehensive energy equilibrium for this sub-
system, as given by Eqgs. (1) and (2). This control
volume has been used to compute the energy
usage of the HVAC&R system for a day. By
specifying the position of the chilled water valve
during the planning horizon for both
controllers, as shown in Fig. 10, considering the
control volume of the heat exchanger shown in
Fig. 11, and using the relations of the heat
exchanger model (Egs. (1) and (2)), the cooling
coil load can be determined, as shown in Fig. 12.
To calculate the overall system’s energy of the
cooling coil load, iterative approaches have
been applied to solve the related equations.
Figure 12 summarizes the cooling coil load
results for energy variation in the building for
two controllers. This result shows the electrical
power consumption (Kw) of an HVAC system
by applying both controllers for 24 hrs. The
power consumption increases, especially at
peak times, to maintain the occupants’ comfort
levels in acceptable ranges. However, the
energy expended by the HVAC&R system
controlled by DP-MB-RL is lower than that of
the MB-RL controller as it has a shorter
duration of maximum power absorbed by the
plant.

100 T
==DP-MB-RL Controller

-o-MB-RL Controller
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Fig. 10 Action of the Supplied Chilled Water for MB-RL and DP-MB-RL.
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Fig. 11 Thermal Variation Through Heat Exchanger.
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The HVAC&R energy usage during 24 hrs.
period, can be seen in Fig. 13 for both
controllers. Specifically, Fig. 13 illustrates the
energy consumed for cooling the building in
which the HVAC system is controlled by both
controllers. As exposed in Fig. 13, using the DP-
MB-RL and MB-RL controllers, 107.4 kWh/d
and 126.4 kWh/d of energy, respectively, were
used to cool the building for a day. Due to this
fact, the proposed (DP-MB-RL) controller
achieved the work’s primary goal, which is more
energy-saving. The system's energy efficiency
has been calculated to be higher by 15.03% for
this controller than the MB-RL strategy. As the
temperature drops less than the upper level of
the desired temperature at night, the DP takes
advantage of this feature to open windows and
allows the ventilation process into indoor
space. Furthermore, at late time of night, the
occupants do not require the extra lighting so
that it will switch off indoor/outdoor nighttime

o
[7¥]
=
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|
13 14 15 16 17 18 19 20 21 22 23
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Fig. 12 HVAC System Cooling Coil Load for DP-MB-RL and MB-RL Controllers.

running lights. The above actions reduce
system energy consumption using the DP-MB-
RL controller. Also, in this study, the cost-
saving performance of both controllers was
achieved under different electricity pricing
schemes using FP, RTP, and TOU schemes.
Figure 14 displays electricity pricing for an
average day [60]. The HVAC&R system's
energy expenses are analyzed by implementing
the recommended and benchmark controllers,
as shown in Fig. 15, depending on the cooling
coil loads (kW) depicted in Fig. 12 and the
electricity pricing ($/kWh). As illustrated in
Fig. 15, the proposed method outperforms the
MB-RL method since it uses less energy cost to
run the HVAC&R system for the three pricing
schemes. For the RTP, TOU, and FP schemes,
the recommended controller reduced energy
costs by 10%, 13.3%, and 15.1%, respectively,
compared to the benchmark controller.
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The energy-savings by the proposed controller is 15.031%
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Fig. 13 Energy Consumed by the Building Model for Both Controllers.
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3.3.Validation and Verification of the
Proposed Controllers

For validation and verification of the proposed
controllers’ performances, the optimal method
was used to determine the acceptable thermal
circumstances inside the building based on the
outdoor temperature. This method has been
recommended by [59]. It is also applied in [60],
[6]. The present study’s control system
performance has been compared with ASHRAE
standard 55 suggested ranges for interior
temperatures. Where ASHRAE standard 55
states the criterion for accepted operative
temperature (Top(t)) limits into the air-
conditioned areas [61], and it can be calculated

TOU
Pricing schemes
Fig. 15 Comparison of the Two Controllers' Electricity Costs.

RTP RTP

using Eq. (10). Wherever, Top(t) is the average
of the inside air heat Tin(t) and the mean
radiant heat T:q(t), respectively. Topr(t) can be
calculated using the relationship below with
acceptable accuracy [49]:

T t)-Trq(t
Topr(£) = e (10)

As shown in Fig. 16, 90% acceptability limits
were used for higher thermal comfort levels.
obviously, the proposed controllers confirmed
very good satisfaction as the indoor operative
temperature within and interconnects with the
ASHRAE standard recommended area [61, 62],
as exposed in Fig. 17.
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Also, the energy efficiency assessments of three for the MB-RL, DP-MB-RL control methods,
MB-RL and Takagi-Sugeno Fuzzy (TSF) are and TSF controller reported in [47]. The DP-
represented in Fig. 18 for an HVAC system to MB-RL agent performs better than the TSF
verify the controllers’ performance. This figure controller for the same building, as shown in
depicts the collective energy usage over 24 hrs Fig. 18, by saving 21% more energy.
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The energy-saving by the proposed controller is
21% compared to TSF controller
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Fig. 18 Comparison of Energy Consumed by the Building for Three Controllers.

Cumulative Power Consumpt

jTikrit Journal of Engineering Sciences | Volume 32 | No. 2! 2025 Page E



https://tj-es.com/

j Suroor M. Dawood, Raad Z. Homod, Alireza Hatami / Tikrit Journal of Engineering Sciences 2025; 32(2): 1614. :‘

4.CONCLUSIONS AND
RECOMMENDATIONS

This study provides the HVAC&R system best
control via energy consumption minimization
with maintaining indoor thermal and air
quality simultaneously with minimizing energy
costs for different electricity pricing schemes.
First, a simple HVAC&R  system
thermodynamic model was designed and
verified with two of the most significant terms
for occupants’ comfort levels: First) indoor air
temperature, and second) CO, concentration
level. For controlling the developed HVAC&R
model, this research used two control methods:
online traditional MB-RL and DP-MB-RL.
Using the MB-RL algorithm makes the agent
easily interact with its environment to increase
control effectiveness simultaneously with less
data and time and without the tedious trial-
and-error process. To overcome the substantial
increase in training data of the HVAC&R
system control, a DP algorithm was employed
to provide a DP-MB-RL control method for
selecting the best actions within the MB-RL
method. The simulation results revealed the
superiority of high-dimensional and nonlinear
HVAC&R control with no additional
calculations, reducing the cost and time of the
computations. Where the DP-MB-RL controller
had to preserve indoor temperature tightly, IAQ
with energy-saving was calculated to be higher
by 15.03% and 21% than the MB-RL and TSF
controllers, respectively. In addition, the energy
cost for DP-MB-RL was cheaper than the MB-
RL approach. To provide more stable indoor
comfort levels, increase daily energy and cost
savings, and further reduce calculation time,
optimizing the proposed DP-MB-RL control
method using deep learning methodologies is
recommended. Also, in the future, this work can
be applied to multizone HVAC&R systems or
other types of buildings. The control method
can also be expanded into a multi-agent system
deep learning control methodology.
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NOMENCLATURE

Ay Surface area, m?

CPhe Specific heat of the cooling coil, J/(kg °C)

CPar Specific heat of air, J/(kg °C)

CPwo Specific heat of water, J/(kg °C)

COugm Indoor generated CO-. concentration level,
Ppm

COy0ut Outside carbon dioxide concentration, Ppm

COym-qes  Desired boundaries of internal CO., Ppm
and

COyp—ges
2m—
D,, &D;,  Fresh and return air ratios via damper

Fam Volumetric airflow rate, (m3/ sec. )

G(t) Indoor CO- concentration at time t, Ppm
Conductivity

Lypon On/off lighting

My, Heat transfer unit mass, kg

my, = Cyy Mass flow rate of chilled water, kg/(sec.)

me, Mass flow rate of outdoor air, kg/(sec.)

Moy Mass flow rate of ventilation air, kg/(sec.)

My Mass flow rate of supply air, kg/(sec.)

Ty; and Ty,, Water in/out temperatures of the heat
exchanger, °C

T Mixing temperature, °C
Toup Supply air temperature, °C
Trm Room heat, °C
Tout External heat, °C
Ty Time delay for the cooling coil, sec.
T Time delay for the air-conditioned area, sec.
T, Time delay for the CO. sensor, sec.
t—t Time, hrs.
Trm—des Desired boundaries of indoor heat, °C
and
Trmedes
ATy Difference of water’s output and input
temperatures, °C
Topr Operative temperature, °C
Tra Mean radiant heat, °C
v Volume rate of the room, m3/ sec.
Vroom Volume of the building, m?
Vn(s) Value-function
V*#(s) Optimal V-value
Ax,, Thickness, m
Woon Open/close windows
Greek symbols
B Discount index
) A trade-off between the energy-saving of

reward’s part and residents’ comfort
condition part.

R(s,a) Reward

BVn(s) The summation of discounted future rewards

7*(a/s) Optimal policy
Subscripts

am airflow

ar air

asr supply air

b base

des desired

faand ra__fresh and return air

gm generated

He Heat exchanger

m mixing

out outside

opr operative

rm room

rd radiant

sup supply

avr ventilation air

wr water

wi water in/out

and

Wo
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