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Introduction: 

Heavy metals (HMs) are metallic substances with 

densities higher than occur water [1]. Typically, HMs 

are defined as elements with densities at less than five 

times greater than that of H2O [2]. Under the assumption 

that heaviness and toxicity are connected, not only 

Metals that are heavy but also certain metalloids, like, 

may be toxic at low exposure levels [3]. Numerous 

HMs, such as Cd, Cr, Co, Cu, Pb, Hg, and Ni, are 

biologically nonessential and detrimental to aquatic 

environments [4].  

 

Anthropogenic sources, which include the mining, 

nonferrous metallurgical, chemical, and electroplating 

industries, commonly release hazardous metals, 

including HMs, into the environment [5].  

 
*Corresponding author at: Department of Biology, College of 

Science, University of Anbar, Anbar, Ramadi, 31001, Iraq 

ORCID: https:// https://orcid.org/0000-0002-0147-4131,                         

Tel: +964 7800512068 

Email: sc.fahalobaidi@uoanbar.edu.iq  

          The amount and duration of exposure to 

such harmful compounds determine the level of toxicity 

that they exhibit. How HMs enter the food chain and 

affect humans is depicted in Figure 1. Long-term 

exposure to HMs via skin contact, inhalation, and the 

ingestion of contaminated food could result in several 

illnesses in humans and other species [6]. 

 
Figure 1. Sources and effects of HMs on People  

 as they pass via the food chain [7]. 

 

Numerous sources, such as urbanization, 

mining, pesticide plants, sewage plants, chemical 
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industries, and biomedical and unsafe agricultural 

practices, discharge HMs into the environment (Figure 

2) [8]. 

 
Figure 2. Origins of HM pollution [8]. 

 

Terrestrial ecosystems and their biodiversity are 

heavily dependent on soil. Plants, microorganisms, and 

animals can accumulate HMs, which are common 

pollutants in the soil environment. The European 

Environment Agency (EEA) has established limit values 

for soil pollutants for certain HMs, namely, Cd (0.44 

ppm), Hg (0.20 ppm), Cr (0.20 ppm), Pb (0.48 

ppm), and As (0.11 ppm) [9, 10]. The World Health 

Organization (WHO) has prescribed tolerable amounts 

of HM pollutants in drinking water of 0.005 ppm for Cd, 

0.001 ppm for Hg, 0.05 ppm for Cr, 0.05 ppm for 

Pb, and 0.05 ppm for As [11, 12]. Given that elevated 

levels of HMs could lead to health issues, the WHO and 

Food and Agriculture Organization of the United 

Nations have established maximum ingestion limits. The 

following are the maximum permissible concentrations 

of HMs in vegetables: 0.05 mg/kg Hg for all vegetables, 

0.3 mg/kg for root vegetables, 0.2 mg/kg Cd for leafy 

vegetables, 0.1 mg/kg for other vegetables, 0.15 mg/kg 

Pb, 0.1 mg/kg As, and 0.1 mg/kg Cr [13, 14]. 

 

Health effects of HMs on humans 

Based on their different sources and locations, 

metallic elements—natural environmental components 

that are found in the Earth's crust—have different 

proportions [15]. Their existence is special because once 

they are in the environment, their complete removal is 

difficult [16]. Owing to the detrimental effects, 

biomagnification qualities, and long-term accumulation 

of HMs, HM pollution has received considerable 

attention even at low concentrations. HMs are 

recognized as some of the most hazardous 

substances among the several types of pollutants in the 

environment [17, 18]. When HMs are present in the 

environment, the possibility that living organisms will 

ingest such dangerous compounds and that they will 

accumulate in different body organs, such as the liver, 

kidney, and bone, increases. Additionally, the 

accumulation of toxic metals causes severe damage to 

several body systems, such as the circulatory, skeletal, 

neurological, immunological, and endocrine systems 

[19, 20]. Several diseases that are related to HM toxicity 

are shown in Figure 3. 

 
Figure 3. Effects of HM toxicity on human health [21]. 

People worldwide are exposed to HMs 

through drinking, eating, or inhaling them. Those who 

work in or near facilities that use such metals and their 

compounds are at considerable risk if they live close to 

an area in which such metals are illegally released. The 

fishing and hunting methods used in subsistence 

lifestyles might also increase exposure risks and have 

detrimental effects on health. The effects of 

such dangerous compounds on human health are now a 

major concern because of their frequent exposure. The 

severity of the problems caused by the release of 

hazardous metals into the environment has increased due 

to the expanding use of various metals in industries and 

human daily lives as a result of modern applications 

[22]. Runoff, acid rain, and erosion can transport HMs to 

different parts of soil and water bodies. The formation of 

HMs and their effects on human exposure are depicted 

in Figure 4. HMs are dangerous to biological systems 

because they can create reactive oxygen species 

(ROS) and form connections with sulfhydryl groups. 

Glutathione depletion and oxidative stress are symptoms 

of the deactivation of important macromolecules caused 

by the aforementioned phenomena. After exposure to 

dangerous metals, the body undergoes various processes, 
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such as potential interactions or obstructions of certain 

metabolic pathways [23]. Various negative effects on 

animal and human populations are consequently 

observed. Organ failure, hormone imbalances, metabolic 

abnormalities, compromised immune system function, 

congenital abnormalities, and cancer are among the 

numerous medical disorders that are included in the 

diseases mentioned above [24, 25]. Consequently, 

several international organizations have established 

regulations concerning the levels of metals in drinking 

water, food, and the environment. The following section 

describes the sources and human health toxicity of 

several HMs (Figure 4). 

 
Figure 4: Human organ damage and oxidative stress 

after exposure to HMs [26]. 

 

HM toxicity to humans 

As, which is a hazardous metal, can be found in 

air, water, and a range of geological formations. It 

is related to several detrimental health effects over long 

and short terms and has been demonstrated to have 

carcinogenic properties in humans [27]. During As 

biotransformation in humans, a number of As molecules 

become methylated, which can lead to the formation of 

harmful metabolites, such as dimethyl arsenic acid 

(DMA) and monomethylmalonic acid (MMA). Reduced 

respiration, enzyme activities, and mitotic division are 

the outcomes of the disruption of cell thiol groups [28]. 

An elevated risk of cardiovascular disease, especially 

hypertension, is associated with As exposure. 

Pregnancy-related hypertension is affected by exposure 

to As and its metabolites, namely, DMA and MMA [29]. 

Findings have demonstrated that pregnant women who 

have low DMA concentrations have increased diastolic, 

systolic, and major arterial pressure values. 

The mercury is a dangerous HM that is present 

throughout the environment. It might undergo 

methylation, a process that can produce methylmercury 

(MeHg), which can collect in the food chain. Seafood 

consumption is related to human exposure to Hg [30]. 

Hg in the forms of MeHg and Hg2+ lowers overall 

antioxidant capacity and increases nitrite and 

lipoperoxidation concentrations [31]. Several studies 

have demonstrated that children exposed to Hg may 

experience serious side effects. Hg exposure during 

pregnancy negatively affects a child's growth; this 

negative effect might be linked to a reduction in the 

parasympathetic control of a child's heart autonomic 

function [32]. Hg exposure and blood pressure readings 

in childhood are positively correlated [33]. Increased Hg 

levels and adult dyslipidemia are also positively 

correlated [34]. Numerous investigations on the effects 

of Hg on hepatic function have shown that exposure to 

Hg results in a remarkable increase in liver enzymes 

[35]. 

Lead is a dangerous HM that tends to build up in 

different body tissues., such as bones, the bloodstream, 

and the majority of organs [36]. Numerous neurological 

conditions, including Parkinson's disease, amyotrophic 

lateral sclerosis, Alzheimer's disease, and attention 

deficit hyperactivity disorder, are connected to Pb 

exposure [37]. Owing to the established connection 

between CVD and diabetes, Pd is considered a danger 

factor for vascular problems in patients with diabetics 

[38]. The effects of Pb exposure on kidney and liver 

functions; WBC count; and aspartate transaminase, 

serum urea, creatinine, hemoglobin, hematocrit, and 

ALT concentrations have been reported to be more 

noticeable when blood Pb levels are high than when Pb 

is present at low concentrations [39]. Many 

investigations have closely assessed the effects of Pb on 

children. The results of these investigations revealed that 

Pb exposure has a detrimental effect on the physical 

development of children, especially that of boys [40]. 

Exposure to Pb might alter sex hormone levels, which 

could affect reproductive system functionality [41]. 

Human health might be affected by Cr 

accumulation in the organs of the body [42]. Cr has a 

substantial effect on bronchial epithelium, possibly via 

the abnormal modification of cytoskeletal proteins, 
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apoptosis, and energy-consuming proteins [43]. The 

effects of Cr on the development of fetuses throughout 

pregnancy have been studied [44]. Cr may negatively 

affect fetal growth. Cr, a carcinogen, is related to lung 

cancer development [45]. Skin hyperpigmentation may 

occur due to exposure to elevated Cr concentrations 

[46]. 

Cu is an important micronutrient for humans. 

However, elevated Cu levels could have harmful and 

toxic effects [47]. Cu accumulation results in the 

clumping and mutation of mitochondrial proteins, 

decreasing primary antioxidant enzyme activity and 

increasing toxic ROS production [42][48]. An 

association exists between an increase in Cu and fibrosis 

in renal tissues [49]. Cu has a negative effect on male 

fertility, decreasing the number and motility of sperm 

[50]. Exposure to Cu has been linked to obesity [45, 51]. 

Cu disrupts the equilibrium of key elements, such as Fe, 

Ca, and Mn, thereby promoting oxidative stress, which 

can ultimately lead to neurodegenerative disorders [52]. 

Ni is widely dispersed across air, water, and soil, 

among other environmental compartments [53]. The 

harmful effects of Ni on humans, especially in relation 

to pregnancy, have been studied. Preterm birth is 

positively correlated with Ni exposure in pregnant 

women [54]. Ni concentrations in urine are higher in 

people with diabetes than in those without [55]. 

Maternal exposure to Ni is linked to congenital cardiac 

abnormalities in offspring [56]. Ni is associated with 

immunological diseases, type I hypersensitivity, and 

type IV immune reactivity in those who experience Ni-

related chronic systemic symptoms [57]. 

The effects of 235U and 238U have been studied. A 

recent ecological study examined the possible link 

between prolonged exposure to U in drinking water and 

increased risk of colorectal, kidney, and lung cancers in 

both sexes [58]. U absorption results in alterations in 

gene expression, DNA strand breakage, and an increase 

in ROS, all of which have negative clinical effects [59]. 

Hexavalent UO2
2+ accumulates in bone and 

kidney tissues. This accumulation was observed to cause 

chronic and acute kidney injury and increase the risk of 

ontogenesis and osteosarcoma [60]. Unintentional 

exposure to U through contaminated water or food 

could lead to bone marrow disease or a decline in 

hematological function, which might subsequently have 

several systemic effects [61]. 

Cd is a dangerous HM that is harmful to human 

health [48]. Numerous inflammatory markers are 

produced as a result of the release of antithrombotic 

chemicals triggered by the effects of Cd on the vascular 

endothelium [62]. Vijayakumar et al. [63] investigated 

the biological effect of Cd on prostate cancer, 

specifically examining the development and metastatic 

behavior of this malignancy, and its influence on basal 

breast tumors. The antioxidative defenses of breast 

tumor cells could be compromised by Cd exposure, 

potentially resulting in the initiation of ROS 

generation [58, 64]. Additionally, nephron 

degradation and Cd accumulation occur in the proximal 

tubule [65]. 

Fe is highly important for several biological 

processes, such as DNA replication, mitochondrial 

respiration, and oxygen transport, which are all essential 

for the survival of nearly all living organisms. ROS, 

which can harm proteins, DNA, and cellular membranes, 

are produced when Fe, a redox-active metal, is present 

[66]. Fe represents a vital element in human physiology 

and share in many cellular metabolic functions, such as 

O2 transport [67]. Iron deficiency anemia represents the 

most common type of anemia worldwide [68]. Iron 

deficiency may have a detrimental effect on immune 

system development and function [69]. Pregnancy-

related deficiencies might endanger the fetus 

and mother [70]. Conversely, excessive Fe is related to 

an increased risk of oxidative stress and cellular damage 

and elevated risks of gestational diabetes, cardiovascular 

disease, and neonate issues [71]. 

V is present in water, soil, and air, among other 

environmental compartments. Numerous organs and 

tissues, including the lung, kidney, lymphoid organs, 

central nervous system (CNS), and immune system, 

experience physiological and histological alterations due 

to this HM [72]. Exposure to V is associated with a 

number of detrimental health effects, including 

immunotoxicity, mutagenicity, kidney toxicity, 

hematologic and biochemical changes, developmental 

and reproductive toxicity, immunotoxicity, and 

neurotoxicity [73]. V affects the cardiovascular, 

digestive, and respiratory systems [74]. The intranasal 
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pathway absorbs small amounts of V, which can lead to 

olfactory impairment. This condition results in decreased 

dopaminergic neurotransmission to the olfactory bulb 

and decreased olfactory bulb volume [75]. 

More than a hundred chemical and inorganic 

compounds contain the naturally occurring mineral Co 

[76]. Exposure to Co has been linked to lower 

respiratory tract infections and upper respiratory tract 

inflammation, such as bronchitis and rhinitis. Exposure 

to specific compounds simultaneously can cause fibrotic 

changes in pulmonary tissue, which can then trigger 

asthma [77]. Numerous negative outcomes, such as 

pulmonary fibrosis, hepatotoxicity, and carcinogenesis, 

may arise from Co exposure [78]. Different problems of 

the brain system, including bilateral nerve deafness, 

optic atrophy, neuropathies, and memory loss, can be 

caused by exposure to Co [79]. Co may have an adverse 

effect on the heart, leading to solitary cardiomyopathy, 

hypertension, and reversible ECG changes [80]. 

The toxicity of Tl is greater than those of Cd, Pb, 

or Hg [81]. Anorexia and headaches are two signs of 

chronic TI poisoning, which can arise from long-term 

exposure to low levels of TI [82]. In severe cases, 

respiratory muscle paralysis might result in a coma [83]. 

The development of hair loss with follicular contraction 

is a hallmark of TI poisoning. Other symptoms include 

problems with digestion, pain, mental health, and the 

cardiovascular system [84]. Tl poisoning throughout 

pregnancy is related to an increased risk of low birth 

weight, fetal fatality, and premature birth [85]. 

 

Human intoxication pathways after exposure to HMs 

The acidic environment of the stomach causes 

HMs to become acidified when consumed through 

drinking or eating. Under acidic conditions, As³⁺ , Zn²⁺ , 

As²⁺ , Cd²⁺ , and Pb²⁺  all oxidize and attain their 

corresponding oxidative states. These states have the 

capacity to establish robust, enduring bonds with 

biological molecules, including enzymes and 

proteins [86]. Concentration-dependent As-induced 

protein aggregation raises the possibility that HMs are 

sources of protein aggregation. Furthermore, various 

proteins with considerable functional enrichment 

associated with stability, protein synthesis, protein 

folding, and metabolic processes have been seen in 

aggregates [87]. The capacity of such drugs to stimulate 

protein accumulation in vivo is potentially influenced by 

their unique biological pathways and how well cells 

absorb and export them. Figure 5 shows the different 

mechanisms that lead to HM intoxication. After human 

exposure to Pb32, the intracellular second messenger 

system is altered, hindering the functions of the CNS. 

Figure 6 illustrates the process through which high blood 

lead levels cause various disorders in humans. 

 
Figure 5. Human intoxication pathways after exposure to 

HMs [88]. 

 

 
Figure 6. Processes that result in high blood Pb 

concentrations in humans can cause various disorders 

[89]. 

 

Methods for the remediation of HMs 

Numerous physical techniques for removing HMs, 

including methods based on adsorption, electrokinetics, 

membrane filtration, photocatalysis, granular activated 

carbon, and soil washing [90], have been reported. These 

techniques involve treating contaminated systems on the 

basis of the physicochemical properties of metals. 

Chemical precipitation, flotation, coagulation, ion 

exchange, and flocculation are all components of the 

chemical process. Although these methods are effective 
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at removing HMs, the overuse of chemicals complicates 

sludge disposal and increases the risk of secondary 

pollution [91]. The integrated chemical‒biological 

treatment method is a cost-effective and environmentally 

friendly way to treat wastewater that contains HMs. 

Many researchers worldwide have reported that using 

this integrated method instead of chemical or biological 

treatment is beneficial and has shown notable outcomes 

in HM elimination [92]. 

This type of integrated system, as a polishing step, 

frequently consists of biological treatment followed by 

chemical treatment and vice versa. The ultimate goal of 

bioremediation, which utilizes living organisms to 

convert harmful contaminants into nontoxic 

contaminants, is to restore contaminated areas to their 

natural form without posing additional threats to the 

ecosystem. The ability of numerous living organisms, 

such as bacteria, fungi, actinomycetes, and plants, to 

purify soil contaminated with HMs and pesticides 

represents a potential breakthrough in environmental 

science [93, 94]. 

 
Figure 7. Summary of the benefits and drawbacks of 

remediation technologies [90]. 

 

Conclusions 

HMs have negative effects on food security and 

agricultural production, and HM toxicity has become a 

major environmental concern. The accumulation of HMs 

in the environment has negative effects on plant 

development, People health, and marine environments 

because HMs are toxic. HMs might enter the human 

body through several ways, including through food or 

drink consumption, air inhalation, or skin contact. HMs 

are kept and accumulate in the human body after 

absorption. Numerous harmful effects on different 

human tissues and organs are caused by the 

accumulation of toxic metals in biological systems. 

Various physical and chemical methods have been 

proposed as possible solutions to address the pollution 

generated by HMs. Therefore, combined remediation 

technologies for large-scale applications should be 

developed. Within the framework of real-world 

implementation, one can learn from local and foreign 

experiences and improve the prudent use of advanced 

technology. Scientific and community-based 

remediation strategies must be employed to mitigate the 

negative effects of HMs. Additionally, evaluating novel 

seeks as preventative measures against organ toxicity 

caused by HMs will benefit future research. 
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