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Abstract
Every finite dimensional normed algebra is isomorphic to the finite direct

product of R or C, it is also proved these algebras are ultrasemiprime algebras. In
this paper, the ultrasemiprime proof of the finite direct product of R and C is
generalized to the finite direct product of any ultrasemiprime algebras.
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1. Introduction
Throughout this paper, all algebras are associative unless otherwise stated. Mathieu [1]

introduced the ultraprime algebra by defining a norm on the algebra of quotients. The normed
algebra A is ultraprime if there exists ¢ > 0 such that cllall||bll < ||M,,|| for all a,b € 4,
where M, ,: A — A is a linear operator defined by M, ,(x) = axb. An example of ultraprime
algebra is that every prime C*-algebra A is ultraprime and ||M,,|| = llallllb|| for all a,b €
A [2]. Ultraprime algebras were studied by many researchers[3][4][5]. If b = a for all a € A,
then the definition of ultraprime algebra A transfers to the definition of ultrasemiprime
algebra. Every ultraprime algebra is ultrasemiprime, however, the converse is not true,
Mohammed [6, Theorem 5] proved that every finite dimensional normed algebra isomorphic
to R™ and C", where n € N are ultrasemiprime, but R™ and C™ are not prime so that they are
not ultraprime algebras.
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Mohammed [6, Theorem 5] also proved that the finite direct product of R orC is an
ultrasemiprime which is a special case in the finite direct product of ultrasemiprime algebras,
because R and C are ultrasemiprime. In this paper, the generalization of Theorem 5 has been
given for the finite direct product of ultrasemiprime algebras.

1. The ultrasemiprime algebras

Mathieu [1] studied the ultraprime algebras and gave an analytical adjective for algebra of
quotients. He also defined an ultrasemiprime algebra which is given as follows:
The normed algebra A is an ultrasemiprime if there exists ¢ > 0 such that c|lall?> < ||Mgq||
for all a € A. Every C*-algebra is an ultrasemiprime[7].

An ultrafilter is a subset of a partially ordered set that is maximal among all proper filters.
Let I be an index set and (4;);¢; a family of normed spaces denoted by £ (1, 4;), the space of
all bounded families (x;);e; with x; € A;. Let u is an ultrafilter on I, define n, =
{(x)ie; € £°(,4;): lim,]|lx;|| = 0}. The quotient £° (I, 4;)/n, is called the ultraproduct of
the normed spaces A; with respect to the ultrafilter u. When one takes I = N, 4; = A for all
i € I, where A is normed space and an ultrafilter w on N. Then (4),, is called ultrapower of A
with respect to u and is denoted by 4,, [1].

Mathieu [1, Lemma 1.1] gave two equivalent conditions for ultraprime algebras, they are
shown in the next lemma.

Lemma 2.1 [1]

The following conditions are equivalent for the normed algebra A.
1. For any pair (x,,), (z,), n € N of sequences in A4 such that ||x, || = ||z,|l = 1 foralln € N,
there exists a bounded sequence, (y,,), n € N such that (x,,y,z,), n € N does not tend to zero.
2. Ais an ultraprime algebra.
3. The algebra of ultrapower of A on u, 4, is prime, where u the free ultrafilter on N.
In the following theorem, a condition that is similar to the first equivalent condition in Lemma
2.1 for the ultraprime is used. This gives an equivalent condition to ultrasemiprime algebra.

Theorem 2.2

The following statements are equivalent to a normed algebra A.
1. For any sequence (x,),n € N in Awith ||x,|| = 1, for alln € N, there exists a bounded
sequence (v,), n € N in A such that the sequence (x,y,x,),n € N does not converge to zero.
2. There exists a positive number ¢, such that cl|x||? < ||M,. || for all x in A.

Proof:
Let condition (1) be true and a positive number ¢ for the sequence (a,,) in A\{0} to satisfy
(2) for all n € N does not exist. When n =1, ||Mg 4 || < llayll?, when n = 2, a positive

number c that satisfies (2) does not exist. That means [|Mg, q,|| <> lla,l2, when ¢ = . For

2,a2
An_
llanll’
(x,) sequence in A such that ||x,|| = 1, using (1) there exists abounded sequence (y,,) in A
such that (x,,y,x,,) does not converge to zero, without losing generality assume ||y, || # 0 for
all n € N are taken.

ow 1mn_,oo|| xn;xn” <lmy, e . Y- 0 nl_I}gow_ 1mn_,oo|| x

n=3 and ¢ = % get |Mo,a,]| < §I|a3||2, similarly ||Mg, o || < % lla,?, put x,, = we get

3,3 n.an

nXn ||
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We get the sequence (x,y,x,) converges to zero, then we get a contradiction, that means (2)
IS true.

Conversely, let (2) be true and (x,,) be any sequence in A with ||x,|| =1 for all n € N,
when n = 1,x; € 4, using (2), cl|x.||*> < ||Mx1'x1|| = sup,ealllxixx.|l, lIx]| = 1}, for any
€ > 0 there exists at least one element y; € A such that
oy x1ll = supeealllxxexy |l llxll = 1} — € = [|My, || — € = cllxg|I* — €
In a special case, we take that ||y;|| = 1 and € < c in the term above for y; € A. Now, when
n =2, x, €A, by using (2), we get cllx||* < ||[My, || = supxealllxzxx,|l, lIx]l = 13, for
€ < c there exists at least one element y, € A with ||y,|| =1 such that
122221 = supyealllaoxxy ||, l1x]l = 1} = € = ||My, 1, || — € = clix.I* — €
Similarly, we get a bounded sequence (y,,) in 4, so c||x,||? — € < ||lx,ynx,|l since ||x,]| =
1, for all n € N. Therefore, ¢ — € < ||[x, Vx| for all n € N, since 0 < ¢ — € that means the
sequence (x,y,Xx,) does not convergent to zero.

3. Finite direct product of ultrasemiprime algebras

The direct product of prime algebras needs not to be prime [8, Example 2.33], and the
direct product of ultraprime algebras needs not to be ultraprime. We show that it is different
when the algebras are ultrasemiprime.

In [6], the authors proved that every finite dimensional normed algebra is an

ultrasemiprime. The finite dimensional normed algebras are isomorphic to R™ or C" [9,
Theorem 2.3.1]. That means the finite direct product of R or C are ultrasemiprime.
The following Theorem gives the ultrasemiprime of a finite direct product of any
ultrasemiprime algebras, which does not satisfy ultraprime algebra. In another way, it is a
generalization to the ultrasemiprime of finite direct product of the fields R and C, which are
proved by Mohammed[6]. The direct product of algebra has taken with usual addition, scalar
multiplication and multiplication.

Theorem 3.1
Let A, B be any ultrasemiprime algebras. Then A X B is an ultrasemiprime with norm

(@, b)II = maxaeafllall, l|b]]}
beEB

Proof:

Let A, B be ultrasemiprime normed algebras, put c4 is the constant of ultrasemiprime A, cg
is the constant of ultrasemiprime B and ¢ = min{ c4,cz}. Let (a,b) € Ax B, ||(a,b)|| =
max {||all4,]|bllg}. In general, either ||a|| = ||b]| or ||a]| < ||b]|, the equality can be written
in both cases without affecting the proof. Now, either ||(a, b)|| = ||lal| or ||(a, b)|| = ||b]|.

In the first case, If ||a|| = ||b] , then ||(a, b)|| = ||al|. Hence,

IMapr@amll = sup {lICa b)(x y) (@ b, 1(x, Il = 1)}
(x,y)EAXB

= sup(yeaxaill(axa, byb)|l, |, Wl =1}
Since  [|(axa, byb)|| = max {llaxall,[|byb|l} and [ICx,y)|l =max {llxIl,llyll}, so

max axall, ||byb||}, max {l|x]|, =1
Mool = 51D cppene {2 Ulaxall, 1bypIl, max il vl = 1)

Accordingly, we have four possibilities for || M) (an||
. When [laxa|| = [|byb]| and |[x]| = |yl _
The ||(x, )|l = max {[[x][,[lyll} =1 = |lx|l, by hypothesis [ly|l < |lx|| =1, we have

max {|laxall, ||byb]|}, max {||x]|, =1
Mool = 51D cppena {2 (axal,1bypIlmax el vl =1
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= supyealllaxall, llx|l =1} = ||Myq||
> cyllall? since A is an ultrasemiprime
= call(a, b)|I? since [|(a, b)I| = llal|

_ Therefore, | Mn),am | = call(@ b)II?

ii.  When [laxal| = [|bybl| and ||x|| < [|y|]
The probability of equalization has been written in both cases without affecting the proof
The |, W)l = max {llx|l, llyll} =1 = llyll, by hypothesis llxll < llyll =1,

ma axall, ||byb||}, ma x|, =1
Mo aml] = 50D gy {7 (laxal, IbybImasc gl Iy = 1)

= supyea{llaxall, x|l < 1} = ||Myq||
> callall* = call(a, b)II?
Therefore, ||M p), @ || = call(@ b)II?
iii.  When |laxall < [Ibybl| &l[x]| = ||yl|
The [|(x, V)|l = max {[[x]|, llyll} = 1 = |[x], by hypothesis Iyl < lIx]l = 1,

max axall, ||byb]|}, max x|, =1
”M(a,b),(a,b)”zsup(x,y)EAxB{ {llaxall, l|byb|[} {lxIl My 113 }

= sup eplllbybll, llyll < 1}
> supyealllaxall, ||x|| = 1} since ||byb|| = ||axall
= ”Ma.a”
> cpllall®> = call(a, b)II?
Therefore, || M p), @ | = call(a b)II?
iv.  When |[axal| < [||byb]| &||x|| < [[yll
The ||(x, )|l = max {llx|[,[lyl[} =1 =1lyll, by hypothesis llxll < llyll = 1,

max {|laxall, ||byb]||}, max {||x]|, =1
”M(a,b),(a,b)”=Sup(x,y)eA><B{ {llaxall, |[byb|l} {1l 1y I3 }

= sup,epfllbybll, llyll = 1}
= supyea{llaxall, ||x]| < 1} since ||byb]| = ||axall
= Mol = callall®* = call(a b)II?
M, amll = call(@ b)IIZ. For the four possibilities, ||M p)@p || = call(a, b)II? when
llall = |b]l.
The second case, when ||a|| < ||b]|, then ||(a, b)|| = ||b||, we also have four possibilities for
M@0l
i.  When |laxall = ||bybl| & [[x]| = ||yl
The ||(x, )|l = max {[[x][, [lyll} =1 = ||x||, by hypothesis ||yl < |[x|]| =1, we have

max axall, ||byb]|}, max x|, =1
”M(a,b),(a,b)”zsup(x,y)EAxB{ {llaxall, l|byb|[} {lxIl My 113 }

= supyealllaxall, |||l = 1}
> supyeptllbybll, lyll < 1} since [laxall = |[bybl|
|My5|| = c5llblI? since B is an ultrasemiprime
= cgll(a, b)II? since [I(a, b)Il = |Ibll
|M¢ap),@n)|| = call(a b)II?. The proof of the rest of the possibilities is similar to first case
1My, amll = call(a b)II?. From the first and second case, we have ||M ) @nll =
cll(a,b)||? forall (a,b) € AX B

In Theorem 3.1, we proved that the finite direct product of ultrasemiprime algebras
depends on its definition using the maximum norm between the finite direct product of
algebras. The following Theorem depends on the equivalent condition of ultrasemiprime
given in Theorem 2.2(1) using the sum norm between the finite direct product of algebras.
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Theorem 3.2
Let A, B be any ultrasemiprime algebras. Then A X B is an ultrasemiprime, with norm
defined by ||(a, b)II = llall + I[blI.

Proof:

Let (w,),n € N be a sequence in A X B, such that ||w,|| = 1 for all n € N, so there exists
a sequence (a,),n € Nin A and (b,,),n € N in B such that w,, = (a,, b,),n € N.
Assume that A X B is not an ultrasemiprime algebra. From Theorem 2.2(1) , any bounded
sequence (v,),n € N in A X B does not exist that makes the sequence (w,v,w,) not
converge to zero. That means for any bounded sequence (v,),n € N in A the sequence
(w,,v,,wy,) is convergent to zero.
There are three possibilities, without losing generality; elements equal to zero are not
considered.

I. When a, = 0,and b,, # O foralln € N

ii. Whenb,=0,anda, # Oforalln e N
iii. Whena, # 0,and b,, # Oforalln e N

The first possibility, when a,, = 0,and b, # 0 for alln € N, thenw,, = (0, b,;), now

(”Z"”), n € N is a sequence in B. Since B is an ultrasemiprime algebra from Theorem 2.2(1),

there exists a bounded sequence (y,),n €N in B with a bound ¢, such that
(”ZZ”yn nz_ZM)’n € N does not converge to zero. Also, (”ZZ” Yn ”ZZ”) = Ilbrllllz (bpynby,) does
not converge to zero, that means (b,,y,,b,,) does not converge to zero.

Define (v,),n € N, by v,, = (0,y,,) where (y,,),n € N is a sequence in B. (v,,) is a bounded
sequence because ||v, |l = [y, |l < ¢y

Now, (w,v,w,) are convergent to zero, so (w,v,w,) = (0, b,)(0,y,,)(0, b,) = (0, by, b,),
(w,v,w,) are convergent to zero, then must (b, y,b,) are convergent to zero, which is
contradiction so (w,,v,w,,) does not convergent to zero.

The second possibility, when b,, = 0,and a,, # 0 for all n € N, then w,, = (a,, 0), the proof
of this possibility is similar to the first one.

The third possibility, when a,, # 0,and b, # 0 for alln € N, thenw, = (a,, b,), now

(”Z””), n € N is a sequence in 4, since A is an ultrasemiprime algebra from Theorem 2.2(1),

there exists a bounded sequence (x,),m €N in A with a bound ¢, such that
an an an an 1
( X )n € N does not converge to zero. (”an” Xn ”an”) =T (apx,a,) does not

llanll "™ llanll I
converge to zero, that means (a,x,a,) does not converge to zero. In a similar way for the

sequence (b,) n € N in B, there exists a bounded sequence (,,),n € N in B with a bound c,
and (b, y,b,) does not converge to zero.

Define (v,),n € N, by v, = (x,, ¥,) Where (x,,),n € N is a sequence in A and (y,,),n €
N is a sequence in B. (v,) is a bounded sequence, because [|v, |l = I|(e, vl = llxall +
lyall < cx + ¢y .

Now (w,v,w,,) is convergent to zero, so
(Wnvpwy) = (an, by) (cn, Yn) (@n, by) = (@nXn@n, bpynby),
(wy, v, wy,) is convergent to zero, then (a,x,a,) and (b,y,b,) must converge to zero, which
is a contradiction, so that (w,v,w,) does not converge to zero. Therefore, A X B is an
ultrasemiprime algebra.
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Corollary 3.3
The finite direct product of ultrasemiprime algebras is ultrasemiprime with sum norm or
maximum norm.
Corollary 3.4
The finite direct product of ultraprime algebras is ultrasemiprime with sum norm or maximum
norm.
Corollary 3.5
Every finite dimensional normed algebras is ultrasemiprime.

Proof:

Every finite dimensional normed algebra is isomorphic to R™ or C™ [9, Theorem 2.3.1].
From corollary 3.3, R™ and C" are ultrasemiprime with maximum or sum norm. But the
norms under finite dimensional normed algebras are equivalent [10, Theorem 2.4.5].
Therefore, R™ and C™ are ultrasemiprime with any norm.

Conclusions

In this work, a generalization of the ultrasemiprime proof of the finite direct product of R
and C to the finite direct product of any ultrasemiprime algebras is given. Some related results
and properties are also given and discussed.

Reference

[1] M. Mathieu, “Applications of ultraprime Banach algebras in the theory of elementary operators,”
Ph.D. dissertation, University of Tubingen, Germany, 1986.

[2] M. Cabrera and A. Rodriguez, Non-associative normed algebras. Volume 2: Representation
Theory and the Zel’'manov Approach, vol. 167. Cambridge University Press, 2018. [Online].
Available: https://www.cambridge.org/core/books/nonassociative-normed-algebras/frontmatter/
54B902AB8D6BE32FD5C916BACE13EF6C

[3] P. Ara and M. Mathieu, “On ultraprime Banach algebras with non-zero socle,” 1991, pp. 89-98.
[Online]. Available: https://www.jstor.org/stable/20489379

[4] M. C. GARCIA and A. R. PALACIOS, “Nonassociative ultraprime normed algebras,” The
Quarterly Journal of Mathematics, vol. 43, no. 1, pp. 1-7, 1992, doi: https://doi.org/10. 1093
/gmath/43.1.1.

[5] M. Mathieu, “The symmetric algebra of quotients of an ultraprime Banach algebra,” Journal of
the Australian Mathematical Society, vol. 50, no. 1, pp. 75-87, 1991, doi: https://doi.org/10.1017
/S1446788700032560.

[6] A. A. Mohammed, “On Ultrasemiprime Algebras (Research Note),” Dirasat: Pure Sciences, vol.
33, no. 1, Art. no. 1, Jun. 2010.

[7] M. Bresar, “On the distance of the composition of two derivations to the generalized derivations,”
Glasgow Mathematical Journal, vol. 33, no. 1, pp. 89-93, 1991, doi: https://doi.org/10.1017
/S0017089500008077.

[8] M. Bresar, Introduction to noncommutative algebra. Switzerland: Springer, 2014. [Online].
Available: https://www.springer.com/gp/book/9783319086927.

[9]1 R. Sen, A first course in functional analysis: Theory and applications. London, SE1, 8HA, UK
and New Yourk, NY 10016,USA: Anthem Press, 2013. [Online]. Available:
https://www.jstor.org/stable/j.ctt1gxpbqd.

[10]E. Kreyszig, Introductory functional analysis with applications, vol. 1. New York: John Wiley &
Sons. Inc., 1978. [Online]. Available: https://www.wiley.com/en-us/Introductory+Functional
+Analysis+with+Applications-p-9780471504597.

4373



