
       

*Corresponding author: ali.alsaeedi@qu.edu.iq 
https://wjps.uowasit.edu.iq/index.php/wjps/index 

20 

Wasit Journal for Pure Science 

Journal Homepage: https://wjps.uowasit.edu.iq/index.php/wjps/index 
e-ISSN: 2790-5241    p-ISSN: 2790-5233 

 

 

Eight-Figure Pattern for Enhancing the Searching Process of 

Grey Wolf Optimization (Eight-GWO)   
 

Ali Hakmem Alsaeedi1,2 , Suha Muhammed Hadi1 , Yarub Alazzawi3 *, Emad 

Badry4
 

1Informatics Institute for Postgraduate Studies University of Information Technology and Communications, IRAQ 
 

3College of Computer Science and Information Technology, University of Al-Qadisiyah, IRAQ 

 
2Al-Khwarizmi College of Engineering, University of Baghdad, IRAQ 
4Department of Electrical Engineering, of Engineering, Suez Canal University, Ismailia, EGYPT 

 
*Corresponding Author: Ali Hakem Alsaeedi 
 

DOI: https://doi.org/10.31185/wjps.718 

Received 10 January 2025; Accepted 09 March 2025; Available online 30 Jun 2025 

 

1. INTRODUCTION 

In recent years, metaheuristic optimization algorithms have been used to solve several complex problems[1], such 

as those in [2], Agriculture [3], networks[4-6], medicine [1, 7, 8], etc. The fundamentals of these algorithms are based on 

the stochastic exploration of the searching problem. It employs systematic random search to control the random value 

produced by the optimizer generator[9]. To perform a systematic random search, metaheuristic techniques must fully 

explore the search space while guiding the search toward a global or near-global optimum. The exploration required a 

random search and variety in generating candidate solutions[10-12]. This involves generating a diverse array of candidate 

solutions through random sampling. Additionally, when the algorithm identifies the best candidate solution, it 

incorporates it into the current pool of candidates, further enhancing the exploration process.  

Several evolutionary algorithms exist, most inspired by the natural behavior of animals and phenomena observed in 

nature[1]. For example, Particle Swarm Optimization (PSO), Bat Optimization Algorithm (BOA), Grey Wolf 

Optimization (GWO), … so on. Mirjalili et al. [7] introduced Grey Wolf Optimization (GWO) in 2014. This algorithm 

was inspired by the hunting of gray wolves.  The GWO algorithm has been successfully applied across various fields 

[13].  
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Generally, evolutionary algorithms suffer from a lack of convergence [8-10]. As a result, they can get stuck in local 

optima early in the search progress [1, 14]. These challenges often reduce effectiveness in addressing real-world 

optimization problems. Therefore, they required efficient search strategies that enhance both exploration and exploitation.  

The standard Grey Wolf Optimizer (GWO) faces several limitations, particularly in handling complex optimization 

problems. One of the most critical issues is stagnation, which occurs when the algorithm struggles to escape local 

optima, leading to premature convergence and suboptimal solutions. 

In GWO, the hunting mechanism is guided by the alpha, beta, and delta wolves, which update positions based on 

their relative dominance. However, as iterations progress, the search agents tend to converge around these leading 

solutions, reducing diversity in exploration. This limits the ability to discover better solutions, especially in multimodal 

landscapes. 

Stagnation significantly affects the algorithm’s efficiency in solving high-dimensional and complex optimization 

problems where numerous local optima exist. It restricts the ability to explore new regions, leading to low convergence 

speed and poor adaptability to dynamic environments. To overcome stagnation, enhanced versions of GWO incorporate 

adaptive mechanisms, chaotic maps, or hybrid strategies to maintain diversity and improve global search capability. 

This paper proposed an enhanced version of the Grey Wolf Optimizer embedded with an Eight-Figure pattern.  This 

pattern helps prevent stagnation and improves the algorithm's exploration capabilities, thus enhancing its performance in 

complex optimization problems. Technically, the proposed model incorporates an adaptive strategy that detects 

stagnation and switches to a more dynamic search pattern when the algorithm gets trapped in local optima. The proposed 

Eight-Figure same infinity symbol (∞).  Therefore, this movement can be represented mathematically in combination 

with two trigonometric equations, sine and cosine. A geometrically inspired strategy, such as the eight-figure pattern, 

offers a novel yet structurally simple mechanism to diversify movement patterns without sacrificing the algorithm’s 

original elegance or efficiency. The symmetry and directional properties of the eight-figure trajectory inherently promote 

systematic exploration while preserving the social hierarchy’s exploitation benefits. 

 

1.1 Motivation   

The development of the Eight-GWO algorithm is driven by several critical motivations rooted in both theoretical 

and practical challenges observed in the standard Grey Wolf Optimization (GWO) algorithm. While GWO has proven 

effective in various optimization scenarios, its performance often degrades when applied to complex, multimodal, or 

high-dimensional problems. These limitations stem from inherent algorithmic behaviors that restrict its adaptability and 

scalability in dynamic search environments. 

1. Limit exploration: The standard GWO heavily relies on the hierarchical leadership structure (alpha, beta, delta 

wolves) to guide the search process. While this mechanism ensures the exploitation of the best solutions, it 

inherently limits exploration diversity, especially in the early stages of optimization.  

2. Complexity:   Existing modifications to GWO, such as hybridization with chaos theory, Lévy flights[15], PSO[16], 

or other optimization algorithms, have shown partial success in mitigating stagnation. However, many of these 

approaches introduce computational overhead or hyperparameters that complicate implementation and reduce 

reproducibility.  

3. Stuck in local optima: the standard GWO is often stuck in local optima due to a leak in balancing between the 

exploration and exploitation.  

 

1.2 Contributions  

The contributions of this work are threefold:  

1- The conceptualization and mathematical formulation of the eight-figure pattern to enhance GWO’s search 

capabilities. 

2- Reducing complexity in the proposed model by changing the search direction of the algorithm to a technique with 

fewer parameters and higher exploration. 

3- Enhancing the exploration and exploration in the proposed search strategy.   

 

1.3 Evaluation strategy  

Optimization algorithms rely on randomness during the search process, which may lead to variations in results when 

repeated[17]. Therefore, to evaluate the algorithm's efficiency must be executed multiple times independently[17]. The 

algorithm's performance is calculated from these executions: average, best, worst, median, and the standard deviation of 

best solutions.  Additionally, boxplot charts and Convergence plots visually depict the algorithm's performance[18]. The 

boxplot charts can be used to visualize the statistical distribution of results, highlighting the variability and potential 

outliers in the solutions. Convergence plots are also essential for analyzing how quickly and efficiently the algorithm 

approaches optimal solutions, providing further insight into its effectiveness. 
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1.4  Paper organization  

The remainder of this paper is organized as follows: Section 2 related works and Section 3 provides a brief overview 

of the standard GWO algorithm. Section 4 details the design and implementation of the proposed Eight-GWO framework. 

Section 5 presents experimental results and comparative analyses, while Section 5 discusses practical applications and 

implications. Finally, Section 7 concludes the study and outlines future research directions. 

 

 

2. RELATED WORK  

Various strategies have been used to improve the performance of the Gray Wolf Optimizer. Each work provides 

unique insights into mitigating specific limitations of the standard GWO, paving the way for further research and 

development in this area. 

Liu et al. (2023) [15] proposed an enhanced strategy of GWO. They Combine Gaussian chaotic mapping for 

population initialization, a nonlinear convergence factor, Lévy flight for global exploration, and the golden sine algorithm 

for local exploitation. Enhances position updates dynamically to balance exploration and exploitation. Premature 

convergence due to poor population diversity and imbalanced exploration-exploitation phases in the original GWO. 

Moreover, the increased computational complexity may hinder performance for large-scale problems. 

Salgotra et al. (2020) [15] introduced opposition-based learning during initial iterations to diversify search agents 

and assign diverse positions to leader wolves (alpha, beta, delta) to expand exploration. This method was validated using 

benchmark functions and antenna array design. Its limitation is poor exploration capability and susceptibility to local 

optima stagnation in the standard GWO.  

In (2024) [19] Integrates GWO with Hybrid Rice Optimization (HRO) using dynamic parameter regulation, 

neighborhood search, dual-crossover, and selling techniques. A hybrid filter-wrapper framework with chi-square filtering 

improves feature selection accuracy. Limited adaptability, poor population diversity, and low accuracy in high-

dimensional feature selection tasks. The hybrid approach increases algorithmic complexity due to the integration of two 

metaheuristics. This often requires additional parameter tuning, which may limit its applicability to certain problem 

domains. 

Mohammed et al. [20] (2024) Modified GWO using gamma wolves, z-position updates, and the golden ratio to refine 

search trajectories. Evaluated CEC2019 benchmark functions and engineering problems (e.g., pressure vessel design). 

Local optima entrapment and low exploration efficiency in complex landscapes. The success of the adaptive mechanism 

depends on carefully calibrating control parameters. It may not generalize well across all types of optimization problems 

without further modifications. 

Adegboye et al. [17] (2024) integrate chaotic opposition learning (COL), mirror reflection strategy (MRS), and worst 

individual disturbance (WID). MRS expands the exploration range, COL enhances diversification, and WID facilitates 

escape from local optima. Population diversity loss and stagnation in local optima due to over-reliance on alpha wolves. 

The algorithm becomes more complex with the integration of multiple strategies. Additionally, its performance gains are 

primarily observed in high-dimensional scenarios and may not be as effective for low-dimensional problems.  

 

3. SEARCH MECHANISM OF METAHEURISTICS  

The metaheuristic optimization search mechanism involves exploration and exploitation[10, 19, 21]. Exploration 
discovers new solutions based on randomness. At the same time, exploitation refines promising ones based on the best 
current solutions[4]. The balance between exploration and exploitation reduces scattering and leads to a more systematic 
search process for optimal solutions[22-24]. This balance is crucial in avoiding premature convergence and finding high-
quality solutions in complex optimization landscapes. 

Equation 1 illustrates the basic mathematical representation of the search process in metaheuristic optimization.  

𝑓(𝑥’)  =      𝑓(𝑥)     +     𝑓(𝑦)                              (1) 

Where f(x) represents the current solution, and f(y) is an optimization value added to generate a new solution f(x′). As 
mentioned above, the optimization value composites of exploration f(r) and exploitation f(b).  Equation 1 is 
the decomposition as follows.    

𝑓(𝑥’)  =      𝑓(𝑥)     +   (𝑓(𝑟)   +  𝑓(𝑏))                             (2) 

Adding a control function f(c) to govern the search process in metaheuristic algorithms is possible. This function can 
be a constant (f(c1) ) or derived from candidate solutions. Therefore, Equation 3 represents the final formula for the search 
process in metaheuristic optimization. 

𝑓(𝑥’) =  𝑓(𝑐1 ) + 𝑓(𝑥)  + (𝑓(𝑟) +  𝑓(𝑏)) + 𝑓(𝑐2)              (3) 
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4. GREY WOLF OPTIMIZATION  

One of the famous optimization algorithms is the Grey Wolf Optimizer (GWO)[25]. It draws on the leader-follower 
behavior of grey wolves and their hunting strategy. The GWO categorizes wolves into four categories: alpha (α), beta 
(β), delta (δ), and omega (ω), among which α, β, and δ denote the top three solutions and omega wolves spend time guiding 
these top wolves (shown in figure1). 

 

 

FIGURE  1: social Hierarchy of GW 

 
The GWO algorithm mathematically models the behavior of wolves encircling their prey[1]. Equation 5 represents the 

process of moving wolves toward optimal solutions: 

�⃗⃗� = |𝐶 ⋅ 𝑋 𝑝𝑟𝑒𝑦 − 𝑋 (𝑡)|  (4) 

𝑋 (𝑡 + 1) = 𝑋 𝑝𝑟𝑒𝑦 − 𝐴 ⋅ �⃗⃗�   (5) 

Where: 𝑋 prey  is the position vector of the prey (target solution), 𝑋 (𝑡) is the position vector of a wolf at iteration 𝑡.and  

𝐴  and 𝐶  are coefficient vectors which are calculated in equations 6 and 7, respectively: 

𝐴 = 2 ⋅ 𝑎 ⋅ 𝑟1⃗⃗⃗  − 𝑎            (6) 

𝐶 = 2 ⋅ 𝑟2⃗⃗⃗    (7) 

Where: 𝑎  decreases linearly from 2 to 0 throughout iterations, and 𝑟1⃗⃗⃗   and 𝑟2⃗⃗  ⃗ are random vectors in the range [0,1]. The 
positions of 𝛼, 𝛽, and 𝛿 wolves are known, and other wolves update their positions based on these top wolves to converge 
toward the prey. The position of a new wolf is updated in equation 8: 

𝑋 (𝑡 + 1) =
�⃗� 1+�⃗� 2+�⃗� 3

3
  (8) 

Where: �⃗� 1,�⃗� 2,�⃗� 3calculated in equations9,10, and 11, respectively.   

𝑋 1 = 𝑋 𝛼 − 𝐴 1 ⋅ |𝐶 1 ⋅ 𝑋 𝛼 − 𝑋 |  (9) 

𝑋 2 = 𝑋 𝛽 − 𝐴 2 ⋅ |𝐶 2 ⋅ 𝑋 𝛽 − 𝑋 |  (10) 

𝑋 3 = 𝑋 𝛿 − 𝐴 3 ⋅ |𝐶 3 ⋅ 𝑋 𝛿 − 𝑋 |  (11) 

The GWO algorithm used a coefficient vector (𝐴 )  to balance between exploitation and exploration. When |𝐴 | > 1, 
Wolves spread out, promoting exploration of the search space. This broad search helps the algorithm avoid premature 

convergence to local optima and improves the chances of finding the global optimum[26]. Conversely, when |𝐴 | < 1, 
Wolves converge toward each other, focusing on refining the search around the most promising areas identified by the top 
solutions ( 𝛼, 𝛽, and 𝛿 ). This convergence enhances exploitation by allowing the algorithm to focus on searching within 
promising regions to refine solution quality[27]. Moreover, maintaining a dynamic balance between exploration and 
exploitation is essential for effectively navigating complex optimization landscapes.  

Figure 2 illustrates the architecture of the search process in the Grey Wolf Optimizer (GWO) 
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FIGURE  2: Architecture of the search process in the GWO 

5. EIGHT-FIGURE GREY WOLF OPTIMIZATION (EIGHT-GWO) 

Evolutionary algorithms (EAs) usually comprise three main phases: Initialization, iterative position update, and 
termination. The proposed eight-GWO algorithm improves this process by introducing a new search strategy that detects 
stagnation and dynamically adjusts the search behavior to avoid getting stuck in local optima, which improves exploration 
capabilities. Furthermore, this strategy addresses the challenge of search space dispersion by constraining the 
dimensionality of the wolf population without changing the established search patterns. Figure 3 illustrates the proposed 
architecture of Eight-GWO. 

 
 

FIGURE  3: The architecture of the Proposed Eight-Figure Grey Wolf Optimization (Eight-GWO) 

5.1 Initialization Eight_GWO algorithm: 

The proposed Eight-GWO's initial parameters are carefully selected to balance exploration and exploitation while 
promoting algorithm sensitivity to stagnation. The major parameters are population size (P), minimum and maximum 
dimension updates (Dmin , Dmax), max_iteration (tmax), and maximum stagnation (Smax).  

• Population size (P):  

The population size, a critical factor influencing the algorithm's diversity and search capability, is typically bounded 
between a minimum and maximum value. This range ensures sufficient exploration while preventing excessive 
computational overhead.  
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• Minimum and Maximum dimension updates (Dmin , Dmax):  

The dimension updates governing the wolves' movement within the search space are also fine-tuned to facilitate 
efficient exploration and convergence.  Maximum stagnation (Smax) aims to maintain the algorithm's 
responsiveness to changes in the search landscape.  

Eight-GWO avoids premature convergence by prioritizing sensitivity and effectively adapts to complex optimization 
problems. The careful selection of these initial parameters contributes to Eight-GWO's overall performance and robustness, 
making it a promising candidate for solving challenging optimization tasks across various domains. 

5.2 Solutions aggregation and checking searching behavior:   

This step comprises processes 2.0 to 6.0. It includes compiling the proposed solutions and monitoring the progress of 
the search. In process 3.0, the proposed solutions are evaluated by applying the fitness function. The proposed algorithm 
then performs two checks: the stopping criterion and stagnation. The stopping criterion is based on the maximum number 
of iterations. When this limit is reached, the algorithm terminates. The algorithm is also sensitive to stagnation if the best 
solution (alpha) remains unchanged for several iterations equal to 'Smax'; a stagnation flag is set, which prompts the 
algorithm to explore the search space with the proposed eight-digit pattern. 

5.3 Select a search agent based on stagnation status: 

This proposed algorithmic step guides the search engine to the GWO (Grey Wolf Optimizer) or the eight-figure (EF) 
pattern. The decision hinges on the algorithm's stagnation state. If stagnation is absent or its duration remains within the 
allowed limit (Smax), the algorithm proceeds with the grey wolf method for exploration. Conversely, if stagnation persists 
beyond the allowed period, the algorithm switches its search strategy to the proposed EF method, aiming to break free 
from the local optimum and enhance exploration. Figure 4 illustrates the proposed scenario when the searching process 
gets stuck at local optima. 

 

FIGURE  4: The proposed scenario of the search by EF_GWO 

5.4 Modify the population based on Eight Figure (Eight figure) process  

When the algorithm's searching process becomes trapped in local optima, the proposed algorithm enhances exploration 
using a new eight-figure pattern. It was inspired by a wolf's movement in a cage, as shown in Figure 5. 

 

FIGURE  5: Movement in Eight figure pattern of a wolf 

This circular motion can amplify power and range, especially within confined spaces. This movement pattern can be 
mathematically represented by parametric equations utilizing sine and cosine functions. The Eight-Figure search strategy 
for modifying the population comprises two stages: the determination of the wolf dominant from the updated 
population(wolves) and the application of a position modification function: 

5.5 Determine wolf dimensions 
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To mitigate scattering in the early stages of the proposed EF framework's search process, a subset of dimensions is 
selected for modification at each iteration rather than adjusting the positions of all wolves across all dimensions. The 
probability of selecting more dimensions for modification increases as the number of iterations grows. This approach 
balances maintaining diversity and exploiting promising regions, dynamically adapting the search strategy to the evolving 
landscape of the optimization problem. The dimensions (WDim) of the wolf that are updated at iteration (t) are calculated 
using Equation 12. 

𝑊𝐷𝑖𝑚 =∼ ((𝐷𝑚𝑖𝑛    + (
       𝑡    

𝑡𝑚𝑎𝑥
)
2

∗ (𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛)) ∗ 𝐷𝑝)                   (12) 

Where: t is the current iteration, and 𝐷𝑝  is a problem dimension. Figure 5 illustrates how the WDim increase during 

search progress.  

 

FIGURE  6: Example shows the relation between W and no. of iteration, in this figure, the set the 𝑫𝒎𝒂𝒙 = 30, 𝑫𝒎𝒊𝒏 = 5 , 𝒕𝒎𝒂𝒙 = 

100 

5.6 Update wolf position  

To update the wolf's position and simulate the characteristic 'figure-eight' movement pattern observed in grey wolves' 
skipping from obstacle behavior, we suggest using Equation 13. This formula contains sine and cosine functions, allowing 
for a more nuanced representation of the wolves' encirclement and approach maneuvers during optimization. 

𝑋𝑡+1 = 𝑟1  ⋅  𝑋𝛼  + (1 − 𝛥𝑐𝑜𝑠)  ⋅  𝛥𝑠𝑖𝑛                        (13) 

Where : 𝑟1 : Random value within the interval  [0, 1]. 𝑋𝛼   is a positions of the alpha wolf. 

Equation 14  calculates the value of The 𝛥𝑐𝑜𝑠  

𝛥𝑐𝑜𝑠  =  𝑐𝑜𝑠(2𝜋𝐿𝑟2) ⋅  (𝑟3  +  𝑋𝛼  − 𝑋𝛽)                      (14) 

Where: 𝑟1, 𝑟2: Random values within the interval [0, 1]. L is the Frequency or scaling factor.  , 𝑋𝛽  is the position of the 

beta wolves.  

Equation 15 calculates the value of The 𝛥𝑠𝑖𝑛  

𝛥𝑠𝑖𝑛     =  𝑠𝑖𝑛(2𝜋𝐿𝑟4) ⋅  (𝑟5  + 𝑋𝛽 + 𝑋𝛿)                    (15) 

Where:  𝑟4, 𝑟5: random values within the interval [0, 1],   𝑋𝛿 is positions of the Sigma Wolf.   

Figure 3.8 shows the implantation of functions equations 14 and 15.   
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FIGURE  7:  Example shows the implantation of Eq. (3. 19, and 3.20), the value of  𝒓𝟐 = 𝟎.𝟏𝟓, 𝒓𝟑 =  𝟎. 𝟐 , 𝒓𝟒 = 𝟎.𝟏, 𝒓𝟓 =

𝟎. 𝟏𝟖, and 𝑿𝜶 =  𝟎. 𝟑, 𝑿𝜷 = 𝟎. 𝟏,𝑿𝜹 = 𝟎.𝟐 

 

6. RESULT DISCUSSION  

The CEC2005 benchmark suite was used to evaluate the performance of the proposed Eight-GWO. The results of the 
proposed Eight-GWO were compared with those of Standard-GWO and PSO. The CEC2005 benchmark suite tests 
optimization algorithms by examining their ability to handle different levels of complexity. 

Table 1: Parameters setting of Eight-GWO, GWO, and PSO 

Parameter Eight-GWO GWO PSO 

P x 𝑫𝒑 30 × 30 30 × 30 30 × 30 

Search space bounders ±100 ±100 ±100 

Max iterations 50 50 50 

Vmax - - 6 

wMax - - 0.9 

wMin - - 0.2 

c1, c2 - - 2 

Smax 10 - - 

Dmin , Dmax [5,30] - - 
 

Table 2 shows the result of the average 30 independent runs regrades to mean, median, best, and worst values in each 
one. 

Table 2: Average of 30 independent runs by Eight-GWO, PSO, and GWO 

Fun. Metrics PSO GWO Eight-GWO 

F1 

Mean 1054.138168 184.706321 232.2428271 

Median 847.6760134 138.5672376 216.2444551 

Best 285.1793502 66.69224899 94.02339504 

Worst 2459.224606 463.9014981 363.4273473 

F2 

Mean 51.10047101 5.988343826 4.945009262 

Median 46.79589896 5.569455104 4.434450945 

Best 29.59817916 4.469040403 3.420492624 

Worst 78.9189256 8.114951661 9.04773532 

F3 

Mean 13164.50615 11339.39963 10064.27958 

Median 12273.15713 11351.36794 9309.771325 

Best 6597.527419 5788.669636 4277.436937 

Worst 23389.03441 17195.43534 20064.13549 

F4 

Mean 20.553086 25.4436891 18.75569258 

Median 19.79493844 24.58235368 18.09558629 

Best 15.83235394 17.24911643 13.64540794 

Worst 25.14891108 35.40152933 23.71463314 

F5 

Mean 137904.0758 19913.2638 23428.90678 

Median 136214.8956 17605.63115 18423.51808 

Best 35258.55031 5058.029701 1894.988772 

Worst 328666.4809 42387.80596 59789.51065 
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F6 

Mean 1078.779592 255.8387994 188.0916763 

Median 1008.836788 266.952305 190.5620866 

Best 526.1742237 57.3220391 60.66350796 

Worst 1866.281183 439.7603665 330.9353568 

F7 

Mean 33.28031906 0.245331459 0.243996009 

Median 35.0056403 0.260188641 0.211500281 

Best 14.35162676 0.101440715 0.083445477 

Worst 50.89267313 0.358117102 0.460555903 

F8 

Mean -2440.61102 -3256.67229 -4130.077215 

Median -2392.73987 -3009.07919 -4669.85251 

Best -3224.99334 -5215.70129 -4982.721089 

Worst -1790.96598 -2200.87246 -2385.448259 

F9 

Mean 320.4761376 190.0980729 121.5579067 

Median 318.2720187 155.026831 121.8967673 

Best 243.6403234 72.96438084 53.4693864 

Worst 379.8960568 342.0867852 176.2308427 

F10 

Mean 7.324847961 5.665358413 4.660175021 

Median 7.536412733 5.677880288 4.723437616 

Best 5.759002216 4.085778083 3.57263682 

Worst 9.428965138 7.18394192 6.385219579 

F11 

Mean 257.764338 3.242517518 2.727990656 

Median 259.6023529 3.233297821 2.626789908 

Best 212.281809 1.717345236 1.799620715 

Worst 297.1732647 5.091266082 4.080761408 

F12 

Mean 26.24830594 21.3353192 14.23731089 

Median 21.17695237 18.63840238 14.26129755 

Best 14.48796707 8.821202713 8.253926888 

Worst 56.1527603 47.49805702 23.09510908 

F13 

Mean 5092.614313 75.10162969 48.79338415 

Median 4119.966366 60.59183473 47.39745642 

Best 134.2536901 14.35875963 19.68603361 

Worst 15416.25837 248.7940789 81.37142203 

F14 

Mean 9.645956325 11.68133424 6.456472292 

Median 7.873993063 12.80422523 3.96825034 

Best 1.9920309 2.044988043 2.982360568 

Worst 21.98840767 21.07269182 11.7302187 

F15 

Mean -1.03161154 -1.02963086 -1.031619097 

Median -1.03162817 -1.03162092 -1.031620721 

Best -1.03162843 -1.03162700 -1.031626104 

Worst -1.03152558 -1.01173646 -1.031610781 

F16 

Mean -1.03161907 -1.03121599 -1.031608881 

Median -1.03162753 -1.03161855 -1.031611928 

Best -1.03162829 -1.03162703 -1.031628422 

Worst -1.03156682 -1.02767234 -1.031567004 

F17 

Mean 0.397893625 0.63666444 0.488859427 

Median 0.397888396 0.399532652 0.398304505 

Best 0.39788736 0.39792198 0.397985244 

Worst 0.397927773 2.705450285 1.288150039 

F18 

Mean 19.24253825 3.025969543 3.018282041 

Median 3.000004389 3.018194729 3.007742277 

Best 3.000000634 3.002066645 3.000383274 

Worst 84.41509301 3.084483204 3.105115309 

F19 

Mean -3.82638509 -3.84812119 -3.845688033 

Median -3.86277767 -3.86181295 -3.846451226 

Best -3.86278205 -3.86252491 -3.861318238 

Worst -3.51466078 -3.80508905 -3.82508617 

F20 
Mean -2.83942740 -3.1338615 -3.247233326 

Median -3.0775453 -3.17170667 -3.316123914 
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Best -3.32140393 -3.32105656 -3.31960787 

Worst -1.70385981 -2.46152204 -3.112268989 

F21 

Mean -4.48285803 -5.99711332 -6.418504114 

Median -2.65941220 -6.06853195 -7.05067165 

Best -10.1466929 -9.88278152 -10.01131663 

Worst -2.62688415 -0.85651116 -2.557245454 

F22 

Mean -4.77115027 -6.56404120 -8.068106051 

Median -3.90001019 -7.43530393 -10.03578808 

Best -10.3777947 -10.3244122 -10.34618127 

Worst -1.83736142 -1.83081004 -2.752874841 

F23 

Mean -4.39524934 -4.70971959 -8.036502502 

Median -2.87016150 -2.58107176 -9.871776184 

Best -10.5200407 -10.4378230 -10.44829117 

Worst -1.67626435 -1.36894282 -2.390389738 

F24 

Mean 7.522340302 5.795988367 5.056685453 

Median 7.299833317 5.547303377 5.240551964 

Best 6.384820661 4.331429175 3.905496703 

Worst 10.04990265 7.738078747 5.95261499 

F25 

Mean 262.7598764 3.567901951 3.014139304 

Median 266.2726634 2.965835171 2.913141806 

Best 221.0655109 1.689364147 2.032516132 

Worst 291.927323 10.35999068 4.199497302 

Unimodal functions require precise convergence to a single global optimum, which evaluates the precision and 
accuracy of an algorithm. Multimodal functions with multiple local optima test the algorithm's robustness and ability to 
avoid suboptimal solutions, a common risk for premature convergence.  Hybrid functions often need to balance between 
exploration and exploitation across multiple "landscapes" of optimization, that is, if they should not flounder completely 
in any one place while foraging with the hope that somewhere, there may be something worth a piece of its effort. This 
means that the CEC2005 test suite offers an extremely severe and challenging environment for an algorithm's ability to 
produce fine solutions in many different kinds of situations consistently 

The proposed Eight-Figure Grey Wolf Optimizer (Eight-GWO) can overcome the previously indicated problems. 
Exploring in a figure-eight pattern prevents the proposed algorithm from getting stuck at a local optimum. Moreover, it 
can help E-GWO jump out of holes in multimodal landscapes, thereby outperforming GWO and PSO in practice. It 
improved convergence and stability across multiple runs. That demonstrates its strength in maintaining consistent 
performance across several runs simultaneously. Figure 8 a illustrates the ability of the proposed Eight-GWO to escape 
local optima, demonstrating consistent results across multiple runs,  as shown in the boxplot in Figure 8.b 

 

FIGURE  8: Performance of PSO, GWO, and Eight-GWO of F23 (Hybrid Composition) over 10 Individual Runs 

Stagnation in local optima not only affects the efficiency of the optimization algorithm but also impacts its robustness. 
This occurs when the algorithm searches for extended periods without changing its state. It leads to a loss of time without 
meaningful progress. Therefore, the proposed Eight-Figure pattern framework forces the algorithm to switch its search 
strategy from the GWO to the Eight-Figure pattern. This shift also improves processing time since the proposed Eight-
Figure pattern has a lower time complexity than the original GWO. The test performance of the comparative algorithms 
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on the CEC2005 benchmark demonstrated that the proposed Eight-GWO required 23% less time than the original GWO 
and 44% less than the PSO.  

7. CONCLUSION  

This paper presents the eight-figure Gray-Wolf optimizer (eight-GWO) as a new version of GWO. It uses an adaptive 
Eight-Figure search pattern as an alternative searching tool. It enhanced the convergence, exploration, and reducing 
stagnation in local optima. The experimental results of the CEC2005 benchmark suite show that the proposed figure of 
eight GWO outperforms the standard GWO and PSO in terms of convergence speed, solution quality, and robustness.  
These improvements emphasize the effectiveness of an adaptive mechanism for balancing exploration and exploitation. 
Future work could include extending the eight-GWO to solve constrained optimization problems, multi-target tasks, and 
large-scale scenarios and integrating domain-specific knowledge to improve performance further. 
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