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1. INTRODUCTION 

The advent of the Internet of Things (IoT), combined with the advanced communication capabilities of 5G and 6G 

technologies, has revolutionized remote data monitoring and automated decision-making processes [1,2]. While these 

advancements have enhanced operational efficiency, they have also exposed IoT networks to cybersecurity threats, such 

as unauthorized access and data breaches. Network Intrusion Detection Systems (NIDS) have thus become crucial for 

combating threats like denial-of-service (DoS), distributed denial-of-service (DDoS), and sophisticated malware [3,4]. 

Traditional NIDS, which rely on signature-based or anomaly-based detection methods, are effective to some extent but 

struggle to address advanced threats such as zero-day exploits and polymorphic malware [5-7]. The rapid growth of IoT 

devices and cloud computing demands more adaptive and intelligent intrusion detection methods [8]. Machine learning 

(ML)-based NIDS have shown transformative potential by identifying emerging threats and dynamic patterns those 

conventional systems might overlook [9-11]. However, the success of ML-based NIDS heavily depends on the 

availability of high-quality training data, which remains a critical challenge [12-14]. The integration of IoT and cloud 

computing in domains such as healthcare and smart homes has highlighted the need for efficient anomaly detection 

systems. In [15], a lightweight and accurate anomaly detection model for IoT-cloud environments was proposed. 

In [16], an explainable artificial intelligence (XAI)-enabled hybrid transfer learning model was introduced. This 

model leverages BiLAE and BMO algorithms to optimize feature extraction and hyperparameters, enabling effective 

zero-day attack detection even with limited labeled data. Similarly, [17] proposed a WSN IDS combining the CatBoost 

classifier and the Lyrebird Optimization Algorithm (LOA), achieving high detection accuracy for wireless sensor 

networks. Deep learning-based approaches have also been effective for anomaly detection in Industrial IoT (IIoT) 
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networks. In [18], a deep transfer learning model was developed using the EdgeIIoT dataset to detect 14 distinct attack 

types. Resource-efficient techniques, such as model quantization, were employed to enhance performance. In Flying Ad-

hoc Networks (FANETs), [19] addressed real-time detection of DDoS attacks. In [20], a novel intrusion detection model 

for connected autonomous vehicle (CAV) networks was proposed, combining deep learning and optimization techniques 

to handle high-dimensional data and noisy features. Additionally, [21] explored the use of GAN-generated synthetic data 

for training ML models in NIDS, reducing reliance on real-world datasets. Feature selection techniques have been 

employed to reduce computational complexity and enhance detection accuracy [22]. In [23], a novel approach 

transformed network traffic into audio signals, effectively capturing intricate patterns and anomalies. Similarly, [24] 

introduced an IDS combining particle swarm optimization (PSO) with the AdaBoost algorithm to identify key features 

and improve detection accuracy. Finally, [25] proposed a two-phase IDS that integrates supervised and unsupervised 

learning methods to detect a wide range of cyberattacks with high accuracy and low false alarm rates. 

This study addresses these challenges by introducing an Intelligent Cyber-Attack Detection System (ICADS) that 

leverages advanced optimization and ensemble learning techniques. The proposed system integrates the Improved 

Dynamic Arithmetic Optimization Algorithm (IDAOA) for feature selection and the Bagging ensemble method for 

classification. IDAOA enhances the efficiency and accuracy of feature selection through adaptive mechanisms, while the 

Bagging method improves resilience to noise and imbalanced data. Together, these advancements provide a robust 

framework capable of detecting both known and emerging threats in IoT networks. By bridging the gap between dynamic 

threat landscapes and static security measures, the proposed ICADS represents a significant step forward in securing 

modern network infrastructures. The key contributions of this research are summarized as follows: 

• Introducing an efficient wrapper-based metaheuristic optimization framework that leverages enhanced 

exploration capabilities to identify and select the optimal subset of features, maximizing their impact on attack 

detection in intelligent cyber intrusion detection systems. 

• Proposing a new optimization algorithm called the Improved Dynamic Arithmetic Algorithm (IDAOA) with 

dynamic inertia weights and adaptive mutation coefficient to reduce the risk of convergence to local optima in 

selecting the optimal feature subset in intelligent intrusion detection systems.  

This paper investigates the challenges associated with detecting cyber-attacks in IoT networks and proposes an 

Intelligent Cyber-Attack Detection System (ICADS). The remainder of this paper is structured as follows: In Section 2, 

the proposed methodology is described, with a focus on the Improved Dynamic Arithmetic Optimization Algorithm 

(IDAOA) and the Bagging technique for feature selection and classification. In Section 3, the evaluation results are 

presented, demonstrating the effectiveness of the proposed system. Finally, in Section 4, the study is concluded, and 

potential directions for future research are discussed. 

 

2. PROPOSED METHOD 

The objective of this study is to present an effective and efficient model for intrusion detection by integrating the 

Improved Dynamic Arithmetic Optimization Algorithm (IDAOA) with the Bagging technique for classification. In the 

feature selection phase, IDAOA is employed as a wrapper method. It leverages a balanced search capability between 

local exploration and global exploitation to identify the optimal subset of features. These selected features play a pivotal 

role in reducing the model's complexity and enhancing the accuracy of the intrusion detection system. The proposed 

IDAOA incorporates dynamic inertia weights to accelerate convergence speed. Additionally, the use of dynamic 

coefficient of mutation and triangular mutation strategy enhances the algorithm’s ability to avoid local optima. These 

dynamic update operators for coefficients and mutation improve the algorithm’s adaptability to complex and dynamic 

datasets. For the classification phase, the Bagging technique is utilized to develop a robust and noise-resilient system, 

capable of handling imbalanced data effectively. By combining predictions from multiple classifiers, Bagging reduces 

generalization error and significantly enhances the system's accuracy and stability. This integration equips the model not 

only to excel in detecting known attack types but also to effectively identify new and unknown attack patterns. Figure 1 

illustrates the proposed intrusion detection method using the IDAOA approach. 
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FIGURE 1.  Presented Intrusion Detection Method using IDAOA based Wrapper feature selection 

 

 

2.1 DATA PREPROCESSING 

In the preprocessing stage of the proposed method, data normalization is performed using the Min-Max technique. 

This method aims to normalize feature values within the range [0,1], reducing the influence of differing feature scales on 

the effectiveness of learning algorithms. Min-Max normalization ensures faster and more precise optimization while 

improving the classification model’s accuracy and stability. The Min-Max normalization is computed using the following 

equation: 

𝑥𝑛𝑜𝑟𝑚 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                                                           (1) 

Where, x is the original value of the data, 𝑥𝑚𝑖𝑛  denotes the minimum value of the feature across all data, 𝑥𝑚𝑎𝑥  is the 

maximum value of the feature across all data, and 𝑥𝑛𝑜𝑟𝑚 represents the normalized feature value. The transformation 

described maps original data values to the range [0,1], scaling the smallest value to 0 and the largest to 1, with intermediate 

values adjusted linearly. This Min-Max normalization ensures all features contribute equally during training, preventing 

larger scales from dominating. A key benefit is that it preserves the original data distribution, which is crucial for 

algorithms like Bagging, as it enhances model performance. By using this method, the model analyzes normalized data 

more accurately, reduces noise from feature scale differences, and improves intrusion detection precision. 

 

2.2 FEATURE SELECTION USING IDAOA 

The aim of this work is to identify an optimal subset of features using the Improved Dynamic Arithmetic 

Optimization Algorithm (IDAOA) to maximize the accuracy of the proposed method. IDAOA is an optimization 

algorithm based on arithmetic operators such as addition, subtraction, multiplication, and division. This algorithm 

operates through two primary phases: exploration and exploitation. Figure 2 presents the IDAOA flowchart, and the 

following outlines the algorithm steps for identifying the optimal feature subset. 

Step 1: Initialization 

In this step, the optimization variables of IDAOA, namely α and μ, are initialized. The parameter α, which is a control 

parameter that determines the exploitation precision at each iteration, is set to 5 Similarly, the parameter μ, a control 

variable regulating the search process, is initialized to 0.5. 

Step 2: Initial Potential Solutions 

In the IDAOA algorithm, every initial solution X signifies a possible solution to addressing the problem, particularly 

the selection of optimal features for intrusion detection. Each initial solution X contains indices of the features considered 

optimal and is iteratively updated by the algorithm to approach the optimal solution. The initial population of solutions 

in the IDAOA algorithm is generated randomly within the problem space and updated in each iteration. Candidate initial 

solutions are produced randomly according to Equation (2). Subsequently, the best candidate solution at each iteration is 

identified and regarded as the best or near-optimal solution so far. In this work, the feature indices are treated as X. 

 

x =

[
 
 
 
 
 

𝑥1,1 ⋯ …
𝑥2,1 ⋯ ⋯
⋯
⋮

𝑥𝑁−1,1
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⋯

⋯
⋮
⋯
⋯
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⋯
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⋯
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Here, each candidate solution is gradually refined toward the optimal solution through successive iterations. 

 
FIGURE 2.  Feature Selection 

 

Step 3: Calculating the Fitness Function 

A critical aspect of optimization algorithms lies in defining the objective function. Here, we describe the process of 

formulating the objective function for IDAOA to identify an optimal feature subset. The fitness function employed in 

this work is defined as the accuracy of intrusion detection achieved using the Bagging algorithm. Specifically, a subset 

of features identified by the IDAOA algorithm is fed into the Bagging algorithm. The Bagging algorithm then performs 

intrusion detection using these features. The detection accuracy is computed and used as the fitness value, expressed as: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                              (3) 

In the equation above, TP, TN, FP, and FN represent True Positive, True Negative, False Positive, and False 

Negative, respectively. 

 

Step 4: Identifying the Best Solution 

Based on the fitness values calculated in the previous step, the best solution identified so far is determined in this 

step. This involves selecting the solution with the highest fitness value up to the current iteration, ensuring optimal feature 

subset selection. 

 

Step 5: Updating the Math Optimizer Acceleration (MOA) 

Before starting the AOA, the search phase (either exploration or exploitation) must be determined. The acceleration 

function of the Math Optimizer is calculated using the following equation: 

𝑀𝑂𝐴(𝐶_𝐼𝑡𝑒𝑟) = 𝑀𝑖𝑛 + 𝐶_𝐼𝑡𝑒𝑟 (
𝑀𝑎𝑥−𝑀𝑖𝑛 

𝑀  _𝐼𝑡𝑒𝑟
)                                             (4) 

Where 𝑀𝑂𝐴(𝐶_𝐼𝑡𝑒𝑟) represents the value of the acceleration function at iteration 𝑡, calculated using the above 

equation. 𝐶_𝐼𝑡𝑒𝑟 represents the current iteration, which varies from 1 to the maximum iteration limit (𝑀  _𝐼𝑡𝑒𝑟). 𝑀𝑖𝑛 and 

𝑀𝑎𝑥 are the minimum and maximum values of the acceleration function, respectively. 

 

Step 6: Updating the Mathematical Optimizer Probability (MOP) 

The MOP probability is updated using Equation (5): 
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𝑀 𝑂 𝑃(𝐶𝐼𝑡𝑒𝑟 + 1) = 1 −
𝐶𝐼𝑡𝑒𝑟

1
∝

𝑀𝐼𝑡𝑒𝑟

1
∝

                                                                  (5) 

Where, 𝑀 𝑂 𝑃(𝐶𝐼𝑡𝑒𝑟)is the value of the MOP probability function at the current iteration.  𝑀𝐼𝑡𝑒𝑟 is the maximum 

count of iterations. (𝐶𝐼𝑡𝑒𝑟) denotes the current iteration. 

 

Step 7: Solution Position Updates 

In this step, the following procedure is repeated for all solutions (i.e., all members of population X). First, three 

random numbers between 0 and 1, denoted as 𝑟1, 𝑟2 and 𝑟3, are generated. If, for any given solution, 𝑟1 is greater than 

the MOA value, the exploration phase is executed; otherwise, the exploitation phase is carried out. 

 

Step 8: Exploration Phase 

If 𝑟2 < 0.5, the division operator (D) is applied. In this case, the solution position is updated according to the first 

rule in the following equation. Otherwise, the multiplication operator (M) is applied, and the solution position is updated 

according to the second rule: 

𝑥𝑖.𝑗(𝐶𝐼𝑡𝑒𝑟 + 1) = {
𝑏𝑒𝑠𝑡 (𝑥𝑖) ÷ (𝑀 𝑂 𝑃+ ∈) × ((𝑈𝐵𝑗 ) − 𝐿𝐵𝑖) × 𝜇 × 𝐿𝐵𝑖),     𝑟2 < 0.5

𝑏𝑒𝑠𝑡 (𝑥𝑗) × 𝑀 𝑂 𝑃 × ((𝑈𝐵𝑗 ) − 𝐿𝐵𝑖) × 𝜇 × 𝐿𝐵𝑖),     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        (6) 

Where: 𝑥𝑖(𝐶𝐼𝑡𝑒𝑟 + 1) is the position of the j-th dimension of solution i at the next iteration. 𝑥𝑖.𝑗(𝐶𝐼𝑡𝑒𝑟) denotes the 

position of the j-th dimension of solution i in the current iteration. 𝑏𝑒𝑠𝑡 (𝑥𝑖) represents the best solution found so far. ∈ 

is a constant. 𝑈𝐵𝑗  and 𝐿𝐵𝑗  are the upper and lower bounds for the j-th dimension. 

 

Step 9: Exploitation Phase 

If 𝑟3 < 0.5, the subtraction operator (S) is applied, updating the solution position based on the first rule in Equation 

(7). Otherwise, the addition operator (A) is applied, and the position is updated based on the second rule: 

𝑥𝑖.𝑗(𝐶𝐼𝑡𝑒𝑟 + 1) = {
𝑏𝑒𝑠𝑡 (𝑥𝑗) − 𝑀 𝑂 𝑃 × ((𝑈 𝐵𝑗 ) − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗),     𝑟3 < 0.5

𝑏𝑒𝑠𝑡 (𝑥𝑗) + 𝑀 𝑂 𝑃 × ((𝑈 𝐵𝑗 ) − 𝐿𝐵𝑗) × 𝜇 × 𝐿𝐵𝑗),     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                  (7) 

Step 10: Dynamic Inertia Weights Update 

The AOA algorithm is susceptible to getting stuck in local optima and exhibits slow convergence during the search, 

as it updates solutions solely based on the global best position. To address this, the IDAOA algorithm employs dynamic 

inertia weights to improve the convergence speed of AOA. Dynamic inertia weights directly control the rate of solution 

updates during each optimization step. Larger inertia weights at the initial stages of the algorithm reduce rapid changes 

in potential solutions X within the search space, allowing for a broader exploration. Conversely, smaller inertia weights 

in the later stages limit the movement of solutions within a narrower range, enhancing exploitation. In this work, 

nonlinear, exponentially decreasing dynamic inertia weights are introduced to enhance the AOA algorithm's search 

efficiency, thereby improving convergence speed. The dynamic inertia weights are calculated as follows: 

𝑤(𝑡) = 𝑐 × 𝑤𝑏𝑒𝑔𝑖𝑛 (
𝑤𝑏𝑒𝑔𝑖𝑛

𝑤𝑒𝑛𝑑
)

1

(
1+𝑡
𝑇 )                                                                              (8) 

Where: 

𝑤𝑏𝑒𝑔𝑖𝑛  and 𝑤𝑒𝑛𝑑  represent maximum and minimum inertia weights, respectively. 𝐶  is a random constant 

dynamically varying around 1.𝑡 is current iteration. 𝑇 denotes Maximum number of iterations. By integrating dynamic 

inertia weights, the position update equations (6) and (7) in the AOA algorithm are modified as follows: 

 

𝑥𝑖.𝑗(𝐶𝐼𝑡𝑒𝑟 + 1) = {
𝑤(𝑡) × 𝑏𝑒𝑠𝑡 (𝑥𝑖) ÷ (𝑀𝑂𝑃+ ∈) × ((𝑈𝐵𝑗 ) − 𝐿𝐵𝑖) × 𝜇 × 𝐿𝐵𝑖),     𝑟2 < 0.5

𝑤(𝑡) × 𝑏𝑒𝑠𝑡 (𝑥𝑗) × 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 ) − 𝐿𝐵𝑖) × 𝜇 × 𝐿𝐵𝑖),     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       (9) 

𝑥𝑖.𝑗(𝐶𝐼𝑡𝑒𝑟 + 1) = {
𝑤(𝑡) × 𝑏𝑒𝑠𝑡 (𝑥𝑗) − 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 ) − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗),     𝑟3 < 0.5

𝑤(𝑡) × 𝑏𝑒𝑠𝑡 (𝑥𝑗) + 𝑀𝑂𝑃 × ((𝑈𝐵𝑗 ) − 𝐿𝐵𝑗) × 𝜇 × 𝐿𝐵𝑗),     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
             (10) 

Step 11: Dynamic Mutation 

This study presents a dynamic mutation coefficient that grows as the number of iterations increases, providing 

individuals with a specific probability to explore different search spaces. Employing this approach effectively broadens 

the search domain and enhances the algorithm's ability to escape local optima. The calculation method for the dynamic 

coefficient of mutation is provided in Equation (11). 

 

𝑝 = 0.2 + 0.5 ×
𝑡

𝑇
                                                           (11) 

 



Mohammed, Wasit Journal for Pure Science Vol. 4 No. 2 (2025) p. 8-19 

 

 

 13 

Where: 𝑝 represents Dynamic mutation probability, which grows as the number of iterations increases. 

In this study A triangular mutation strategy is applied to diversify the population. This strategy prevents the algorithm 

from getting trapped in a local optimum during the search process. This strategy involves selecting three random solutions 

and combining them as follows: 

 

𝑋(𝑡) =
𝑋𝑟1+𝑋𝑟2+𝑋𝑟3

3
+ (𝑝2 − 𝑝1) × (𝑋𝑟1 − 𝑋𝑟2) + (𝑝3 − 𝑝2) × (𝑋𝑟2 − 𝑋𝑟3) + (𝑝1 − 𝑝3) × (𝑋𝑟3 − 𝑋𝑟1)       (12) 

 

Here: 𝑋𝑟1  , 𝑋𝑟2  and 𝑋𝑟3 denote Randomly selected solutions. (𝑝2 − 𝑝1) , (𝑝3 − 𝑝2)  and (𝑝1 − 𝑝3)  represent 

weights-perturbed patterns, 𝑝1, 𝑝2 and 𝑝3 are calculated as: 

𝑝1 =
|𝑓(𝑋𝑟1)|

�́�
                                                                  (13) 

𝑝2 =
|𝑓(𝑋𝑟2)|

�́�
                                                                 (14) 

𝑝3 =
|𝑓(𝑋𝑟3)|

�́�
                                                                   (15) 

The triangular mutation strategy ensures the integration of information from randomly selected solutions, increasing 

population diversity and reducing the likelihood of getting trapped in local optima. 

 

Step 12: Termination Condition 

Steps 3 to 11 are repeated until a termination condition is met. In this work, the termination condition is defined as 

reaching the maximum number of iterations. 

 

2.3 CLASSIFICATION USING BAGGING ALGORITHM 

This research utilizes the Bagging (Bootstrap Aggregating) technique to improve the reliability and accuracy of 

intrusion detection. Bagging, a prominent ensemble learning technique, is developed to reduce model variance and 

improve generalizability. It achieves this by randomly sampling subsets of the original data with replacement and training 

separate classifiers on these subsets. Each classifier thus observes only a portion of the dataset and constructs its model 

accordingly [26]. In the proposed method, subset selection is performed through sampling with replacement, meaning 

that individual data points may appear in multiple subsets. This strategy ensures diversity among classifiers, reducing the 

risk of high correlation between models. By mitigating the effects of random fluctuations in the data and resisting 

overfitting, Bagging provides superior accuracy in identifying various intrusion attack types. Furthermore, Bagging 

consolidates predictions from multiple classifiers to form a stronger and more stable final model, thereby improving the 

intrusion detection system's performance when handling complex and diverse datasets. These features make Bagging an 

ideal choice for cybersecurity applications in dynamic and heterogeneous environments. Figure 3 provides an illustration 

of the overall functionality of this framework. 

 

 
FIGURE 3.  Classification Using Bagging Technique 

 

 

 

2.4 Computational Complexity of the IDAOA Optimization Algorithm 

The computational complexity of the Improved Dynamic Arithmetic Optimization Algorithm (IDAOA) is a function 

of the number of particles (population size) N, the problem dimensions (number of variables) d, and the number of 

iterations I, and is expressed as follows: 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 (𝐼𝐷𝐴𝑂𝐴) = 𝑂(𝑓(𝑁. 𝑑. 𝐼))             (16) 
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Thus, the computational complexity of this algorithm is analyzed in the following five stages: 

• Initialization 

In this stage, the initial population of NNN solutions is randomly generated. This process has a complexity of O(N∙d) 

since each of the N particles must be assigned an initial value in a d-dimensional space. 

• Fitness Evaluation 

Each member of the population must be evaluated using the objective function. Assuming that the objective function 

has a computational complexity of O(F), the complexity of this stage is given by O(N∙F). 

• Particle Position Update 

During each iteration, the IDAOA algorithm updates the position of particles using arithmetic operations (addition, 

subtraction, multiplication, and division). This process is performed for all N particles across d dimensions, resulting in 

O(N∙d) complexity. 

• Termination Condition Check and Iterations Execution 

The algorithm runs for a maximum of III iterations. Therefore, the overall complexity at this stage is O(I∙(N∙d+N∙F)). 

• Final Complexity 

The computational cost of the fitness function, denoted as FFF, depends on the number of features or problem 

dimensions. In the worst-case scenario, O(F) is equivalent to O(d). Thus, the final complexity of the algorithm can be 

expressed as: 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 (𝐼𝐷𝐴𝑂𝐴) =  𝑂(𝐼 ∙ 𝑁 ∙ 𝑑)                (17)  

The efficiency of the IDAOA algorithm, in terms of computational complexity, depends on the population size, the 

number of dimensions, and the number of iterations. This complexity is comparable to other metaheuristic optimization 

algorithms such as Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). However, depending on the 

problem structure and initialization strategy, IDAOA may exhibit superior convergence performance. 

 

 

3. SIMULATIONS AND RESULTS 

This section evaluates the proposed method's efficiency leveraging parameters such as Recall, F-Score, Precision 

and Accuracy. The efficacy of the proposed method is evaluated in comparison to other leading techniques. The 

simulations were conducted using MATLAB (2022b) on a system equipped with an NVIDIA GPU, 32 GB RAM, an 

Intel Core i7 processor, and a Windows operating system. Additionally, classification accuracy was measured using 10-

fold cross-validation, where the model was trained and tested iteratively with each fold serving as the validation set. The 

results presented in the tables represent the averages of 50 independent runs of the program. 

 

3.1 DATASET 

This work utilizes the NSL-KDD dataset, an improved version of the KDD'99 dataset designed to address its 

predecessor's limitations. The NSL-KDD database comprises a total of 148,517 records, divided into 125,973 training 

samples and 22,544 testing samples. It features 41 attributes and categorizes network traffic into five classes: four attack 

classes (DoS, Probe, R2L, U2R) and one normal class. Table 1 summarizes the number of samples in each class for the 

training and testing datasets. 

 

 

Table 1. Number of Samples in Each Class in KDD-Train and KDD-Test Datasets 

Attack Types 
Number of samples in KDD-train 

dataset 

Number of Samples in KDD-test 

dataset 

Normal 67343 9711 

DoS 45927 7456 

Probe 11656 2421 

R2L 995 2756 

U2R 52 200 

Total 125973 22544 

 

3.2 EVALUATION METRICS 

In classification problems, classification accuracy is the primary criterion. The accuracy for a specific class is 

calculated as the proportion of correctly classified samples for that class relative to the total number of misclassified 

instances. The performance of the proposed method in this study is assessed using the metrics of Precision, Recall, F-

score, and Accuracy. The mathematical formulas for calculating these metrics are presented in the following equations: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑎𝑐𝑐) =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                     (18) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                           (19) 
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𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                  (20) 

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑟𝑒𝑐𝑎𝑙𝑙∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                                                           (21) 

In the equations above, TP represents true positives, TN represents true negatives, FP represents false positives, and 

FN represents false negatives. 

 

3.3 EVALUATION RESULTS 

Figure 4 illustrates the confusion matrix from simulating the proposed method, demonstrating its effectiveness in 

detecting intrusions across five classes: DoS, Normal, Prob, R2L, and U2R. The matrix shows actual classes in rows and 

predicted classes in columns. For the DoS class, out of 7,546 samples, 7,449 were correctly classified, resulting in an 

accuracy of 99.9%. The Normal class achieved 100% accuracy with all 9,711 samples correctly classified. In the Prob 

class, 2,332 out of 2,421 samples were accurately predicted, yielding 96.3% accuracy. The R2L class had 2,731 correct 

identifications out of 2,756 samples, resulting in 99.1% accuracy. Lastly, the U2R class saw 1,997 out of 2,000 samples 

correctly classified, demonstrating an accuracy of 98.5%. Overall, the method achieves high accuracy in identifying all 

classes, with four classes exceeding 98.7% accuracy and perfect accuracy for the Normal class, showcasing its capability 

in effective intrusion detection. 

 
FIGURE 4.  Confusion Matrix for Test Data 

 

The Receiver Operating Characteristic (ROC) curve serves as a graphical representation to evaluate a classifier's 

effectiveness across different thresholds in machine learning. It is constructed by plotting the True Positive Rate (TPR) 

against the False Positive Rate (FPR), two critical performance metrics. TPR, also known as recall, is the proportion of 

all positive cases correctly identified. FPR represents the proportion of negative samples incorrectly classified as positive 

and is defined as follows: 

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁+𝐹𝑃
                                                                        (22) 

The trade-off between True Positive Rate (TPR) and False Positive Rate (FPR) across different thresholds can be 

visualized by plotting them on an ROC curve. An effective classifier will produce a curve that gravitates toward the top-

left corner, representing a high TPR and a low FPR. In contrast, a suboptimal classifier’s curve tends toward the bottom-

right corner, characterized by low TPR and high FPR. A random classifier generates a diagonal line on the ROC graph, 

indicating equal TPR and FPR values. As depicted in Figure 5, the ROC curve for our model closely approaches the top-

left corner, signifying a high TPR and a low FPR. This observation underscores the model's exceptional ability to 

accurately detect intrusions. 
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FIGURE 5.  ROC Curve for the Proposed Method 

 

Figure 6 illustrates a comparison of intrusion detection outcomes achieved by the presented method and several 

alternative approaches, including GAN-KNN, RF, XG-Boost, CNN, CNN-LSTM, KNN, Adaboost, and Naïve Bayes, 

using a bar chart that evaluates the performance based on Precision, Recall, and F-score. As shown in Figure 7, the 

proposed method outperforms all the other methods in terms of these metrics. The weakest performance in terms of 

Precision and F-score is observed in the GAN-KNN method. Furthermore, the weakest performance in terms of Recall 

is associated with the CNN-LSTM method. These results underline the superior performance of the proposed method 

across all evaluated criteria. 

 

 
FIGURE 6.  Comparison of the Proposed Method in Terms of Precision, Recall, and F-score with Other 

Methods 
 

Table 2 presents a detailed comparison of the proposed method against alternative approaches for intrusion detection, 

emphasizing the Accuracy metric. As observed, the proposed method achieves the best performance with an accuracy of 

99.45%, followed by the XG-Boost algorithm, which achieves 99.34% accuracy. The comparison highlights a minimum 

1% improvement in the accuracy of the proposed method over all other methods, demonstrating its superior capability in 

accurately identifying intrusions. 
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Table 2. Results Comparison in Terms of Accuracy 

Author Method Acc. 

Rahman et al. [21] GAN-KNN 84.00 

Kumar et al. [22] RF 98.33 

Kumar et al. [22] XG-Boost 99.34 

Aldarwbi et al. [23] CNN 84.82 

Aldarwbi et al. [23] CNN-LSTM 88.59 

Sun et al. [24] KNN 92.00 

Sun et al. [24] Adaboost 98.50 

Vishwakarma et al. [25] Naïve Base 97.10 

Presented Method Wrapper Based AOA + Bagging Classifier 99.45 

 

In Table 3, the proposed method is compared with other optimization techniques in terms of accuracy criteria. As 

can be seen, the proposed method has the best performance with an accuracy of 99.45 percent. In addition, after the 

proposed method, the AOA algorithm has the best performance with an accuracy of 98.31 compared to other optimization 

algorithms. Also, the WOA, PSO, MPA and GA algorithms have achieved accuracies of 98.23, 97.94, 97.47 and 96.99 

percent. Comparison of the results shows the superiority of the proposed algorithm over other optimization techniques. 

 

Table 3. Results Comparison of proposed method against other optimization techniques in Terms of 

Accuracy 

Method Acc. 

MPA 97.47 

WOA 98.23 

GA 96.99 

PSO 97.94 

AOA 98.31 

Wrapper Based AOA 99.45 

 

 

4. CONCLUSION 

This study introduces a novel Intelligent Cyber-Attack Detection System (ICADS) designed to address critical 

challenges in safeguarding IoT networks from increasingly sophisticated cyber threats. The proposed system integrates 

the Improved Dynamic Arithmetic Optimization Algorithm (IDAOA) for feature selection and the Bagging ensemble 

method for classification, offering a comprehensive framework that enhances both efficiency and accuracy in intrusion 

detection. The IDAOA algorithm demonstrated exceptional capability in optimizing feature selection by leveraging 

dynamic inertia weights and a triangular mutation strategy. These mechanisms ensured a robust balance between 

exploration and exploitation, enabling the selection of a feature subset that significantly reduces computational 

complexity without compromising detection performance. Meanwhile, the Bagging method provided resilience against 

data imbalance and noise, further improving the system’s generalization ability and robustness. The experimental results, 

validated on the NSL-KDD dataset, highlight the effectiveness of the proposed system, achieving an impressive accuracy 

of 99.45%. This performance surpasses several state-of-the-art methods, showcasing the system’s superiority in handling 

both known and novel attack patterns. The findings underscore the potential of combining intelligent optimization 

techniques with ensemble learning to overcome inherent limitations in traditional intrusion detection systems. Future 

work will focus on expanding the system's applicability by testing it on real-time IoT environments and diverse datasets 

to evaluate its scalability and adaptability. Additional research could explore integrating advanced deep learning 

techniques with the ICADS framework to further enhance detection capabilities and address evolving cyber threats. This 

study contributes significantly to the field of cybersecurity, offering a practical and effective approach to strengthening 

the resilience of IoT networks against malicious activities. 
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