

*Corresponding author: author@organization.edu.co
https://wjps.uowasit.edu.iq/index.php/wjps/index

8

Wasit Journal for Pure Science

Journal Homepage: https://wjps.uowasit.edu.iq/index.php/wjps/index
e-ISSN: 2790-5241 p-ISSN: 2790-5233

Intelligent Cyber-Attack Detection in IoT Networks Using

IDAOA-Based Wrapper Feature Selection

Mohammed Abdullah Amer1 *, Ryna Svyd2

1Wasit health Directorate, Kut, IRAQ
2Vasyl Stefanyk Precarpathian National University, The department of Computer Engineering and Electronics, Ukraine

*Corresponding Author: Mohammed Abdullah Amer

DOI: https://doi.org/10.31185/wjps.731
Received 12 January 2025; Accepted 18 March 2025; Available online 30 Jun 2025

1. INTRODUCTION

The advent of the Internet of Things (IoT), combined with the advanced communication capabilities of 5G and 6G

technologies, has revolutionized remote data monitoring and automated decision-making processes [1,2]. While these

advancements have enhanced operational efficiency, they have also exposed IoT networks to cybersecurity threats, such

as unauthorized access and data breaches. Network Intrusion Detection Systems (NIDS) have thus become crucial for

combating threats like denial-of-service (DoS), distributed denial-of-service (DDoS), and sophisticated malware [3,4].

Traditional NIDS, which rely on signature-based or anomaly-based detection methods, are effective to some extent but

struggle to address advanced threats such as zero-day exploits and polymorphic malware [5-7]. The rapid growth of IoT

devices and cloud computing demands more adaptive and intelligent intrusion detection methods [8]. Machine learning

(ML)-based NIDS have shown transformative potential by identifying emerging threats and dynamic patterns those

conventional systems might overlook [9-11]. However, the success of ML-based NIDS heavily depends on the

availability of high-quality training data, which remains a critical challenge [12-14]. The integration of IoT and cloud

computing in domains such as healthcare and smart homes has highlighted the need for efficient anomaly detection

systems. In [15], a lightweight and accurate anomaly detection model for IoT-cloud environments was proposed.

In [16], an explainable artificial intelligence (XAI)-enabled hybrid transfer learning model was introduced. This

model leverages BiLAE and BMO algorithms to optimize feature extraction and hyperparameters, enabling effective

zero-day attack detection even with limited labeled data. Similarly, [17] proposed a WSN IDS combining the CatBoost

classifier and the Lyrebird Optimization Algorithm (LOA), achieving high detection accuracy for wireless sensor

networks. Deep learning-based approaches have also been effective for anomaly detection in Industrial IoT (IIoT)

ABSTRACT: In the realm of cybersecurity, the increasing sophistication of cyber-attacks demands the creation of

sophisticated intrusion detection systems (IDS) designed to accurately detect and counteract threats in real-time. This

study presents an innovative framework that integrates the Improved Dynamic Arithmetic Optimization Algorithm

(IDAOA) with a Bagging technique to enhance the performance of intelligent cyber intrusion detection systems. The

IDAOA serves as a wrapper-based feature selection method, optimizing the identification of the most impactful

features while balancing local exploration and global exploitation. The Bagging technique further strengthens the

classification phase by combining predictions from multiple classifiers, effectively addressing issues of class

imbalance and improving overall system robustness. Evaluation of the proposed system using the NSL-KDD dataset

demonstrates its superior performance, achieving an accuracy of 99.45%, significantly outperforming state-of-the-art

approaches. Moreover, the proposed method achieved Precision, Recall, and F-score values of 99.63, 99.52, and

99.57, respectively, indicating its high reliability. These findings underscore the potential of intelligent optimization

and ensemble learning techniques in advancing cybersecurity for IoT networks.

Keywords: Cybersecurity, Intrusion Detection System (IDS), Machine Learning, Optimization Algorithms

 ©2025 THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE

https://wjps.uowasit.edu.iq/index.php/wjps/index
https://doi.org/10.31185/wjps.731
https://orcid.org/signin
https://orcid.org/signin
https://creativecommons.org/licenses/by/4.0/

Mohammed, Wasit Journal for Pure Science Vol. 4 No. 2 (2025) p. 8-19

 9

networks. In [18], a deep transfer learning model was developed using the EdgeIIoT dataset to detect 14 distinct attack

types. Resource-efficient techniques, such as model quantization, were employed to enhance performance. In Flying Ad-

hoc Networks (FANETs), [19] addressed real-time detection of DDoS attacks. In [20], a novel intrusion detection model

for connected autonomous vehicle (CAV) networks was proposed, combining deep learning and optimization techniques

to handle high-dimensional data and noisy features. Additionally, [21] explored the use of GAN-generated synthetic data

for training ML models in NIDS, reducing reliance on real-world datasets. Feature selection techniques have been

employed to reduce computational complexity and enhance detection accuracy [22]. In [23], a novel approach

transformed network traffic into audio signals, effectively capturing intricate patterns and anomalies. Similarly, [24]

introduced an IDS combining particle swarm optimization (PSO) with the AdaBoost algorithm to identify key features

and improve detection accuracy. Finally, [25] proposed a two-phase IDS that integrates supervised and unsupervised

learning methods to detect a wide range of cyberattacks with high accuracy and low false alarm rates.

This study addresses these challenges by introducing an Intelligent Cyber-Attack Detection System (ICADS) that

leverages advanced optimization and ensemble learning techniques. The proposed system integrates the Improved

Dynamic Arithmetic Optimization Algorithm (IDAOA) for feature selection and the Bagging ensemble method for

classification. IDAOA enhances the efficiency and accuracy of feature selection through adaptive mechanisms, while the

Bagging method improves resilience to noise and imbalanced data. Together, these advancements provide a robust

framework capable of detecting both known and emerging threats in IoT networks. By bridging the gap between dynamic

threat landscapes and static security measures, the proposed ICADS represents a significant step forward in securing

modern network infrastructures. The key contributions of this research are summarized as follows:

• Introducing an efficient wrapper-based metaheuristic optimization framework that leverages enhanced

exploration capabilities to identify and select the optimal subset of features, maximizing their impact on attack

detection in intelligent cyber intrusion detection systems.

• Proposing a new optimization algorithm called the Improved Dynamic Arithmetic Algorithm (IDAOA) with

dynamic inertia weights and adaptive mutation coefficient to reduce the risk of convergence to local optima in

selecting the optimal feature subset in intelligent intrusion detection systems.

This paper investigates the challenges associated with detecting cyber-attacks in IoT networks and proposes an

Intelligent Cyber-Attack Detection System (ICADS). The remainder of this paper is structured as follows: In Section 2,

the proposed methodology is described, with a focus on the Improved Dynamic Arithmetic Optimization Algorithm

(IDAOA) and the Bagging technique for feature selection and classification. In Section 3, the evaluation results are

presented, demonstrating the effectiveness of the proposed system. Finally, in Section 4, the study is concluded, and

potential directions for future research are discussed.

2. PROPOSED METHOD

The objective of this study is to present an effective and efficient model for intrusion detection by integrating the

Improved Dynamic Arithmetic Optimization Algorithm (IDAOA) with the Bagging technique for classification. In the

feature selection phase, IDAOA is employed as a wrapper method. It leverages a balanced search capability between

local exploration and global exploitation to identify the optimal subset of features. These selected features play a pivotal

role in reducing the model's complexity and enhancing the accuracy of the intrusion detection system. The proposed

IDAOA incorporates dynamic inertia weights to accelerate convergence speed. Additionally, the use of dynamic

coefficient of mutation and triangular mutation strategy enhances the algorithm’s ability to avoid local optima. These

dynamic update operators for coefficients and mutation improve the algorithm’s adaptability to complex and dynamic

datasets. For the classification phase, the Bagging technique is utilized to develop a robust and noise-resilient system,

capable of handling imbalanced data effectively. By combining predictions from multiple classifiers, Bagging reduces

generalization error and significantly enhances the system's accuracy and stability. This integration equips the model not

only to excel in detecting known attack types but also to effectively identify new and unknown attack patterns. Figure 1

illustrates the proposed intrusion detection method using the IDAOA approach.

Mohammed, Wasit Journal for Pure Science Vol. 4 No. 2 (2025) p. 8-19

 10

FIGURE 1. Presented Intrusion Detection Method using IDAOA based Wrapper feature selection

2.1 DATA PREPROCESSING

In the preprocessing stage of the proposed method, data normalization is performed using the Min-Max technique.

This method aims to normalize feature values within the range [0,1], reducing the influence of differing feature scales on

the effectiveness of learning algorithms. Min-Max normalization ensures faster and more precise optimization while

improving the classification model’s accuracy and stability. The Min-Max normalization is computed using the following

equation:

𝑥𝑛𝑜𝑟𝑚 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 (1)

Where, x is the original value of the data, 𝑥𝑚𝑖𝑛 denotes the minimum value of the feature across all data, 𝑥𝑚𝑎𝑥 is the

maximum value of the feature across all data, and 𝑥𝑛𝑜𝑟𝑚 represents the normalized feature value. The transformation

described maps original data values to the range [0,1], scaling the smallest value to 0 and the largest to 1, with intermediate

values adjusted linearly. This Min-Max normalization ensures all features contribute equally during training, preventing

larger scales from dominating. A key benefit is that it preserves the original data distribution, which is crucial for

algorithms like Bagging, as it enhances model performance. By using this method, the model analyzes normalized data

more accurately, reduces noise from feature scale differences, and improves intrusion detection precision.

2.2 FEATURE SELECTION USING IDAOA

The aim of this work is to identify an optimal subset of features using the Improved Dynamic Arithmetic

Optimization Algorithm (IDAOA) to maximize the accuracy of the proposed method. IDAOA is an optimization

algorithm based on arithmetic operators such as addition, subtraction, multiplication, and division. This algorithm

operates through two primary phases: exploration and exploitation. Figure 2 presents the IDAOA flowchart, and the

following outlines the algorithm steps for identifying the optimal feature subset.

Step 1: Initialization

In this step, the optimization variables of IDAOA, namely α and μ, are initialized. The parameter α, which is a control

parameter that determines the exploitation precision at each iteration, is set to 5 Similarly, the parameter μ, a control

variable regulating the search process, is initialized to 0.5.

Step 2: Initial Potential Solutions

In the IDAOA algorithm, every initial solution X signifies a possible solution to addressing the problem, particularly

the selection of optimal features for intrusion detection. Each initial solution X contains indices of the features considered

optimal and is iteratively updated by the algorithm to approach the optimal solution. The initial population of solutions

in the IDAOA algorithm is generated randomly within the problem space and updated in each iteration. Candidate initial

solutions are produced randomly according to Equation (2). Subsequently, the best candidate solution at each iteration is

identified and regarded as the best or near-optimal solution so far. In this work, the feature indices are treated as X.

x =

[

𝑥1,1 ⋯ …
𝑥2,1 ⋯ ⋯
⋯
⋮

𝑥𝑁−1,1

𝑥𝑁,1

⋯
⋮
⋯
⋯

⋯
⋮
⋯
⋯

𝑥1,𝑗 𝑥1,𝑛−1 𝑥1,𝑛−1

𝑥2,𝑗 ⋯ 𝑥2,𝑛
⋯
⋮

𝑥𝑁−1,𝑗

𝑥𝑁,𝑗

⋯
⋮
⋯

𝑥𝑁,𝑛−1

⋯
⋮

𝑥𝑁−1,𝑛

𝑥𝑁,𝑛]

 (2)

Mohammed, Wasit Journal for Pure Science Vol. 4 No. 2 (2025) p. 8-19

 11

Here, each candidate solution is gradually refined toward the optimal solution through successive iterations.

FIGURE 2. Feature Selection

Step 3: Calculating the Fitness Function

A critical aspect of optimization algorithms lies in defining the objective function. Here, we describe the process of

formulating the objective function for IDAOA to identify an optimal feature subset. The fitness function employed in

this work is defined as the accuracy of intrusion detection achieved using the Bagging algorithm. Specifically, a subset

of features identified by the IDAOA algorithm is fed into the Bagging algorithm. The Bagging algorithm then performs

intrusion detection using these features. The detection accuracy is computed and used as the fitness value, expressed as:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (3)

In the equation above, TP, TN, FP, and FN represent True Positive, True Negative, False Positive, and False

Negative, respectively.

Step 4: Identifying the Best Solution

Based on the fitness values calculated in the previous step, the best solution identified so far is determined in this

step. This involves selecting the solution with the highest fitness value up to the current iteration, ensuring optimal feature

subset selection.

Step 5: Updating the Math Optimizer Acceleration (MOA)

Before starting the AOA, the search phase (either exploration or exploitation) must be determined. The acceleration

function of the Math Optimizer is calculated using the following equation:

𝑀𝑂𝐴(𝐶_𝐼𝑡𝑒𝑟) = 𝑀𝑖𝑛 + 𝐶_𝐼𝑡𝑒𝑟 (
𝑀𝑎𝑥−𝑀𝑖𝑛

𝑀 _𝐼𝑡𝑒𝑟
) (4)

Where 𝑀𝑂𝐴(𝐶_𝐼𝑡𝑒𝑟) represents the value of the acceleration function at iteration 𝑡, calculated using the above

equation. 𝐶_𝐼𝑡𝑒𝑟 represents the current iteration, which varies from 1 to the maximum iteration limit (𝑀 _𝐼𝑡𝑒𝑟). 𝑀𝑖𝑛 and

𝑀𝑎𝑥 are the minimum and maximum values of the acceleration function, respectively.

Step 6: Updating the Mathematical Optimizer Probability (MOP)

The MOP probability is updated using Equation (5):

Mohammed, Wasit Journal for Pure Science Vol. 4 No. 2 (2025) p. 8-19

 12

𝑀 𝑂 𝑃(𝐶𝐼𝑡𝑒𝑟 + 1) = 1 −
𝐶𝐼𝑡𝑒𝑟

1
∝

𝑀𝐼𝑡𝑒𝑟

1
∝

 (5)

Where, 𝑀 𝑂 𝑃(𝐶𝐼𝑡𝑒𝑟)is the value of the MOP probability function at the current iteration. 𝑀𝐼𝑡𝑒𝑟 is the maximum

count of iterations. (𝐶𝐼𝑡𝑒𝑟) denotes the current iteration.

Step 7: Solution Position Updates

In this step, the following procedure is repeated for all solutions (i.e., all members of population X). First, three

random numbers between 0 and 1, denoted as 𝑟1, 𝑟2 and 𝑟3, are generated. If, for any given solution, 𝑟1 is greater than

the MOA value, the exploration phase is executed; otherwise, the exploitation phase is carried out.

Step 8: Exploration Phase

If 𝑟2 < 0.5, the division operator (D) is applied. In this case, the solution position is updated according to the first

rule in the following equation. Otherwise, the multiplication operator (M) is applied, and the solution position is updated

according to the second rule:

𝑥𝑖.𝑗(𝐶𝐼𝑡𝑒𝑟 + 1) = {
𝑏𝑒𝑠𝑡 (𝑥𝑖) ÷ (𝑀 𝑂 𝑃+ ∈) × ((𝑈𝐵𝑗) − 𝐿𝐵𝑖) × 𝜇 × 𝐿𝐵𝑖), 𝑟2 < 0.5

𝑏𝑒𝑠𝑡 (𝑥𝑗) × 𝑀 𝑂 𝑃 × ((𝑈𝐵𝑗) − 𝐿𝐵𝑖) × 𝜇 × 𝐿𝐵𝑖), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6)

Where: 𝑥𝑖(𝐶𝐼𝑡𝑒𝑟 + 1) is the position of the j-th dimension of solution i at the next iteration. 𝑥𝑖.𝑗(𝐶𝐼𝑡𝑒𝑟) denotes the

position of the j-th dimension of solution i in the current iteration. 𝑏𝑒𝑠𝑡 (𝑥𝑖) represents the best solution found so far. ∈

is a constant. 𝑈𝐵𝑗 and 𝐿𝐵𝑗 are the upper and lower bounds for the j-th dimension.

Step 9: Exploitation Phase

If 𝑟3 < 0.5, the subtraction operator (S) is applied, updating the solution position based on the first rule in Equation

(7). Otherwise, the addition operator (A) is applied, and the position is updated based on the second rule:

𝑥𝑖.𝑗(𝐶𝐼𝑡𝑒𝑟 + 1) = {
𝑏𝑒𝑠𝑡 (𝑥𝑗) − 𝑀 𝑂 𝑃 × ((𝑈 𝐵𝑗) − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗), 𝑟3 < 0.5

𝑏𝑒𝑠𝑡 (𝑥𝑗) + 𝑀 𝑂 𝑃 × ((𝑈 𝐵𝑗) − 𝐿𝐵𝑗) × 𝜇 × 𝐿𝐵𝑗), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7)

Step 10: Dynamic Inertia Weights Update

The AOA algorithm is susceptible to getting stuck in local optima and exhibits slow convergence during the search,

as it updates solutions solely based on the global best position. To address this, the IDAOA algorithm employs dynamic

inertia weights to improve the convergence speed of AOA. Dynamic inertia weights directly control the rate of solution

updates during each optimization step. Larger inertia weights at the initial stages of the algorithm reduce rapid changes

in potential solutions X within the search space, allowing for a broader exploration. Conversely, smaller inertia weights

in the later stages limit the movement of solutions within a narrower range, enhancing exploitation. In this work,

nonlinear, exponentially decreasing dynamic inertia weights are introduced to enhance the AOA algorithm's search

efficiency, thereby improving convergence speed. The dynamic inertia weights are calculated as follows:

𝑤(𝑡) = 𝑐 × 𝑤𝑏𝑒𝑔𝑖𝑛 (
𝑤𝑏𝑒𝑔𝑖𝑛

𝑤𝑒𝑛𝑑
)

1

(
1+𝑡
𝑇) (8)

Where:

𝑤𝑏𝑒𝑔𝑖𝑛 and 𝑤𝑒𝑛𝑑 represent maximum and minimum inertia weights, respectively. 𝐶 is a random constant

dynamically varying around 1.𝑡 is current iteration. 𝑇 denotes Maximum number of iterations. By integrating dynamic

inertia weights, the position update equations (6) and (7) in the AOA algorithm are modified as follows:

𝑥𝑖.𝑗(𝐶𝐼𝑡𝑒𝑟 + 1) = {
𝑤(𝑡) × 𝑏𝑒𝑠𝑡 (𝑥𝑖) ÷ (𝑀𝑂𝑃+ ∈) × ((𝑈𝐵𝑗) − 𝐿𝐵𝑖) × 𝜇 × 𝐿𝐵𝑖), 𝑟2 < 0.5

𝑤(𝑡) × 𝑏𝑒𝑠𝑡 (𝑥𝑗) × 𝑀𝑂𝑃 × ((𝑈𝐵𝑗) − 𝐿𝐵𝑖) × 𝜇 × 𝐿𝐵𝑖), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (9)

𝑥𝑖.𝑗(𝐶𝐼𝑡𝑒𝑟 + 1) = {
𝑤(𝑡) × 𝑏𝑒𝑠𝑡 (𝑥𝑗) − 𝑀𝑂𝑃 × ((𝑈𝐵𝑗) − 𝐿𝐵𝑗) × 𝜇 + 𝐿𝐵𝑗), 𝑟3 < 0.5

𝑤(𝑡) × 𝑏𝑒𝑠𝑡 (𝑥𝑗) + 𝑀𝑂𝑃 × ((𝑈𝐵𝑗) − 𝐿𝐵𝑗) × 𝜇 × 𝐿𝐵𝑗), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (10)

Step 11: Dynamic Mutation

This study presents a dynamic mutation coefficient that grows as the number of iterations increases, providing

individuals with a specific probability to explore different search spaces. Employing this approach effectively broadens

the search domain and enhances the algorithm's ability to escape local optima. The calculation method for the dynamic

coefficient of mutation is provided in Equation (11).

𝑝 = 0.2 + 0.5 ×
𝑡

𝑇
 (11)

Mohammed, Wasit Journal for Pure Science Vol. 4 No. 2 (2025) p. 8-19

 13

Where: 𝑝 represents Dynamic mutation probability, which grows as the number of iterations increases.

In this study A triangular mutation strategy is applied to diversify the population. This strategy prevents the algorithm

from getting trapped in a local optimum during the search process. This strategy involves selecting three random solutions

and combining them as follows:

𝑋(𝑡) =
𝑋𝑟1+𝑋𝑟2+𝑋𝑟3

3
+ (𝑝2 − 𝑝1) × (𝑋𝑟1 − 𝑋𝑟2) + (𝑝3 − 𝑝2) × (𝑋𝑟2 − 𝑋𝑟3) + (𝑝1 − 𝑝3) × (𝑋𝑟3 − 𝑋𝑟1) (12)

Here: 𝑋𝑟1 , 𝑋𝑟2 and 𝑋𝑟3 denote Randomly selected solutions. (𝑝2 − 𝑝1) , (𝑝3 − 𝑝2) and (𝑝1 − 𝑝3) represent

weights-perturbed patterns, 𝑝1, 𝑝2 and 𝑝3 are calculated as:

𝑝1 =
|𝑓(𝑋𝑟1)|

�́�
 (13)

𝑝2 =
|𝑓(𝑋𝑟2)|

�́�
 (14)

𝑝3 =
|𝑓(𝑋𝑟3)|

�́�
 (15)

The triangular mutation strategy ensures the integration of information from randomly selected solutions, increasing

population diversity and reducing the likelihood of getting trapped in local optima.

Step 12: Termination Condition

Steps 3 to 11 are repeated until a termination condition is met. In this work, the termination condition is defined as

reaching the maximum number of iterations.

2.3 CLASSIFICATION USING BAGGING ALGORITHM

This research utilizes the Bagging (Bootstrap Aggregating) technique to improve the reliability and accuracy of

intrusion detection. Bagging, a prominent ensemble learning technique, is developed to reduce model variance and

improve generalizability. It achieves this by randomly sampling subsets of the original data with replacement and training

separate classifiers on these subsets. Each classifier thus observes only a portion of the dataset and constructs its model

accordingly [26]. In the proposed method, subset selection is performed through sampling with replacement, meaning

that individual data points may appear in multiple subsets. This strategy ensures diversity among classifiers, reducing the

risk of high correlation between models. By mitigating the effects of random fluctuations in the data and resisting

overfitting, Bagging provides superior accuracy in identifying various intrusion attack types. Furthermore, Bagging

consolidates predictions from multiple classifiers to form a stronger and more stable final model, thereby improving the

intrusion detection system's performance when handling complex and diverse datasets. These features make Bagging an

ideal choice for cybersecurity applications in dynamic and heterogeneous environments. Figure 3 provides an illustration

of the overall functionality of this framework.

FIGURE 3. Classification Using Bagging Technique

2.4 Computational Complexity of the IDAOA Optimization Algorithm

The computational complexity of the Improved Dynamic Arithmetic Optimization Algorithm (IDAOA) is a function

of the number of particles (population size) N, the problem dimensions (number of variables) d, and the number of

iterations I, and is expressed as follows:

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 (𝐼𝐷𝐴𝑂𝐴) = 𝑂(𝑓(𝑁. 𝑑. 𝐼)) (16)

Mohammed, Wasit Journal for Pure Science Vol. 4 No. 2 (2025) p. 8-19

 14

Thus, the computational complexity of this algorithm is analyzed in the following five stages:

• Initialization

In this stage, the initial population of NNN solutions is randomly generated. This process has a complexity of O(N∙d)

since each of the N particles must be assigned an initial value in a d-dimensional space.

• Fitness Evaluation

Each member of the population must be evaluated using the objective function. Assuming that the objective function

has a computational complexity of O(F), the complexity of this stage is given by O(N∙F).

• Particle Position Update

During each iteration, the IDAOA algorithm updates the position of particles using arithmetic operations (addition,

subtraction, multiplication, and division). This process is performed for all N particles across d dimensions, resulting in

O(N∙d) complexity.

• Termination Condition Check and Iterations Execution

The algorithm runs for a maximum of III iterations. Therefore, the overall complexity at this stage is O(I∙(N∙d+N∙F)).

• Final Complexity

The computational cost of the fitness function, denoted as FFF, depends on the number of features or problem

dimensions. In the worst-case scenario, O(F) is equivalent to O(d). Thus, the final complexity of the algorithm can be

expressed as:

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 (𝐼𝐷𝐴𝑂𝐴) = 𝑂(𝐼 ∙ 𝑁 ∙ 𝑑) (17)

The efficiency of the IDAOA algorithm, in terms of computational complexity, depends on the population size, the

number of dimensions, and the number of iterations. This complexity is comparable to other metaheuristic optimization

algorithms such as Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). However, depending on the

problem structure and initialization strategy, IDAOA may exhibit superior convergence performance.

3. SIMULATIONS AND RESULTS

This section evaluates the proposed method's efficiency leveraging parameters such as Recall, F-Score, Precision

and Accuracy. The efficacy of the proposed method is evaluated in comparison to other leading techniques. The

simulations were conducted using MATLAB (2022b) on a system equipped with an NVIDIA GPU, 32 GB RAM, an

Intel Core i7 processor, and a Windows operating system. Additionally, classification accuracy was measured using 10-

fold cross-validation, where the model was trained and tested iteratively with each fold serving as the validation set. The

results presented in the tables represent the averages of 50 independent runs of the program.

3.1 DATASET

This work utilizes the NSL-KDD dataset, an improved version of the KDD'99 dataset designed to address its

predecessor's limitations. The NSL-KDD database comprises a total of 148,517 records, divided into 125,973 training

samples and 22,544 testing samples. It features 41 attributes and categorizes network traffic into five classes: four attack

classes (DoS, Probe, R2L, U2R) and one normal class. Table 1 summarizes the number of samples in each class for the

training and testing datasets.

Table 1. Number of Samples in Each Class in KDD-Train and KDD-Test Datasets

Attack Types
Number of samples in KDD-train

dataset

Number of Samples in KDD-test

dataset

Normal 67343 9711

DoS 45927 7456

Probe 11656 2421

R2L 995 2756

U2R 52 200

Total 125973 22544

3.2 EVALUATION METRICS

In classification problems, classification accuracy is the primary criterion. The accuracy for a specific class is

calculated as the proportion of correctly classified samples for that class relative to the total number of misclassified

instances. The performance of the proposed method in this study is assessed using the metrics of Precision, Recall, F-

score, and Accuracy. The mathematical formulas for calculating these metrics are presented in the following equations:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑎𝑐𝑐) =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (18)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (19)

Mohammed, Wasit Journal for Pure Science Vol. 4 No. 2 (2025) p. 8-19

 15

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (20)

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑟𝑒𝑐𝑎𝑙𝑙∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (21)

In the equations above, TP represents true positives, TN represents true negatives, FP represents false positives, and

FN represents false negatives.

3.3 EVALUATION RESULTS

Figure 4 illustrates the confusion matrix from simulating the proposed method, demonstrating its effectiveness in

detecting intrusions across five classes: DoS, Normal, Prob, R2L, and U2R. The matrix shows actual classes in rows and

predicted classes in columns. For the DoS class, out of 7,546 samples, 7,449 were correctly classified, resulting in an

accuracy of 99.9%. The Normal class achieved 100% accuracy with all 9,711 samples correctly classified. In the Prob

class, 2,332 out of 2,421 samples were accurately predicted, yielding 96.3% accuracy. The R2L class had 2,731 correct

identifications out of 2,756 samples, resulting in 99.1% accuracy. Lastly, the U2R class saw 1,997 out of 2,000 samples

correctly classified, demonstrating an accuracy of 98.5%. Overall, the method achieves high accuracy in identifying all

classes, with four classes exceeding 98.7% accuracy and perfect accuracy for the Normal class, showcasing its capability

in effective intrusion detection.

FIGURE 4. Confusion Matrix for Test Data

The Receiver Operating Characteristic (ROC) curve serves as a graphical representation to evaluate a classifier's

effectiveness across different thresholds in machine learning. It is constructed by plotting the True Positive Rate (TPR)

against the False Positive Rate (FPR), two critical performance metrics. TPR, also known as recall, is the proportion of

all positive cases correctly identified. FPR represents the proportion of negative samples incorrectly classified as positive

and is defined as follows:

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁+𝐹𝑃
 (22)

The trade-off between True Positive Rate (TPR) and False Positive Rate (FPR) across different thresholds can be

visualized by plotting them on an ROC curve. An effective classifier will produce a curve that gravitates toward the top-

left corner, representing a high TPR and a low FPR. In contrast, a suboptimal classifier’s curve tends toward the bottom-

right corner, characterized by low TPR and high FPR. A random classifier generates a diagonal line on the ROC graph,

indicating equal TPR and FPR values. As depicted in Figure 5, the ROC curve for our model closely approaches the top-

left corner, signifying a high TPR and a low FPR. This observation underscores the model's exceptional ability to

accurately detect intrusions.

Mohammed, Wasit Journal for Pure Science Vol. 4 No. 2 (2025) p. 8-19

 16

FIGURE 5. ROC Curve for the Proposed Method

Figure 6 illustrates a comparison of intrusion detection outcomes achieved by the presented method and several

alternative approaches, including GAN-KNN, RF, XG-Boost, CNN, CNN-LSTM, KNN, Adaboost, and Naïve Bayes,

using a bar chart that evaluates the performance based on Precision, Recall, and F-score. As shown in Figure 7, the

proposed method outperforms all the other methods in terms of these metrics. The weakest performance in terms of

Precision and F-score is observed in the GAN-KNN method. Furthermore, the weakest performance in terms of Recall

is associated with the CNN-LSTM method. These results underline the superior performance of the proposed method

across all evaluated criteria.

FIGURE 6. Comparison of the Proposed Method in Terms of Precision, Recall, and F-score with Other

Methods

Table 2 presents a detailed comparison of the proposed method against alternative approaches for intrusion detection,

emphasizing the Accuracy metric. As observed, the proposed method achieves the best performance with an accuracy of

99.45%, followed by the XG-Boost algorithm, which achieves 99.34% accuracy. The comparison highlights a minimum

1% improvement in the accuracy of the proposed method over all other methods, demonstrating its superior capability in

accurately identifying intrusions.

Mohammed, Wasit Journal for Pure Science Vol. 4 No. 2 (2025) p. 8-19

 17

Table 2. Results Comparison in Terms of Accuracy

Author Method Acc.

Rahman et al. [21] GAN-KNN 84.00

Kumar et al. [22] RF 98.33

Kumar et al. [22] XG-Boost 99.34

Aldarwbi et al. [23] CNN 84.82

Aldarwbi et al. [23] CNN-LSTM 88.59

Sun et al. [24] KNN 92.00

Sun et al. [24] Adaboost 98.50

Vishwakarma et al. [25] Naïve Base 97.10

Presented Method Wrapper Based AOA + Bagging Classifier 99.45

In Table 3, the proposed method is compared with other optimization techniques in terms of accuracy criteria. As

can be seen, the proposed method has the best performance with an accuracy of 99.45 percent. In addition, after the

proposed method, the AOA algorithm has the best performance with an accuracy of 98.31 compared to other optimization

algorithms. Also, the WOA, PSO, MPA and GA algorithms have achieved accuracies of 98.23, 97.94, 97.47 and 96.99

percent. Comparison of the results shows the superiority of the proposed algorithm over other optimization techniques.

Table 3. Results Comparison of proposed method against other optimization techniques in Terms of

Accuracy

Method Acc.

MPA 97.47

WOA 98.23

GA 96.99

PSO 97.94

AOA 98.31

Wrapper Based AOA 99.45

4. CONCLUSION

This study introduces a novel Intelligent Cyber-Attack Detection System (ICADS) designed to address critical

challenges in safeguarding IoT networks from increasingly sophisticated cyber threats. The proposed system integrates

the Improved Dynamic Arithmetic Optimization Algorithm (IDAOA) for feature selection and the Bagging ensemble

method for classification, offering a comprehensive framework that enhances both efficiency and accuracy in intrusion

detection. The IDAOA algorithm demonstrated exceptional capability in optimizing feature selection by leveraging

dynamic inertia weights and a triangular mutation strategy. These mechanisms ensured a robust balance between

exploration and exploitation, enabling the selection of a feature subset that significantly reduces computational

complexity without compromising detection performance. Meanwhile, the Bagging method provided resilience against

data imbalance and noise, further improving the system’s generalization ability and robustness. The experimental results,

validated on the NSL-KDD dataset, highlight the effectiveness of the proposed system, achieving an impressive accuracy

of 99.45%. This performance surpasses several state-of-the-art methods, showcasing the system’s superiority in handling

both known and novel attack patterns. The findings underscore the potential of combining intelligent optimization

techniques with ensemble learning to overcome inherent limitations in traditional intrusion detection systems. Future

work will focus on expanding the system's applicability by testing it on real-time IoT environments and diverse datasets

to evaluate its scalability and adaptability. Additional research could explore integrating advanced deep learning

techniques with the ICADS framework to further enhance detection capabilities and address evolving cyber threats. This

study contributes significantly to the field of cybersecurity, offering a practical and effective approach to strengthening

the resilience of IoT networks against malicious activities.

Mohammed, Wasit Journal for Pure Science Vol. 4 No. 2 (2025) p. 8-19

 18

REFERENCES

[1] M. Nassereddine and A. Khang, "Applications of Internet of Things (IoT) in smart cities," in Advanced IoT

Technologies and Applications in the Industry 4.0 Digital Economy, CRC Press, 2024, pp. 109-136.

[2] M. Hossain, G. Kayas, R. Hasan, A. Skjellum, S. Noor, and S. R. Islam, "A Holistic Analysis of Internet of Things

(IoT) Security: Principles, Practices, and New Perspectives," Future Internet, vol. 16, no. 2, p. 40, 2024.

[3] G. Gkagkas, D. J. Vergados, A. Michalas, and M. Dossis, "The Advantage of the 5G Network for Enhancing the

Internet of Things and the Evolution of the 6G Network," Sensors, vol. 24, no. 8, p. 2455, 2024.

[4] O. H. Abdulganiyu, T. A. Tchakoucht, and Y. K. Saheed, "Towards an efficient model for network intrusion detection

system (IDS): systematic literature review," Wireless Networks, vol. 30, no. 1, pp. 453-482, 2024.

[5] M. Almehdhar et al., "Deep learning in the fast lane: A survey on advanced intrusion detection systems for intelligent

vehicle networks," IEEE Open Journal of Vehicular Technology, 2024.

[6] R. Kimanzi, P. Kimanga, D. Cherori, and P. K. Gikunda, "Deep Learning Algorithms Used in Intrusion Detection

Systems—A Review," arXiv preprint arXiv:2402.17020, 2024.

[7] P. Sanju, "Enhancing intrusion detection in IoT systems: A hybrid metaheuristics-deep learning approach with

ensemble of recurrent neural networks," Journal of Engineering Research, vol. 11, no. 4, pp. 356-361, 2023.

[8] Z. Azam, M. M. Islam, and M. N. Huda, "Comparative analysis of intrusion detection systems and machine learning

based model analysis through decision tree," IEEE Access, 2023.

[9] S. V. N. Santhosh Kumar, M. Selvi, and A. Kannan, "A Comprehensive Survey on Machine Learning-Based Intrusion

Detection Systems for Secure Communication in Internet of Things," Computational Intelligence and Neuroscience, vol.

2023, p. 8981988, 2023.

[10] M. A. Talukder et al., "Machine learning-based network intrusion detection for big and imbalanced data using

oversampling, stacking feature embedding and feature extraction," Journal of Big Data, vol. 11, no. 1, p. 33, 2024.

[11] V. Kukartsev et al., "Using machine learning techniques to simulate network intrusion detection," in 2024

International Conference on Intelligent Systems for Cybersecurity (ISCS), 2024, pp. 1-4.

[12] I. Hidayat, M. Z. Ali, and A. Arshad, "Machine learning-based intrusion detection system: an experimental

comparison," Journal of Computational and Cognitive Engineering, vol. 2, no. 2, pp. 88-97, 2023.

[13] A. Awajan, "A novel deep learning-based intrusion detection system for IoT networks," Computers, vol. 12, no. 2,

p. 34, 2023.

[14] R. Saadouni et al., "Intrusion detection systems for IoT based on bio-inspired and machine learning techniques: a

systematic review of the literature," Cluster Computing, pp. 1-27, 2024.

[15] A. H. Farooqi, R. Ahmad, and S. Kamal, "ML-Driven Lightweight Botnet Detection System for IoT-Networks,"

unpublished.

[16] Y. K. Saheed and J. E. Chukwuere, "XAIEnsembleTL-IoV: A new eXplainable Artificial Intelligence ensemble

transfer learning for zero-day botnet attack detection in the Internet of Vehicles," Results in Engineering, vol. 24, p.

103171, 2024.

[17] S. S. Abinayaa et al., "Securing the Edge: CatBoost Classifier Optimized by the Lyrebird Algorithm to Detect Denial

of Service Attacks in Internet of Things-Based Wireless Sensor Networks," Future Internet, vol. 16, no. 10, p. 381, 2024.

Mohammed, Wasit Journal for Pure Science Vol. 4 No. 2 (2025) p. 8-19

 19

[18] B. Ahmad, Z. Wu, Y. Huang, and S. U. Rehman, "Enhancing the security in IoT and IIoT networks: An intrusion

detection scheme leveraging deep transfer learning," Knowledge-Based Systems, vol. 305, p. 112614, 2024.

[19] S. P. Priyadharshini and P. Balamurugan, "An Efficient DDoS Attack Detection and Prevention Model using fusion

Heuristic Enhancement of Deep Learning Approach in FANET Sector," Applied Soft Computing, p. 112438, 2024.

[20] F. S. Alrayes et al., "Optimizing Security Protocol: A Synergy of Bio-inspired Planet Optimization Algorithm with

Ensemble Learning-based Attack Detection for Connected and Autonomous Vehicles," IEEE Access, 2024.

[21] S. Rahman et al., "SYN-GAN: A robust intrusion detection system using GAN-based synthetic data for IoT security,"

Internet of Things, vol. 26, p. 101212, 2024.

[22] P. Kumar, G. P. Gupta, and R. Tripathi, "Toward design of an intelligent cyber attack detection system using hybrid

feature reduced approach for IoT networks," Arabian Journal for Science and Engineering, vol. 46, no. 4, pp. 3749-3778,

2021.

[23] M. Y. Aldarwbi, A. H. Lashkari, and A. A. Ghorbani, "The sound of intrusion: A novel network intrusion detection

system," Computers and Electrical Engineering, vol. 104, p. 108455, 2022.

[24] Z. Sun et al., "Optimized machine learning enabled intrusion detection system for internet of medical things,"

Franklin Open, vol. 6, p. 100056, 2024.

[25] M. Vishwakarma and N. Kesswani, "A new two-phase intrusion detection system with Naïve Bayes machine

learning for data classification and elliptic envelop method for anomaly detection," Decision Analytics Journal, vol. 7, p.

100233, 2023.

[26] H. O. Zahraa, B. Mirzaei, and A. Darroudi, "An efficient automatic modulation recognition using time–frequency

information based on hybrid deep learning and bagging approach," Knowledge and Information Systems, vol. 66, no. 4,

pp. 2607-2624, 2024.

