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Abstract

In this article, we introduce and study two new families of analytic functions by
using strong differential subordinations and superordinations associated with Wanas
differential operator/. We also give and establish some important properties of these
families.
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1. Introduction
let U={zeC:|zl <1} and U={z&eC :|z|] =1} be the open unit disk and the

closed unit disk of the complex plane, respectively. We assume that H(U x U) is the set of
analytic functions in U x U. For a positive integer n and a € C, suppose that
Hlantl={feHU xD):f(z1)=a+a,(t)z" + a ,,()z"*  + -,z €U, 1€ T},
where a;(z) are holomorphic functions in Uforj=n.

Let A, be the collection of functions of the shape:

flz, 1) =z+ZaH[I]z“, (zeU,tell), (1.1)

which are analytic in U % U7 and a, () are holomorphic functions in I for x = 2.
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Definition (1.1) [1]: Let Q. be analytical and injective functions set on U x U\E(f, T) such
that

E(f,7) = {r € BU:ii_r;r; flz,1) = oo}_

with £,/ (r,7) = 0 forr € U x U\E(f, ). The subclass of Q, for any of them
f(0,7) = ais represented by Q. (a).

Definition (1.2) [2]: Let f(z, 1), F(z, 1) be analytic functions in U x I. The function f(z, 1)
is said to be strongly subordinate to F(z, t) if there exists a function w which is analytic in U
with w(0) = 0 and |w(z)| < 1 (z € U) such that f(z,t) = F(w(z),t) forall € U. In such
case, we write f(z,7) << F(z,1),z€ U,T€U.

Remark (1.1) [2]:
(1) Since f(z, 1) is analytic in U x U for each T € U and univalent in U for all T € U, then the

Definition (1.2) is the same as to f(0,7) =F(0,7) for each teU and
f(UXxD)cFWxD).
(2) If f(z, 1) =f(z) and F(z, 1) = F(z), then the strong subordination becomes the usual

notion of subordination.
If (z,7) is strongly subordinate to F(z, 7), then F(z, ) is strongly superordinate to f(z, 7).

Lemma (1.1) [3]: Let h(z,7) be a univalent where h(0,7) = a. for each T € U and let
i € C\ {0} with Re (1) = 0. If p € H[a, 1, 7] and

1 _
plz, ) +Ezp;(z.r) << h(z,1), (z €U, t€EU), (1.2)
then
p(z,7) << q(z,1) << h(z, 1), (zEU,TE),
where q(z, 1) = uz™# jﬂz h(y, ) y* 1dy is convex and the most dominant of (1.2).
Lemma (1.2) [1]: Let h(z,7) be a convex where h(0,7) =a for each Tt € U and let
u € C\{0} with Re () =0. If pEH[a,1,7]NQ, , p(z,1) —l—ﬁzp;(z. 7) is univalent in
UxUand
1 _
h(z, 1) << p(z,1) +‘EZPIZ(Z'I)' (z€eU,TteEU). (1.3)
Then
q(z,7) <<p(z,7), z€U,TE),
in which q(z, 7) = pz™ jﬂz h(y, ) y*~*dy is the best subordinate of and it is convex (1.3).
Recently, Wanas et al. [4] introduced the following operator, which is called Wanas, operator)

W, %: A — A which is defined in U by
oo 1 8
I a™ +xf™
1.8 _ _1ym+1 K
g 1= Y| () 0 ()|
k=2 Lm=1
wherea ER, B € R = RU{0}witha +5 >0, EN,§ EN.

Special cases of this operator can be found in [5,6,7,8,9,10,11,12,13,14,15]. For more details,
see [16,17].
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Now, we consider the Wanas operator in U x U . For f € A, we have

&
s o S5 (o (58

a(Dz¥ zeU,telU). (14)
K=2 Lm=1

It can be easily E:hecked through (1.4) that
Z(W;E}C(Z, r)) = ¢(a, f, m.E)WISHf(z ) — Y(a, B, m,DW f?f(z ), (1.5)

where ¢ (a, 8,m, 1) and ¥ (a, B, m,[) have the following binomial series representations:

o(a,B,m,1) = ZI: (}i) (—1)m+i ((%)m + 1) (1.6)
and ] :
Wla, B,m,I) = Z (}i) (—1)m+1 (g)m (1.7)
m=1

2. Main Results
Definition (2.1): Let ¥(z,7) be an analytic function in U x U together with 9(0,7) = 1 for

everyteUand a ER, B € R = RU {0} with e+ >0, [,6 € N. A function f € A; is
said to be a member of the class G(4, , 8, m, 1, §;3) if the deep differential subordination is
satisfied

1

E[(l —-A qa(cr,ﬁ,m,l))wwf(z 1) + A@(a,f,m, IE)WI ‘Hlf(z r)] << 9(z,1).

A function f € A; is said to be a member of the class T(4, a, 5, m, 1, 8;9) if the deep
differential superordination Is satisfied

9(z,7) << — [(1 A@la,p,m, I)) f?f(z ) + A @(a, f,m, E)Wlaﬂf(z r)]

where qa(cr.,&. m, 1) is given by (1.6).

Theorem (2.1): Let 9(z,7) be a convex function in U x U, the range 9(0,7) = 1 for each
teUand A= 0.If f €G(A, a f,m1, &;9). Then there exists a convex function q(z, 7) that
isequal to q(z, 1) << 9(z,7) and f € G(0,a,F,m,[,6;q).

Proof: Suppose that
WI'Sf(z, T)
b, = £ 20

=1+

K=2
Itis clear thatp € H[1,1,7].
Sincef € G(A4, a, B, m, 1, §;19), then we have
[(1 A @(a, B,m, I)) f;‘,f(z ) + A (a, B, m, I)Wfi ‘Hlf(z r)] << 9(z,1). (2.2)
From (2.1) and (2.2), we get
%[(1 —Ag(a B m, I))W;:gf(z, T)+ A qﬂ(a,}fi,irn,.!)WI 6+1f(z r)] =p(z 1) + 2zp)(z,7) << 9(z, 7).

8

m=1
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When Lemma (1.1) is used with u = % the result is

p(z, 1) << q(z,17) << 9(z,1).

Using (2.1), we get

W, 3f(z,7)
Z

<< q(z, 1) << 9(z,1),
where
1 1z 1,
q(m)=iz ﬂf Uy, 1) yi “dy
Q

is convex and has the strongest dominant. This gives the required results.

Theorem (2.2): Let ¥(z, 1) be a convex function in7 x U the context of ¥(0,7) = 1 for each

Wé’lg Flzt)

teETandA>0.If fET(A a B,m,1é&;09), € H[1,1,7] n Q. and

[(1 A @(a, B,m, I)) f;‘,f(z ) + A (a, B, m, IE)I-"L"I ‘Hlf(z r)]

WhICh is univalent in U x U, then there exists a convex function q(z,t) such that
fETO,ap,mlé;q).

Proof: Assume the function p(z 7)has the Definition (2.1). This is obvious.
pEH[1,1,7] N Q.. Following a quick calculation and taking into
accountf € T(4, a, B,m, [, §;9), we can conclude that
U(z,7) << p(z,7) + Azp, (2, 7).
When Lemma (1.2) is used with u = % the result is
q(z, 1) << p(z,1).
And through (2.1), we get

Wi f(z 1)
q(z, 1) << %
where

1 _1(* i,
qz,1) =5z ﬂf U(y, 1) yi “dy

0
is the best subordinant since it is convex.
We can obtain the following strong differential "Sandwich Theorem™ by combining the
results of Theorem (2.1) and Theorem (2.2).

Theorem (2.3): Let Y,(z7) and ¥.(z 7) be convex functions in U x U where
9,(0,7) =9,(0,7) =1 for all teU and A=0, If
fEGMRaBml&0)NT (A a B ml80,), Wy5f(z,1) €H[11,1] N Q; and

%[(1 — A ¢(a, B,m, I))W;'I‘;f(z,r) + Ao(a,pB, m,x!)l-"l”I ‘Hlf(z r)]
is univalent in U x U, then

fe Q(O, a, B,m,l, 6; ql) N T('D, a ff,ml,é; qz)
where
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1 12 1,
6@ =+ a[ﬁl(y.rm dy
1]

and
1 17 1,
0G0 =327 | 0,001 dy

0
Both q, and q, are convex functions.

s

Theorem (2.4): Let ¥(z,7) be a convex functions in U x U where 9(0,7) = 1 forall Tt e U

and

G(z,1) :;%ffzyff(y,r)dy, (z€e U, Tt € U Re(e) = —-2). (2.3)
0

If f €G(1,a,f,m,1§;9), then there exists a convex function q(z, ) with the property that
a(z, 1) << 9(z, 1) and G € G(1,a,B,m,1,8;q).

Proof: Suppose that

pl(z, 1) = (W;'I%G(z.r)) , (zeU,tel). (2.4)
Then, p € H[1,1,1].
From (2.3), we get (2.5)

z
z¢t1G(z,1) = (e + 2)[ yvef (y, 1)dy. (2.5)
0
When we differentiating both sides of (2.5) by z, we get

(e +2)f(z,1) = (e+ 1)G(z,1) +2G.(z,T)

and

(e + E)W;';f(z,r) = (e + 1)Wé'lf-,‘,6(z. ) +z (W;‘;G(z,r)) )
By differentiating the last reference with respect to z, we have

(W;:f;_,f(z,r)) = (W;:EG(Z, r)); —I—L(W;:gG(z, r))

2.6
z e+ 2 (2.6)

Since f € G(1,a,3,m,1,8;1), then we have
%[q&(a,ﬁ.m. I)W;:f;lf(z,r) —Y(a, B, m.E)W;'.f?f(z.r)] << 0(z,1), (2.7)

where ¢ (a, 5, m,1) and (e, §, m,1) have the forms (1.6) and (1.7), respectively.
Now, from (1.5), the (2.7) is the same as

(W;:gf(z.r)) << 9(z, 1). (2.8)
From (2.6) and (2.8), we get
1.8 ! Z 1.8 "
(Wa.ﬁG(z,r))z + s (Wa.ﬁG(z,r))zz << 9(z,1). (2.9)
Substituting (2.4) by (2.9), we get the following
p(z o)+ e+ 2

When Lemma (1.1) is used with g = € + 2, the result is
p(z, 1) << q(z,17) << 9(z,1).
We get the following using (2.4)

(W;:EG(E,I)) << q(z,1) << 9(z,1),

zp, (z,7) << V(z,1).
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where
i

Az 0) = (€ + 2z~ f 9(y, 1) y*+dy
1]

It has a convex shape and is the most dominant.

Theorem (2.5): Let ¥(z,7) be a convex the function in U x U with 9(0,7) = 1 for every
telU and G(z,) is given by (23). If feTd,apB,mlé;09),

(W;:EG(ZJ)), € H[1,1,7] N Q, and

1

E[qa(a.ﬁ,m, E)W;:?lf(z.r) — Y(a, B, m,I)W;%f(z,r)]

If is univalent in U x U, then there exists a convex function q(z 7) that gives
GeET(,a,B,ml3E;q).

Proof: Suppose that the function p(z 7)is defined by (2.4). It is evident that
p € H[1,1, 7] N Q,. After a short calculation and considering f € T(1,a,,m,[,8;9), we can
conclude that

9(z,7) << plz,7) + zp! (z, 7).

e+ 2
When Lemma (1.2) is used with 4 = € + 2, the result is
q(z, 1) << p(z,1).

We get the following using (2.4)

q(z, 1) << (W;:‘;G(z,r))

where
z
q(z, 1) = (e + 2)2_[5”][ Iy, 1) yeHidy

0
is the best subordinant since it is convex.
The following strong differential " Sandwich Theorem" is obtained by combining the results
of Theorems(2.4) and Theorem (2.5).

'
z

Theorem (2.6): Let 9,(z7) and ¥.(z,7) be convex functions in U xU with
9,(z,7) =U,(z,71) =1 for every 7€U and G(z1) is given by (23). If

feEG(l,a, B,m1,6;9,)NT(,a B, mlé8;0,), (W;EG(z,r)), € H[1,1,7] n @, and

%[qa(a,ﬁ,m, E)W;gﬂf(z,r) —(a, B, m,I)W;‘;f(z,r)]
is univalent in U x U, then

fe Q(l, a, B,m,l, 6; ql) N T(l, a ff,ml,é; qz)
where

i
0,@7) = (e + 2)z~ED) f 9, (y,7) y*idy
1]
and
Zz
0,0 = (e + 277 [ 0,7,0 5% dy
4]

The functions q, and g, are convex.
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Conclusion

In this work, two suggested families of analytic functions by using strong differential
subordinations and superordinations associated Wanas differential operator are introduced
and studied. Also, many important results and properties of these families of analytic
functions are established and discussed.
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