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Abstract 

     This paper is concerned with a Holling-II stage-structured predator-prey system 

in which predators are divided into an immature and mature predators. The aim is to 

explore the impact of the prey's fear caused by the dread of mature predators in a 

prey-predator model including intraspecific competitions and prey shelters. The 

theoretical study includes the local and global stability analysis for the three 

equilibrium points of the system and shows the prey's fear may lead to improving 

the stability at the positive equilibrium point. A numerical analysis is given to ensure 

the accuracy of the theoretical outcomes and to testify the conditions of stability of 

the system near the non-trivial equilibrium points. 
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 تحليل الاستقرار لنمهذج فريدة المفترس مع ملجا الفريدة والخهف من المفترس البالغين
 

*2، ساره فهزي غافل1سلام جاسم مجيد  

قدػ الخياضيات، كلية علؽم الحاسؽب والخياضيات ، جامعة ذي قار، ذي قار، العخاق1  
قار، العخاقالتخبية للعلؽم الرخفة ،جامعة ذي قار، ذي قدػ الخياضيات ، كلية  2 

 

 الخلاصة:
يخكد هحه البحث دراسة نعام فخيدة ومفتخس مع دالة استجابة مؼ نؽع هؽلشغ الثاني ومخاحل عسخية      

للسفتخس.الهجف هؽ استكذاف تأثيخ خؽف الفخيدة الشاجػ عؼ الخؽف مؼ السفتخس الشاضج في نسؽذج فخيدة 
لت الجراسة الشعخية على تحليل الاستقخارية السحلية مفتخس يتزسؼ السشافدة الجاخلية وملاجئ فخيدة. اشتس

والذاملة عشج نقاط الاتدان الثلاث للشعام ، وأظهخت أن خؽف الفخيدة قج يؤدي إلى تحديؼ الاستقخارية عشج 
 .نقطة الاتدان السؽجبة

 
1. Introduction  
     The real-world problems show, day by day, that ecological modelling becomes a highly 

demandable area of research that is considered by mathematicians and theoretical ecologists 

due to its universal existence and importance. Mathematical models may help to a better 

understanding of dynamic behaviors of real-life problems. Especially, the dynamic 

interrelationships between predators and their prey populations.  In the last decade, many 
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biologists have empirically observed that the prey-predator systems reflect impact not only 

merely direct and lethal (due to killing by predators) but also indirect and non-consumptive 

(caused by the fear of predators) [1, 2]. The ceaseless fear may propel prey to leave their zone 

and move gradually to a more secure regions [3, 4]. The first authentic prey-predator model 

was done by Lotka-Volterra [5, 6]. It is assumed that each individual predator admits the same 

ability to attack prey. But, in the natural world, the predatory conduct and reproductive 

conduct for all animals are mainly completed by adult individuals, and these abilities may be 

ignored for juveniles, who they being raised by their adult parents. So, the life cycle of most, 

if not all, animals exhibits two distinct stages, mature and immature and in these stages death 

rate and birth rate are different [7, 8]. As a consequence, in [9, 10, 11, 12, 13, 14] the authors 

analyzed the influence of a stage-structure for the predator on the stability of a prey-predator 

system. Nevertheless, there are not sufficient studies to determine the real effect of the stage-

structure phenomena and prey fear level in the dynamic of the prey-predator relationship, 

when they act together in the interaction. Recently, Mondal et al (2020)[15] studied the 

influence of the behaviour of adult predator incited fear in a stage-structured predator-prey 

model with the linear form of functional response. Their study suggested that the cost of fear 

(due to adult predators) and the predator maturity rate may stabilize or destabilize the system 

dynamics. Many research papers by mathematicians and ecologists exhibited that prey- 

predator systems are affected by many other factors such as Alle effect, refuge, competition 

among predators or preys and functional responses of predators. In population ecology, the 

ecological refuges may provide some degree of protection for organisms by decreasing the 

opportunity of extinction due to predation, and then may help to preserve the ecological 

balance [7,16]. On the other hand, intra-specific competition is competition between the same 

species on the same resource in an ecosystem, mostly caused by limited the resources such as 

water, food etc. It may lead to a reduction in growth and fitness for both individuals [3, 7]. 

Moreover, Holling type two is a prey dependent functional response, in which a predator has 

to dedicate a certain time to search, capture, and ingest its prey, and is considered the most 

common Holling functional form [3, 4, 9, 10, 11, 13, 16]. 

 

2. Model Formulation          
     Zhang at el. [16] considered prey–predator model with anti-predator behavior resulting in 

the fear of predators and Holling type-II functional response including a prey refuge to 

formulate the following mathematical model 
  

  
 

  

    
    

  
 (   )  

   (   ) 

   

  
 
  (   )  

   (   ) 
    

     
     (2.1) 

     where   is the density of prey;   is the density of predator;   represents the growth rate of 

prey;   is a level of fear;    represents the intra- specific competition rate of (prey and 

immature predator);   is the maximum attack rate;   represents the satiety rate of mature 

predator;   represents the prey refuge constant,   ,   );    is the predator natural death 

rate.  

 

     Since adult predators may be capable of hunting the prey and this ability is not found in 

young predators, the prey species are afraid of adult predators and are not afraid in young 

predator. This motivates us to extend Zhang at el. [16] model by incorporating a stage-

structured of predator into the model. Hence, the system (2.1) is transformed to 
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     (2.2) 

which satisfies initial conditions  ( )      ( )      ( )   .  

Here,    is the density of juvenile predators;    is the density of adults;   represents the 

transformation rate from juvenile predators to adult predators and         , are the  natural 

death rates of predators.  

 

Theorem (2.1): The domain of the system (2.2)    
   is positively invariant. 

Proof: Since the interaction functions that appear on the right-hand side of the system (2.2) 

and their partial derivatives are continuous on   
 . Thus these functions are Lipschitizian , and 

hence the solution , ( )   ( )    ( )- of system (2.2) with positive initial conditions 

, ( )   ( )    ( )] exists and is unique on ,   ) where       . 

Integrating the first and third equations in (2.2) give: 

 ( )   ( )    (∫ *
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)        ,   ) 

and 

  ( )    ( )    (∫      
 

 

)    ,   ) 

which shows that  ( )    and   ( )    if  ( )   ( )    for   ,   ). 
Now, integrating the second equation in (2.2) gives: 

  ( )    ( )    ( ∫ ,     (    )-  
 

 

)        ,   ) 

   then    ( )        ,   ), if   ( )   . 

   Hence,   
  is a positive invariant for the prey-predator system (2.2).  

 

Theorem (2.2): All the solutions ( ( )   ( )   ( )) of the system (2.2), which initiate in 

          
  * + are uniformly bounded. 

Proof: Let  ( ) is the total population of the system (2.2), where  ( )   ( )    ( )  
  ( ) here  ( )   ( )   ( ) are any solutions of system (2.2), clearly,  ( ) is bounded if and 

only if  ( )   ( )   ( ) are bounded. Deriving  ( ) with respect to the time. This gives 
  ( )

  
 

  

     
    

      
            . 

Now, for each    , the below differential inequality is satisfied 
  ( )

  
   ( )   (       )  (    )   (    )   
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Choosing      *       +  the last differential inequality becomes 

  ( )

  
   ( )  (

   

 √  
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Applying the Garonwall lemma [15] gives    ( )   ( )     
 

 
(      ) for     

becomes     ( )  
 

 
  Hence the total population of the system (2.2) in   

  is uniformly 

bounded. 
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3. Existence of Equilibrium Points 

        In this section, we look at the local stability analysis of a nonlinear ordinary differential 

system. We simulate the dynamic behavior of a highly nonlinear complex system using the 

linearization technique We linearize the system of equations around each equilibrium point by 

applying  a small perturbation. The system (2.2) has three biologically meaningful 

equilibrium points (EP). 

(i) The trivial equilibrium point    (     ) always exists. 

(ii) The axial equilibrium point    ( ̅    ), where  ̅  
 

  
, always exists. 

(iii) The interior equilibrium point    ( 
    

    
 )  exists under some conditions.  

     Next, we discuss the existence of the interior equilibrium   , where the values of      
  

and   
  may be obtained by solving the following set of algebraic equations: 
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   ,                                 (3.1a) 

                          
 (   )   
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  (    )    ,                                 (3.1b) 

                                                                                 (3.1c) 

     From eq.(3.1c), one can get 

   
 

  
                                            (3.2) 

     using eq.(3.2) in eq.(3.1a) , then we  obtain  

  (    )  
   

       
 

  (   )  

  ,   (   ) -
                        (3.3) 

Again using eq.(3.2) in eq.(3.1b) and we get 

                  (    )  
  (   ) 

  ,   (   ) -
 (    )                         (3.4) 

In eq.(3.3), when       then      where    is the solution of  

  (   )         .  

This gives 

   
 

  
  .                                                      (3.5) 

In eq.(3.4), if           where    is a positive solution of 

  (   )  ,  (   )    (    ) (   )-    (    )   . 

This gives       

   
  (    )

(   ),      (    )-
  .                                  (3.6) 

We see that     is positive under the following condition: 

                                        (    )                                           
Moreover, from eq.(3.3) we have 
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where, 
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  , and the isocline (  )is decreasing passing through   if  

   

  
  . Hence, under 

the following condition, the isocline (  ) passes through   . 

   (   )        ,   (   ) -
 . 

Moreover, from eq.(3.4) we notice that 
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) (

   

  
), 

where 
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      , 

and 
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So, 
  

   
  , and then the isocline (  ) is increasing passing through   . Thus, with the 

condition      , the two isoclines (  ) and (  ) intersect at a unique positive point 

(     
 ) in the positive quadrant of      plane. 

Now, substituting   
  in eq.(3.1c), then we get 

  
  

 

  
  
      (3.8) 

Accordingly, the (IEP)    ( 
    

    
 ) exists uniquely in the first octant of        plane 

provided that: 

                               (3.9) 

      (    )    (3.10) 

     ,   (   ) 
 -     (   )   

                (3.11) 

 

4. The Local Stability Analysis 

     The local stability analysis gives good information about the fate of the system (2.2). In 

this section, we will discuss the conditions of stability or instability for the aforementioned 

equilibrium points           . For that, the linearization of the system (2.2) about any point 

of equilibrium (       ), yields the following variation matrix: 

  [
       
         
       

]        (4.1) 

where ,                                         
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,   (   ) - 
,               

           (    )  

     
 (   ) 

,   (   ) -
  

        
         
The eigenvalues that locate the local stability at each equilibrium point are calculated as 

follows: 

 

Theorem(4.1): The system (2.2) around (TEP)    (     ) is always an unstable saddle 

point. 

  

Proof: The variation matrix (4.1) of the system (2.2) at (TEP) is written as: 

    [

   
  (    )  
     

]                               (4.2) 

Obviously, matrix     has the following characteristic equation: 

(   )(      )(    )   . 
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Hence, the eigenvalues of     are            (    )     and         . 

Thus, (TEP) is an unstable saddle point. 

 

Theorem (4.2): The system (2.2) around (AEP)    (
 

  
    ) is locally asymptotically stable 

if the following condition holds: 

  (   )    (    ),    (   ) -                     (4.3) 

Proof: The variation matrix of the system (2.2) around AEP is as follows:  

  

                  

[
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  (    )
 (   ) 

    (   ) 

     ]
 
 
 
 

      (4.4) 

Thus, the characteristic equation of matrix     is given by: 

(   )(         )     
where,  

              

     (    )  
  (   ) 

    (   ) 
  

Clearly,     has a negative eigenvalue which is given by      . While the other two 

eigenvalues    and    are the roots of: 

                                    (4.5) 

According to the Routh-Hurwitz criterion, eq.(4.5) have two roots with a negative real part if 

and only if     , for      . Thus, if condition (4.3) holds, AEP is a locally asymptotically 

stable point for system (2.2), and the proof is finished.     

                 

Theorem(4.3): Assume that: 
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(     
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  ,  (4.6a) 

,     
  (    )-   

  (   )  

   (   )  
    (4.6b) 

        (4.6c) 

where   is defined in the proof, then (IEP)    ( 
    

    
 ) is locally asymptotically stable 

for the system (2.2). 

Proof: The variation matrix of the system (2.2) around (IEP) is given by 

    (   )                                (4.7) 

where,         at (     
    

 ) for all          . 

Evaluating the characteristic equation of     gives 

       
                 (4.8) 

where 

    (           ) 
                               

                                 
     The Routh-Hurwitz conditions for eq.(4.8) that grantee all roots with negative real part  

are:            and             . Therefore,    is locally asymptotically stable if 

the conditions (4.6a-4.6c) hold.        
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5. The Analysis of Global Stability 

     In this section, we study the global stability analysis for the equilibrium points that are 

L.A.S. of the system (2.2) by helping the Lyapunov method. 

 

Theorem(5.1): ): The (AEP)    (
 

  
    ) of system (2.2) is global asymptotically          

stable whenever it is local asymptotically stable and the following condition holds 

     (    (   ))                                              (5.1) 

 

 Proof: Consider the following function 
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 (       )    . Now, by differentiating    with respect to time   with some algebraic 

simplifications, we get 
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So,  
   

  
  , and hence    is  Lyapunov function. Therefore,    is globally asymptotically 

stable in   
 . 

            

Theorem (5.2): The (IEP)    ( 
    

    
 ) of the system (2.2) is a global asymptotically 

stable if the following conditions hold: 

           (   )   
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 )                (5.2) 
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where,    
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Proof: First, the Lyapunov function can be defined as: 

  (       )  ∫
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So that    (  )    and   (       )     (       )    . Substituting for  ̇  ̇   and  ̇  in 

the time derivative of    along the solution of the system (2.2) gives: 
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Now, from the boundedness theorem, a constant   
 

 
  can be defined which satisfies 

( )   ( )   ( )    , where   and   are defined in Theorem (2.2). Therefore, the above 

equation is reduced to  

 ̇   (   
  (   )   

 

(   (   )  )
) (    )    (     

 )  

 (  (     
 )      )(     

 )  (      (      
 )    ) 

  
The condition (5.3) implies  

 ̇   (   
  (   )   

 

(   (   )  )
) (    )    (     

 )  

 (  (     
 )      )(     

 )                         
       

       Thus it follows from condition (5.3),  
   

  
  . This means    (       ) is negative 

definite a globally stable under the conditions (5.2) and (5.3) hold. Moreover,  
   

  
   if and 

only if            
  and      

 . Therefore, (IEP) is global asymptotically stable due to 

the LaSalle theorem and this completes the proof.       

 

5. Numerical Simulation 

     In order to confirm the analytical results and clarify the impact of varying the parameters 

on the global dynamics of the suggested system, some numerical simulations have been 

displayed in detail. Many phase diagrams have been given to show the dynamics properties of 

the system (2.2), with the help of Matlab 8.1. 

                                      

Table 1: Hypotheses parameters for system (2.2)  

Parameter Value Parameter Value 

r 0.24 b 0.5 

a 0.8 d 0.3 

   0.1 m 0.11 

   0.1    0.1 

  0.5    0.2 

 

 
Figure 1: Dynamical behavior of the system (2.2) for the values that are given in Table 1. 

Graph (a) represents the phase portrait, while  graphs (b) and (c) represent the time series of 

the solutions around   (                    ):  
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Choosing the parameters of system (2.2) as in Table 1 and ( ( )   ( )   ( ))  
(     )  Then the conditions of theorem (4.3) are satisfied as                
                       and           , and consequently IEP   (  ,  

 ,  
 )  

(                    ) is locally asymptotically stable. Figure 1(a) shows that the solution 

of the system (2.2) is a stable spiral converging to   . Figure 1(b) and (c) show that x,    and 

  populations converge to their steady state solutions   ,  
  and   

   respectively. 

 

For checking the global stability of   , in Figure 2, the phase portrait and the time series of 

the solutions of system (2.2) with different initial points have been plotted. Here, it is found 

that all the solutions corresponding to these initial points converge to steady state solution 

  (0.8782, 0.2146, 0.3220). So, we say that system (2.2) shows its global stability near the 

positive equilibrium state. 

 
Figure 2: Global stability of IEP    (                    ) for different choices of 

initial values ( ( )   ( )   ( )). 
 
     Also, it is observed from Figure 2 that   (     ) is an unstable equilibrium state for 

system (2.2) since the eigenvalues of the variation matrix at this point are             
     and        . 

 

     According to Figure 3, the prey and predator species density changes due to increases in 

prey refuge. Figure 3(a),(b) and (c) at              and       respectively, clearly 

indicate that increasing the value of m causes increasing in prey density and decreasing in the 

predator density gradually. Further, for        , system (2.2) has no IEP and settles at 

AEP   =(2.4,0,0), as displayed in Figure 3 (c). Moreover, at m=0.7, the local stability 

condition of theorem (4.2) is satisfied and the eigenvalues of variation matrix (2.7) at    are 

                     and          . Therefore, AEP    (       ) is globally 

asymptotically stable which may also be confirmed in Figure 3(d). 
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Figure 3: The dynamical behavior of the system (2.2) for different values of  .  Graph (a) 

represents the time series for      , the graph  (b) represents the time series for      ,  

graph  (c) represents the time series for      , while graph (d) represents the 3D phase 

portrait around    (       ). 
 

     Studying the impact of fear due to the mature predator on the dynamics of the system (2.2) 

requires increasing the value of the intrinsic growth rate. At      , the local asymptotic 

stability condition (4.6c) of Theorem 4.3 is not satisfied as               . So, system 

(2.2) shows unstable IEP     (                      ) as seen in Figure 4 (a) and (b). If 

we increase the level of fear to    , the dynamical behavior switches to stable IEP, this can 

be seen in Figures 4 (c) and (d). 

Similarly, in Figure 5, the numerical solution of the system (2.2) is plotted with parameters 

used in Table 5.1 and at a specific value        . It is clear that the system (2.2) with 

decreasing intraspecific competition rate exhibits periodic dynamics (see Figure 5(a-b) at 

     ). This periodic oscillation can be controlled through the fear parameter as we 

gradually increase the value of   (see Figure 5(c-d) at the specific value   =4).  
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Figure 4: The dynamical behavior of the system (2.2) for       is presented. The graphs of 

(a) and (c) represent the 3D phase portrait at   =0.8 and   =2, respectively, whereas, the 

graph of (b) and (d) represent the time series for   =0.8 and   =2 ,respectively. 

 

 
Figure 5: Dynamical behavior of the system (2.2) for   =0.05. The graphs (a) and (c) 

represent the time series for   =0.8 and   =4 respectively, whereas, the graphs of (b) and (d) 

represent the 3D phase portrait at   =0.8 and   =4 respectively,  

 

     Moreover, the fear cost has an effect on decreasing the immature and mature predator 

density but may not induce their extinction of them this is illustrated in Figure 6. In Figure 

5.6(a), we used r=0.6 and the fear level    is taken from   to   , whereas, in Figure 6(b), we 
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used   =0.05 and the fear level    is taken from   to   . Figure 6 shows that, after the 

oscillations behavior at the low fear level, the dynamics of the system (2.2) continue stable 

steady-state behavior in the high fear level. 

 

 
Figure 6: The biomass for prey, predator and mature predator with varying the fear effect     
The graph of (a) at      , and  the graph of (b) at        . 

 

     Now, to explore the influence of the transition rate   from immature predator to adult 

predator on the dynamic of the system (2.2). First, for any value of   and the value of    in the 

range            , i.e. the condition (4.3) holds, the solution of system (2.2) approaches 

asymptotically to AEP, as shown in Figure 7 for the typical value       . At       and 

       , the solution of the system (2.2) transmission from AEP to IEP as seen in Figure 7 

(Top plots at                ). Clearly, varying the value of   with       the dynamical 

behavior switches from stable AEP to stable IEP and then to unstable IEP. Further, at     

and        , the solution of the system (2.2) still converges to a stable IEP due to the fear 

effect as demonstrated in Figure 7 (bottom plots at                ). 
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Figure 7: The time series of system (2.2) for different values of  . The top graphs at      , 

whereas the bottom graphs at    . 

 

6. Conclusions: 

     In this paper, we have studied an ecological prey-predator model with prey refuge and fear 

induced by a mature predators. Intraspecific competition for prey and for an immature 

predators is also considered in the system. The objective is to investigate the role of fear 

induced by an adult predators on the dynamic behavior of this system. The properties of the 

solution of the model (such as positivity and boundedness) are discussed. From the theoretical 

analysis of the model, it is found that the system (2.2) consists of three biologically valid 

equilibrium points, and the nontrivial points are locally asymptotically stable, under certain 

conditions. Again, theoretically, it is proved that the system (2.2) is conditionally globally 

asymptotically stable. The numerical simulations are given to exemplify the efficacy of the 

theoretical results of the system (2.2), and we found that: 

1-If the system (2.2) has a unique IEP, it is found that the IEP     (                   
      ) is globally asymptotically stable. In this case, we have noticed that at small values of 

intrinsic growth rate   and prey refuge  ,  the system (2.2) has a steady-state behavior ( 

Figures 1-2).  

2- The fear influence can reduce the density of predators: as the level of fear   caused by the 

large predator increases, the immature predator density gradually decreases, and then the 

mature predator density. But in this case, the cost of fear cannot produce the extinction of 

predators, see Figure 6. 

3-The prey refuge   has an impact on the stability of IEP in the system (2.2), It can decrease 

both densities of immature and mature predators due to lack of food. Here, it is observed that 

more increases in the amount of prey refuge      ,  leads to the extinction of the predator 

population from the system, and the AEP is globally asymptotically stable, see Figure 3. 

4- The prey intrinsic growth rate   has an impact on prey density. It is found that at       

with a low level of fear among preys, the system (2.2) loses its stability, and goes to a 



Majeed and Ghafel                          Iraqi Journal of Science, 2022, Vol. 63, No. 10, pp: 4374-4387 
 

4387 

periodic solution. But with a high level of fear of prey, system (2.2) has no periodic behavior, 

and    changes from unstable to a stable equilibrium point, see Figure 4. 

5-The intraspecific competition between preys has an appositive effect on the intrinsic growth 

rate, that is, decreasing its value may lead to a periodic solution of the system (2.2). In this 

case, again, increasing the level of fear changes the dynamic of the system to a stable steady-

state behavior, see Figure 5. 

6- The transition rate   has more influence on the dynamic of system (2.2). First, for its value 

in the range           , the mature and immature predator gradually decreases to 

extinct. But for          the dynamic of the system change to a steady-state behavior ( 

stable or periodic solution). Again, increasing the value of fear can vanish the periodic 

behavior of the system (2.2) (Figure 7). 
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