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ABSTRACT
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Outliers within a dataset are data points that substantially differ from the rest of the
data. These atypical data points can be attributed to several factors, such as errors in
measurement, issues with the data input, and natural variations in the data. Managing outliers
is essential to ensure the integrity of statistical analyses and avoid obtaining misleading results.

These outliers can be observed at very high or very low points and can exert a notable
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effect on statistical measures, such as mean and variance. Many diagnostic techniques focus
on influencing centroids and distances between clusters to detect these abnormal points.

In this study, fuzzy cluster techniques are employed to identify outliers within a dataset.
An alternative technique is utilized to detect outliers via standardization by using fuzzy cluster

techniques. The performance of the proposed method is compared with that of other
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license (http://creativecommons.org/licens
es/by/4.0/).

approaches through simulation.

Introduction

Cluster analysis is useful and efficient for
classifying large amounts of data, so it is suitable for
further processing data groups. It can also be
employed to manage datasets, identify outliers, and
determine which variables should be combined
initially and which should be considered separately.
Researchers use hard and fuzzy cluster analysis
methods for different goals and purposes. Zadeh [1],
[2] introduced fuzzy sets in 1965 and defined an
object that allows the modeling of inaccurate models
mathematically. Since then, the method has been used
widely to manage ambiguous data and simulate
human inference procedures.

Hard cluster partitioning combined with either
a hard isodata technique or a hard c-means algorithm
was implemented in the initial version of the fuzzifier

factor [3].
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Then, in 1981, fuzzy C-means (FCM) [4], a
well-known fuzzy algorithm based on partitioning,
was introduced.

By determining the distances between each data
point and the cluster centers, FCM allocates a fuzzy
membership degree to each one. Dunn [5] presented a
fuzzy version of this algorithm to handle data that belong
to many clusters at the same extent. Gustafson and
Kessel’s clustering technique (GK-1979) [6] uses an
adaptive distance norm as an extension of the basic FCM
algorithm, which employs Euclidean distance to identify
clusters with various geometrical shapes. Ohashi [7]
attempted to adjust for noise by modifying the FCM
method to obtain robustness against some outliers. Dave
[8], [9] proposed the idea of noise clustering by splitting
the objective function into two terms. The first term
corresponds to the objective function for probabilistic
clustering, and a noise cluster is used to represent the
second term. Bandemer et al. [10] organized data
analysis into four progressively difficult levels to detect
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the nature of data and treat them. To solve the FCM noise
problem, Krishnapuram and Keller (1993), [11], [12]
presented the possibilistic C-means (PCM) clustering
approach. The strategy differs from previous clustering
algorithms in that the membership values can be
regarded as probability levels of the points belonging to
the classes, and the resulting data partition can be
viewed as a possibilistic partition. Pal et al. [13], [14]
(1997) constructed the fuzzy PCM method, which is
commonly known as the mixed C-means algorithm that
combines the characteristics of FCM and PCM. Yang
and Wul [15] (2006) developed the possibilistic
clustering algorithm, which began a new algorithmic line
aimed at improving FCM and PCM techniques. To make
their proposed algorithm robust to noise and outliers, the
authors suggested that the membership that results from
it should be treated as an exponential function. Wu et al.
[16] (2010) introduced the unsupervised possibilistic
fuzzy clustering algorithm as a means to overcome the
coincident cluster problem in PCM and the noise
sensitivity issue in FCM.

Methods and Materials in Fuzzy Clustering

Clustering techniques are an effective tool for
minimizing dimensions and identifying outliers.
Through the use of several distance metrics, clustering
allows the original large dataset to be divided into many
groups of comparable objects on the basis of similarity
difference features. Then, each group can be replaced by
the most representative object that is located in the
cluster center [17].

Clustering and partitioning algorithms aim to
divide a dataset of n objects with p variables or features
into k cluster subsets of data or clusters. A data point that
represents or specifies a cluster is referred to as a
prototype in the context of clustering.

FCM Method

Fuzzy clustering, sometimes referred to as soft
clustering or soft k-means, allows data points to be
included in several groupings. A membership grade,
which indicates which cluster the data points belong to,
is assigned to each point [18].

The FCM clustering algorithm was initially
examined by Dunn [5] in 1973, and Bezdek [4], [19]
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generalized it in 1974. Unlike in the K-means method, in
FCM, each data object is a member within each cluster,
and membership degrees vary between 0 and 1. By
minimizing the weighted within-group sum of squared
errors, the iterative clustering technique divides the
dataset into k partitions. Moreover, the FCM clustering
algorithm is an unsupervised method that permits a
single data observation to be a part of many clusters.
With this feature, it can be helpful in identifying outliers
by recognizing data points that do not firmly belong to
any cluster. The following text shows a robust algorithm
that uses FCM to identify outlier values.

The objective function of FCM is
objrem(Xf: Uf, Kf)

n k
=D D™ s =il
i=1j=1

The fuzzier, mf, in the objective function specifies
how fuzzy the clustering result is, and 1 < m < oo.
Usually, two are chosen. Large values of m produce
fuzzy clusters, and small values produce tough clusters.
If m=1, FCM turns into a hard algorithm and uses K-
means to obtain the same results.

FCM needs to meet the following constraints:
) X, Ufyj=1; 1<i<m
o< YL Ufij<n ; 1<j<k; (2)
iii) The following update equations are used to minimize

the FCM objective function.
1

iV) 'Ll,fl] = T H lfdl] > 0; (3)
xf i— cf|[]Jtm=1
i [[erd
"L j-err]
V) For i=1...k; j=1...n;
vi)

i fi)™ xj .
== VYi=1,...
fi =S rgm VEEL

dfy; = [(f; = cf)) &f; — el (5)
For 1=1,2...k ; j=1,2...n,

Lk (4)

Ut —uri=1| <ef. (6)

Data points that fall apart in any cluster can be
categorized as outliers once the algorithm has
converged. Compared with hard clustering approaches,
this methodology allows a more flexible and robust
identification of outliers.
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PCM

PCM clustering was created to overcome some of
the limitations of the FCM algorithm. As a solution to
the noise problem in FCM, Krishnapuram and Keller
(1993) [11], [12] presented the PCM clustering
technique.

The data partition in this technique can be
interpreted as a possibilistic partition, and the
interpretation of the membership values can be viewed
as the degrees of the possibility that the points belong to
the classes to determine the parameter. However, PCM
must be run on the fuzzy clustering results of FCM.
PCM’s performance is highly dependent on initialization
and frequently decreases because of the simultaneous
clustering problem, even though it solves the noise
sensitivity issue of FCM (Filippone et al., 2007) [20].
The objective function of PCM 1 is

objpcnu (Xf, Tf,Cf)
= Dty 4 (efuef)
1;1 .
+ Z of, 2(1 —tf)) ()
= =

The first component in the objective function
above minimizes the weighted distances, and the second
term suppresses the trivial solution (Timm et al., 2004)
[21].

An alternate objective function for PCM was
proposed by Krishnapuram and Keller (Krishnapuram &
Keller) [12]. The objective function of PCM 2 is

objpenm (Xf, Tf, Cf) = Xieq tf;" d? (xfi, cf;) +
T Of; T tfiY logtfiV — tf;Y, (8)
Where

_ KEL ufy"d? (efi of )

Qf; C)
! ?zlufijm
where
Xt = {xfi,xf5, ..., xfn} S RP is the dataset for n

objects in p-dimensional data space R;

Ct={cfi,cfs, .......cfr} S R™is the protoype matrix of
the clusters;

Uf = {uf;;} is the matrix for a fuzzy partition of (Xf);
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Tf = {tf;;} is the matrix for a possibilistic partition of
(Xf); and
d?(xf;, cfj) is the squared Euclidean distance between
object xj and cluster prototype (Cf).
d*(xfi,cfj) = llxfi — cfjll?

= (xfi—cfj) (xfi—cfj) (10)

(mf) is the fuzzifier to specify the amount of
fuzziness for the clustering; 1 < mf < o is usually
chosen as 2.

I]f is the typicality exponent to specify the amount
of typicality for the clustering; 1 < nf < oo is usually
chosen as 2.

FPCM must satisfy the following constraints:
Zﬁlufij:l ;1<i<n,
Yisatfij=1;1<j<k.

The membership degrees can be defined as
typicality values that measure the degree to which a data
object is for a particular cluster independent of all other
clusters because PCM membership computation is
possibilistic. The typicality degree update equation,
which is obtained from the PCM objective function, is

the same as that of FCM.
-1

1
a2(xficfi)) /m-1)
tfi; = [1 + (—("S{fljcf’)> ] (12)

For 1<i<n,1<j<k
The update equation for cluster prototypes is the
same as those of FCM.
Sieq tfi xS
cfj = Z’;:l tlj‘ T
Outliers are data points that do not fit well into any cluster
and can be identified using PCM clustering.

1<j<k @12)

Proposed Method

Accurately diagnosing outliers in datasets
improves analytical model accuracy and data quality.
Effective approaches include fuzzy clustering
techniques, such as PCM and FCM. However, variations
in measurement among observations in a dataset might
affect the efficacy of these techniques. In this study, we
propose a new strategy on the basis of the concept of
standardization to enhance outlier diagnosis by utilizing
FCM and PCM. We also examine the possible effects of
this strategy on the results.
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The process of standardizing data includes placing
data within a common range so that the variables are
compared using the equation

Xfi — ufi

2fy == (13)

where uf; and of; are the mean and standard deviation
of Xf;, respectively.

This strategy recommends standardizing the data
before applying fuzzy clustering techniques (FCM and
PCM) to increase the precision of outlier diagnosis. This
strategy’s main effects are as follows:

e Increase the consistency of the data: The effects of
data that are abnormally large or small must be
minimized to ensure correct aggregation.

e Minimize the effects of disparate measurements:
Every variable must fall within the same range to
reduce the effects of measurement variations.

e Increase the precision of the diagnosis: The
distinctions between normal and outlier values must
be made obvious to increase the precision of the
diagnosis.

Criteria for Evaluating the Performance of Methods

Used in Diagnosing Outlier Values

1- Obijective function: the lowest value of the objective
function should be obtained

2- Skill of understanding and interpreting the results by
diagnostic accuracy of outlier values

3- Computational efficiency is measured as the time or
iterations needed to complete the algorithm

4- Small groups are identified and classified as outliers
when the data points located in these little clusters
have a distance Df (xf, cf) value equal to twice the
mean of the distance value or greater or less than it as
follows:

Df (xf, cf) >2 (Df; mean of distance) or Df (xf, cf) <2
(Df; mean of distance).  (14)

Simulation and Model Estimation Results

Monte Carlo experiments are conducted using the
MATLAB R22 program to assess the behavior and
statistics of the methods employed for detecting outliers,
and the methods are compared with the proposed strategy.
Then, the effectiveness of these methods in the diagnosis
process is assessed.
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In particular, a dataset is generated via simulation
with multiple sample sizes (nf = 10, 25, 50, and 100),
different dimensions (pf = 2 and 3), and various numbers
of clusters (kf = 2, 3, and 4). Fuzzing factors equal to (mf
= 2) are employed, and the stopping criterion is set to &f
= 0.00001. Data with random outliers and data
contaminated by 20% are used to test the model’s
detection abilities.

Fuzzy clustering methods are utilized to diagnose
outliers. The results of the methods are compared based
on the standardization property. The best methods have
the lowest objective function value among all the values
and the least number of iterations required to complete
the algorithm, as indicated in Tables 1 and 2.

The methods with the best performance in
identifying outliers are shown in Pictures 1 to 48, which
also compare the methods on the basis of the clustering
of outliers within small or individual groups or whether
the distance between these values and the cluster center
is twice the average distance in Eq. (14). The objective
function and iteration for FCM, PCM 1, and PCM 2 are
givenin Egs. (1), (7), and (8), respectively. The objective
function and iteration for the proposed method are given
as FCM-Stand and PCM-Stand (1) and (2).

Table 1. Results of objective Function (Objf) and
Iteration (Itr.) for the FCM, and FCM-Stand

Obijective Function + (Iteration)
mf pf nf kf FCM FCM-Stand

(Itr) (Itr)

2 2 10 2 53.85163 3.76262
(17) (18)

3 21.49420 1.89988
(72) (72)

4 14.00260 1.26552
(26) (25)

25 2 98.32256 7.41345
(11) (10)

3 73.12346 5.56879
(81) (78)

4 35.72028 3.58532
(47) (71)

50 2 230.05969 17.98765
(20) (21)

3 169.22769 13.29191
(100) (78)

4 102.11792 8.22219
(54) (52)

100 2 455.85862 34.32070
(20) (20)
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3 | 285.73112 2159256
(61) (59)

4 | 229.07762 18.39303
(64) (64)

3 | 10 | 2 | 49.42499 3.28209
(15) (14)

3 | 21.16038 1.60507
(100) (35)

4 | 22.83490 1.79203
(28) (100)

25 | 2 | 122.61011 11.73828
(15) (15)

3 | 77.93957 5.47478
(93) (100)

4 | 7111207 6.01448
(100) (100)

50 | 2 | 279.41437 2217211
(13) (13)

3 | 166.61285 14.86833
(30) (31)

4 | 135.04863 11.09680
(38) (100)

100 | 2 | 577.73959 44.69441
(18) (18)

3 | 37551846 29.22223
(51) (51)

4 | 284.37945 22.53230
(47) (57)

Table 2. Results of objective Function (Objf) and
Iteration (Itr.) with (mf=2) for the PCM (1), PCM (2), and

PCM-Stand (1), PCM-Stand (2) methods

Objective Function + (lteration)

pf | nf | kf PCM (1) PCM (2) PCM- PCM-
(Itr) (Itr.) Stand (1) | Stand (2)
(Itr) (Itr)
2 10 2 135.51401 17.82280 9.60014 1.27452
(5) ©) 2 O]
3 96.74961 7.45376 8.55315 0.65460
(10 (10) 2 2
4 64.41340 3.80574 5.81542 0.34287
(15 (15) 9) 9)
25 2 214.09119 16.92276 | 16.08629 1.27629
4) ) [€) ©)
3 315.56463 12.03916 | 24.05765 0.91519
@ 2 2 @
4 214.12849 4.64788 21.85994 0.78655
(10) (10) ) &)
50 2 580.96139 | 66.42676 | 45.58376 5.24185
(6) (6) [€) @)
3 1046.5602 1442312 | 81.68910 | 11.32936
(100) (100) (43) (43)
4 904.85297 97.21764 72.55099 7.73194
(13) (13) () ©)
100 2 1124.8734 126.9579 84.70946 9.56380
4 4) ) ®)
3 1304.4139( | 49.69549 | 98.57098 3.84503
62) (62) (36) (36)
4 2030.4466 | 244.3086 | 163.0278 | 19.61653
27 @7 (13 13)
3 10 2 114.00961 | 11.50311 | 7.46324 0.72152
(©) (©) @) @)
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3 81.75323 0.14335 6.02730 0.15812
27 @7 @ @
4 158.62871 0.94722 12.44678 0.19936
(©) (©)] (13) (13)
25 2 264.72867 27.46438 25.14949 2.58688
] O] ©)] 3)
3 324.43290 13.43611 22.91929 0.93369
@ @ O] 2
4 682.06599 84.12919 56.96522 7.19543
(100) (100) (53) (53)
50 2 679.12378 82.10532 53.66082 6.41382
(©) (5) ©) (©)
3 757.06811 41.57723 67.61528 3.71479
(25 (25 (22) (22)
4 1259.8539 149.3852 107.9391 13.00367
(33) (33) (100) (100)
100 2 1471.1337 187.9107 113.8714 14.54920
Q)] (5) ©) (©)
3 1743.66014 | 106.6016 135.6607 8.28563
2 2 @ 2
4 2765.5832 332.1430 218.8192 26.31089
©)] O] @ (2)
50 3
] ® Lcst st ot st (=10, 72 =2 k=)
st R
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Picture 15. P(fM Plot with
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with (nf = 100, pf = 2, mf = 2,
kf =3)
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Picture 46. FéM-Stand Plot
with (nf = 100, pf = 2, mf = 2,

Picture 45. FCM Plot with (nf
=100, pf =2, mf =2, kf = 4)
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Picture 48. PéM—Stand Plot
with (nf = 100, pf = 2, mf = 2,
kf = 4)

Picture 47. PCM Plot with (nf
=100, pf=2, mf =2, kf = 4)

Conclusions

The performance of the proposed technique is

compared with that of other approaches. The result
implies that when fuzzy clustering methods FCM and
PCM are applied, standardization is an essential initial
phase to increasing the precision of outlier diagnosis.
Substantial performance improvement and consistency in
diagnostic outcomes can be attained by the
implementation of standardization. Most of the time,
uniformity is the ideal option because it can convert data
into a consistent range, thus improving the precision of
the clustering criterion.

1- In the absence of standardization, FCM performs
moderately well in identifying outliers. The number of
iterations increases in both cases as the sample sizes
and cluster numbers increase. Meanwhile, the values
of objective functions begin to decrease as the number
of clusters increases (pf = 2, 3).

2- When the sample sizes and cluster numbers increase,
the FCM method with the use of the standardization
approach (FCM-Stand) exerts a positive effect on
decreasing the degrees of objective functions and the
number of iterations when (pf = 2, 3) compared with
the FCM method.

3- When the two different objective function formulas
are used, the PCM method performs differently. In the
first case, it performs well when the objective function
in Eq. (8) that represents the method PCM 2 is used. It
does not perform as well when the objective function

Journal of University of Anbar for Pure Science (JUAPS)

267

Open Access

in Eg. (7) that represents the method PCM 1 is
employed.

4- Excellent results are obtained together with high
diagnostic accuracy and a noticeable improvement in
identifying outliers when the standardization approach
with the PCM method is adopted. Notable decrements
in the values of the objective functions and the number
of iterations are achieved when the number of clusters
increases and when pf=2, 3.

5- The PCM 2 method performs better than the FCM
method in the cases with and without using the
standardization strategy.

6- Dealing with standardized data makes the distance
criteria used in FCM and PCM increasingly precise.
For the best results, the model’s performance should
be regularly assessed, and the standardization
procedures should be improved when necessary.
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