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 Outliers within a dataset are data points that substantially differ from the rest of the 

data. These atypical data points can be attributed to several factors, such as errors in 

measurement, issues with the data input, and natural variations in the data. Managing outliers 

is essential to ensure the integrity of statistical analyses and avoid obtaining misleading results. 

These outliers can be observed at very high or very low points and can exert a notable 

effect on statistical measures, such as mean and variance. Many diagnostic techniques focus 

on influencing centroids and distances between clusters to detect these abnormal points. 

In this study, fuzzy cluster techniques are employed to identify outliers within a dataset. 

An alternative technique is utilized to detect outliers via standardization by using fuzzy cluster 

techniques. The performance of the proposed method is compared with that of other 

approaches through simulation. 
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Introduction  

Cluster analysis is useful and efficient for 

classifying large amounts of data, so it is suitable for 

further processing data groups. It can also be 

employed to manage datasets, identify outliers, and 

determine which variables should be combined 

initially and which should be considered separately. 

Researchers use hard and fuzzy cluster analysis 

methods for different goals and purposes. Zadeh [1], 

[2] introduced fuzzy sets in 1965 and defined an 

object that allows the modeling of inaccurate models 

mathematically. Since then, the method has been used 

widely to manage ambiguous data and simulate 

human inference procedures. 

Hard cluster partitioning combined with either 

a hard isodata technique or a hard c-means algorithm 

was implemented in the initial version of the fuzzifier 

factor [3]. 
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 Then, in 1981, fuzzy C-means (FCM) [4], a 

well-known fuzzy algorithm based on partitioning, 

was introduced. 

By determining the distances between each data 

point and the cluster centers, FCM allocates a fuzzy 

membership degree to each one. Dunn [5] presented a 

fuzzy version of this algorithm to handle data that belong 

to many clusters at the same extent. Gustafson and 

Kessel’s clustering technique (GK-1979) [6] uses an 

adaptive distance norm as an extension of the basic FCM 

algorithm, which employs Euclidean distance to identify 

clusters with various geometrical shapes. Ohashi [7] 

attempted to adjust for noise by modifying the FCM 

method to obtain robustness against some outliers. Dave 

[8], [9] proposed the idea of noise clustering by splitting 

the objective function into two terms. The first term 

corresponds to the objective function for probabilistic 

clustering, and a noise cluster is used to represent the 

second term. Bandemer et al. [10] organized data 

analysis into four progressively difficult levels to detect 
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the nature of data and treat them. To solve the FCM noise 

problem, Krishnapuram and Keller (1993), [11], [12] 

presented the possibilistic C-means (PCM) clustering 

approach. The strategy differs from previous clustering 

algorithms in that the membership values can be 

regarded as probability levels of the points belonging to 

the classes, and the resulting data partition can be 

viewed as a possibilistic partition. Pal et al. [13], [14] 

(1997) constructed the fuzzy PCM method, which is 

commonly known as the mixed C-means algorithm that 

combines the characteristics of FCM and PCM. Yang 

and Wul [15] (2006) developed the possibilistic 

clustering algorithm, which began a new algorithmic line 

aimed at improving FCM and PCM techniques. To make 

their proposed algorithm robust to noise and outliers, the 

authors suggested that the membership that results from 

it should be treated as an exponential function. Wu et al. 

[16] (2010) introduced the unsupervised possibilistic 

fuzzy clustering algorithm as a means to overcome the 

coincident cluster problem in PCM and the noise 

sensitivity issue in FCM. 

 

Methods and Materials in Fuzzy Clustering 

Clustering techniques are an effective tool for 

minimizing dimensions and identifying outliers. 

Through the use of several distance metrics, clustering 

allows the original large dataset to be divided into many 

groups of comparable objects on the basis of similarity 

difference features. Then, each group can be replaced by 

the most representative object that is located in the 

cluster center [17]. 

Clustering and partitioning algorithms aim to 

divide a dataset of n objects with p variables or features 

into k cluster subsets of data or clusters. A data point that 

represents or specifies a cluster is referred to as a 

prototype in the context of clustering. 

 

FCM Method 

Fuzzy clustering, sometimes referred to as soft 

clustering or soft k-means, allows data points to be 

included in several groupings. A membership grade, 

which indicates which cluster the data points belong to, 

is assigned to each point [18]. 

The FCM clustering algorithm was initially 

examined by Dunn [5] in 1973, and Bezdek  [4], [19] 

generalized it in 1974. Unlike in the K-means method, in 

FCM, each data object is a member within each cluster, 

and membership degrees vary between 0 and 1. By 

minimizing the weighted within-group sum of squared 

errors, the iterative clustering technique divides the 

dataset into k partitions. Moreover, the FCM clustering 

algorithm is an unsupervised method that permits a 

single data observation to be a part of many clusters. 

With this feature, it can be helpful in identifying outliers 

by recognizing data points that do not firmly belong to 

any cluster. The following text shows a robust algorithm 

that uses FCM to identify outlier values. 

The objective function of FCM is  

𝑜𝑏𝑗𝐹𝐶𝑀(𝑋𝑓: 𝑈𝑓, 𝐾𝑓)

= ∑ ∑(𝑢𝑓𝑖𝑗)𝑚

𝑘

𝑗=1

𝑛

𝑖=1

 ‖𝑥𝑓𝑗 − 𝑐𝑓𝑖‖
2

.  (1) 

The fuzzier, mf, in the objective function specifies 

how fuzzy the clustering result is, and 1 ≤ m ≤ ∞. 

Usually, two are chosen. Large values of m produce 

fuzzy clusters, and small values produce tough clusters. 

If m = 1, FCM turns into a hard algorithm and uses K-

means to obtain the same results. 

FCM needs to meet the following constraints: 

i) ∑ 𝑈𝑓𝑖𝑗
𝑘
𝑗=1 = 1    ;   1 ≤ 𝑖 ≤ 𝑛; 

ii) 0 <  ∑ 𝑈𝑓𝑖𝑗 < 𝑛𝑛
𝑖=1     ;    1 ≤ 𝑗 ≤ 𝑘;       (2) 

iii)  The following update equations are used to minimize 

the FCM objective function. 

iv) 𝑢𝑓𝑖𝑗 =  
1

∑ [
‖𝑥𝑓𝑗− 𝑐𝑓𝑖‖

‖𝑥𝑓𝑗−𝑐𝑓𝑟‖
]

1
(𝑚−1)

𝑘
𝑟=1

     ;    if 𝑑𝑖𝑗 > 0;  (3) 

v) For  i = 1… k ;   j=1… n;  

vi)  

𝑐𝑓𝑖 =
∑ (𝑢𝑓𝑖𝑗)𝑚 𝑥𝑗

𝑛
𝑗=1

∑ (𝑢𝑓𝑖𝑗)𝑚𝑛
𝑗=1

 ; ∀ 𝑖 = 1, … . . , 𝑘;    (4) 

𝑑𝑓𝑖𝑗 =  [(𝑥𝑓𝑗 − 𝑐𝑓𝑖)′ (𝑥𝑓𝑗 − 𝑐𝑓𝑖)]
1

2.    (5)      

For  I = 1, 2… k  ;   j=1, 2… n,  

 

‖𝑈𝑓𝑖 − 𝑈𝑓𝑖−1‖  < 𝜀𝑓.      (6) 

Data points that fall apart in any cluster can be 

categorized as outliers once the algorithm has 

converged. Compared with hard clustering approaches, 

this methodology allows a more flexible and robust 

identification of outliers. 
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PCM 

PCM clustering was created to overcome some of 

the limitations of the FCM algorithm. As a solution to 

the noise problem in FCM, Krishnapuram and Keller 

(1993) [11], [12] presented the PCM clustering 

technique. 

The data partition in this technique can be 

interpreted as a possibilistic partition, and the 

interpretation of the membership values can be viewed 

as the degrees of the possibility that the points belong to 

the classes to determine the parameter. However, PCM 

must be run on the fuzzy clustering results of FCM. 

PCM’s performance is highly dependent on initialization 

and frequently decreases because of the simultaneous 

clustering problem, even though it solves the noise 

sensitivity issue of FCM (Filippone et al., 2007) [20]. 

The objective function of PCM 1 is 

𝑜𝑏𝑗𝑃𝐶𝑀(𝑋𝑓, 𝑇𝑓, 𝐶𝑓)

= ∑ 𝑡𝑓𝑖𝑗
ƞ 𝑑2

𝑛

𝑖=1

(𝑥𝑓𝑖 , 𝑐𝑓𝑗)

+ ∑ Ωf𝑗

𝑘

𝑗=1

 ∑(1 − 𝑡𝑓𝑖𝑗)
ƞ

.        (7)

𝑛

𝑖=1

 

The first component in the objective function 

above minimizes the weighted distances, and the second 

term suppresses the trivial solution (Timm et al., 2004) 

[21]. 

An alternate objective function for PCM was 

proposed by Krishnapuram and Keller (Krishnapuram & 

Keller) [12]. The objective function of PCM 2 is 

𝑜𝑏𝑗𝑃𝐶𝑀(𝑋𝑓, 𝑇𝑓, 𝐶𝑓) = ∑ 𝑡𝑓𝑖𝑗
ƞ𝑓 𝑑2𝑛

𝑖=1 (𝑥𝑓𝑖 , 𝑐𝑓𝑗) +

∑ Ωf𝑗
𝑘
𝑗=1  ∑ 𝑡𝑓𝑖𝑗

ƞ𝑓 𝑙𝑜𝑔𝑡𝑓𝑖𝑗
ƞ𝑓 − 𝑡𝑓𝑖𝑗

ƞ𝑓 ,𝑛
𝑖=1    (8)  

Where  

Ωf𝑗 =
𝐾 ∑ 𝑢𝑓𝑖𝑗

𝑚𝑑2𝑛
𝑖=1 (𝑥𝑓𝑖   , 𝑐𝑓𝑗)

∑ 𝑢𝑓𝑖𝑗
𝑚𝑛

𝑖=1

,    (9) 

where  

Xf = {𝑥𝑓1 , 𝑥𝑓2 , … … . , 𝑥𝑓𝑛} ⊆  𝑅𝑝 is the dataset for n 

objects in p-dimensional data space R; 

Cf = { 𝑐𝑓1, 𝑐𝑓2, … … . 𝑐𝑓𝑛} ⊆  𝑅𝑛 is the protoype matrix of 

the clusters; 

Uf = {𝜇𝑓𝑖𝑗} is the matrix for a fuzzy partition of (Xf); 

Tf = {𝑡𝑓𝑖𝑗} is the matrix for a possibilistic partition of 

(Xf); and 

𝑑2(𝑥𝑓𝑖  , 𝑐𝑓𝑗) is the squared Euclidean distance between 

object xj and cluster prototype (Cf). 

𝑑2(𝑥𝑓𝑖 , 𝑐𝑓𝑗 ) = ‖𝑥𝑓𝑖 − 𝑐𝑓𝑗‖2

=  (𝑥𝑓𝑖 − 𝑐𝑓𝑗 )𝑇(𝑥𝑓𝑖 − 𝑐𝑓𝑗 )      (10) 

 

(mf) is the fuzzifier to specify the amount of 

fuzziness for the clustering; 1 ≤ 𝑚𝑓 ≤ ∞ is usually 

chosen as 2. 

Ƞf is the typicality exponent to specify the amount 

of typicality for the clustering; 1 ≤ ƞ𝑓 ≤ ∞  is usually 

chosen as 2.  

FPCM must satisfy the following constraints: 

∑ 𝑢𝑓𝑖𝑗
𝑘
𝑗=1 = 1    ; 1 ≤ 𝑖 ≤ 𝑛,  

∑ 𝑡𝑓𝑖𝑗
𝑛
𝑖=1 = 1   ; 1 ≤ 𝑗 ≤ 𝑘.  

 The membership degrees can be defined as 

typicality values that measure the degree to which a data 

object is for a particular cluster independent of all other 

clusters because PCM membership computation is 

possibilistic. The typicality degree update equation, 

which is obtained from the PCM objective function, is 

the same as that of FCM. 

𝑡𝑓𝑖𝑗 = [1 +  (
𝑑2(𝑥𝑓𝑖,𝑐𝑓𝑗)

Ωf𝑗
)

1
(𝑚−1)⁄

]

−1

      (11) 

For   1 ≤ 𝑖 ≤ 𝑛  , 1 ≤ 𝑗 ≤ 𝑘 

The update equation for cluster prototypes is the 

same as those of FCM. 

 𝑐𝑓𝑗 =  
∑ 𝑡𝑓𝑖𝑗

𝑚𝑥𝑓𝑖𝑛
𝑖=1

∑ 𝑡𝑓𝑖𝑗
𝑚𝑛

𝑖=1
     ;    1 ≤ 𝑗 ≤ 𝑘       (12)  

Outliers are data points that do not fit well into any cluster 

and can be identified using PCM clustering. 

 

Proposed Method 

Accurately diagnosing outliers in datasets 

improves analytical model accuracy and data quality. 

Effective approaches include fuzzy clustering 

techniques, such as PCM and FCM. However, variations 

in measurement among observations in a dataset might 

affect the efficacy of these techniques. In this study, we 

propose a new strategy on the basis of the concept of 

standardization to enhance outlier diagnosis by utilizing 

FCM and PCM. We also examine the possible effects of 

this strategy on the results. 
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The process of standardizing data includes placing 

data within a common range so that the variables are 

compared using the equation 

𝑍𝑓𝑖 =
𝑋𝑓𝑖 − 𝜇𝑓𝑖

𝜎𝑓𝑖
 ,   (13) 

where 𝜇𝑓𝑖   and  𝜎𝑓𝑖 are the mean and standard deviation 

of 𝑋𝑓𝑖 , respectively. 

This strategy recommends standardizing the data 

before applying fuzzy clustering techniques (FCM and 

PCM) to increase the precision of outlier diagnosis. This 

strategy’s main effects are as follows: 

 Increase the consistency of the data: The effects of 

data that are abnormally large or small must be 

minimized to ensure correct aggregation. 

 Minimize the effects of disparate measurements: 

Every variable must fall within the same range to 

reduce the effects of measurement variations. 

 Increase the precision of the diagnosis: The 

distinctions between normal and outlier values must 

be made obvious to increase the precision of the 

diagnosis. 

Criteria for Evaluating the Performance of Methods 

Used in Diagnosing Outlier Values 

1- Objective function: the lowest value of the objective 

function should be obtained 

2- Skill of understanding and interpreting the results by 

diagnostic accuracy of outlier values 

3- Computational efficiency is measured as the time or 

iterations needed to complete the algorithm  

4- Small groups are identified and classified as outliers 

when the data points located in these little clusters 

have a distance Df (xf, cf) value equal to twice the 

mean of the distance value or greater or less than it as 

follows: 

 

Df (xf, cf)  ≥ 2 (Df̅̅̅; mean of distance)  or  Df (xf, cf)  ≤ 2 

(Df̅̅̅; mean of distance).     (14)        

 

Simulation and Model Estimation Results  

Monte Carlo experiments are conducted using the 

MATLAB R22 program to assess the behavior and 

statistics of the methods employed for detecting outliers, 

and the methods are compared with the proposed strategy. 

Then, the effectiveness of these methods in the diagnosis 

process is assessed.  

In particular, a dataset is generated via simulation 

with multiple sample sizes (nf = 10, 25, 50, and 100), 

different dimensions (pf = 2 and 3), and various numbers 

of clusters (kf = 2, 3, and 4). Fuzzing factors equal to (mf 

= 2) are employed, and the stopping criterion is set to ɛf 

= 0.00001. Data with random outliers and data 

contaminated by 20% are used to test the model’s 

detection abilities. 

Fuzzy clustering methods are utilized to diagnose 

outliers. The results of the methods are compared based 

on the standardization property. The best methods have 

the lowest objective function value among all the values 

and the least number of iterations required to complete 

the algorithm, as indicated in Tables 1 and 2. 

The methods with the best performance in 

identifying outliers are shown in Pictures 1 to 48, which 

also compare the methods on the basis of the clustering 

of outliers within small or individual groups or whether 

the distance between these values and the cluster center 

is twice the average distance in Eq. (14). The objective 

function and iteration for FCM, PCM 1, and PCM 2 are 

given in Eqs. (1), (7), and (8), respectively. The objective 

function and iteration for the proposed method are given 

as FCM-Stand and PCM-Stand (1) and (2). 

 

Table 1. Results of objective Function (Objf) and 

Iteration (Itr.) for the FCM, and FCM-Stand 

 
Objective Function + (Iteration) 

mf pf nf kf FCM 

(Itr.) 

FCM-Stand 

(Itr.) 

2 2 

 

10 2 53.85163 

(17) 

3.76262 

(18) 

3 21.49420 

(72) 

1.89988 

(72) 

4 14.00260 

(26) 

1.26552 

(25) 

25 2 98.32256 

(11) 

7.41345 

(10) 

3 73.12346 

(81) 

5.56879 

(78) 

4 35.72028 

(47) 

3.58532 

(71) 

50 2 230.05969 

(20) 

17.98765 

(21) 

3 169.22769 

(100) 

13.29191 

(78) 

4 102.11792 

(54) 

8.22219 

(52) 

100 2 455.85862 

(20) 

34.32070 

(20) 
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3 285.73112 

(61) 

21.59256 

(59) 

4 229.07762 

(64) 

18.39303 

(64) 

3 10 2 49.42499 

(15) 

3.28209 

(14) 

3 21.16038 

(100) 

1.60507 

(35) 

4 22.83490 

(28) 

1.79203 

(100) 

25 2 122.61011 

(15) 

11.73828 

(15) 

3 77.93957 

(93) 

5.47478 

(100) 

4 71.11207 

(100) 

6.01448 

(100) 

50 2 279.41437 

(13) 

22.17211 

(13) 

3 166.61285 

(30) 

14.86833 

(31) 

4 135.04863 

(38) 

11.09680 

(100) 

100 2 577.73959 

(18) 

44.69441 

(18) 

3 375.51846 

(51) 

29.22223 

(51) 

4 284.37945 

(47) 

22.53230 

(57) 

 

Table 2. Results of objective Function (Objf) and 

Iteration (Itr.) with (mf=2) for the PCM (1), PCM (2), and 

PCM-Stand (1), PCM-Stand (2) methods 

  
Objective Function + (Iteration) 

pf nf kf PCM (1) 

(Itr.) 

PCM (2) 

(Itr.) 

PCM-

Stand (1) 

(Itr.) 

PCM-

Stand (2) 

(Itr.) 

2 

 

10 2 135.51401 

(5) 

17.82280 

(5) 

9.60014 

(2) 

1.27452 

(2) 

3 96.74961 

(10) 

7.45376 

(10) 

8.55315 

(2) 

0.65460 

(2) 

4 64.41340 

(15) 

3.80574 

(15) 

5.81542 

(9) 

0.34287 

(9) 

25 2 214.09119 

(4) 

16.92276 

(4) 

16.08629 

(3) 

1.27629 

(3) 

3 315.56463 

(2) 

12.03916 

(2) 

24.05765 

(2) 

0.91519 

(2) 

4 214.12849 

(10) 

4.64788 

(10) 

21.85994 

(2) 

0.78655 

(2) 

50 2 580.96139 

(6) 

66.42676 

(6) 

45.58376 

(3) 

5.24185 

(3) 

3 1046.5602 

(100) 

144.2312 

(100) 

81.68910 

(43) 

11.32936 

(43) 

4 904.85297 

(13) 

97.21764 

(13) 

72.55099 

(5) 

7.73194 

(5) 

100 2 1124.8734 

(4) 

126.9579 

(4) 

84.70946 

(3) 

9.56380 

(3) 

3 1304.4139(

62) 

49.69549 

(62) 

98.57098 

(36) 

3.84503 

(36) 

4 2030.4466 

(27) 

244.3086 

(27) 

163.0278 

(13) 

19.61653 

(13) 

3 10 2 114.00961 

(3) 

11.50311 

(3) 

7.46324 

(2) 

0.72152 

(2) 

3 81.75323 

(27) 

0.14335 

(27) 

6.02730 

(2) 

0.15812 

(2) 

4 158.62871 

(5) 

0.94722 

(5) 

12.44678 

(13) 

0.19936 

(13) 

25 2 264.72867 

(5) 

27.46438 

(5) 

25.14949 

(3) 

2.58688 

(3) 

3 324.43290 

(2) 

13.43611 

(2) 

22.91929 

(2) 

0.93369 

(2) 

4 682.06599 

(100) 

84.12919 

(100) 

56.96522 

(53) 

7.19543 

(53) 

50 2 679.12378 

(5) 

82.10532 

(5) 

53.66082 

(3) 

6.41382 

(3) 

3 757.06811 

(25) 

41.57723 

(25) 

67.61528 

(22) 

3.71479 

(22) 

4 1259.8539 

(33) 

149.3852 

(33) 

107.9391 

(100) 

13.00367 

(100) 

100 2 1471.1337 

(5) 

187.9107 

(5) 

113.8714 

(3) 

14.54920 

(3) 

3 1743.66014 

(2) 

106.6016 

(2) 

135.6607 

(2) 

8.28563 

(2) 

4 2765.5832 

(3) 

332.1430 

(3) 

218.8192 

(2) 

26.31089 

(2) 

 

 
Picture 1. FCM Plot with 

(nf = 10, pf = 2, mf = 2, kf = 

2) 

 
Picture 2. FCM-Stand Plot 

with (nf = 10, pf = 2, mf = 2, 

kf = 2) 

 
Picture 3. PCM Plot with 

(nf = 10, pf = 2, mf = 2, kf = 

2) 

 
Picture 4. PCM-Stand Plot 

with (nf = 10, pf = 2, mf = 2, 

kf = 2) 

 

 
Picture 5. FCM Plot with (nf 

=10, pf = 2, mf = 2, kf = 3) 

 
Picture 6. FCM–Stand Plot 

with (nf = 10, pf = 2, mf = 2, 

kf = 3) 
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Picture 7. PCM Plot with (nf 

= 10, pf = 2, mf = 2, kf = 3) 

 
Picture 8. PCM-Stand Plot 

with (nf = 10, pf = 2, mf = 2, 

kf = 3) 

 

 
Picture 9. FCM Plot with 

(nf = 10, pf = 2, mf = 2, kf = 

4) 

 
Picture 10. FCM-Stand Plot 

with (nf = 10, pf = 2, mf = 2, 

kf = 4) 

 
Picture 11. PCM Plot with 

(nf = 10, pf = 2, mf = 2, kf = 

4) 

 
Picture 12. PCM-Stand Plot 

with (nf = 10, pf = 2, mf = 2, 

kf = 4) 

 

 
Picture 13. FCM Plot with 

(nf = 25, pf = 2, mf = 2, kf 

= 2) 

 
Picture 14. FCM-Stand Plot 

with (nf = 25, pf = 2, mf = 2, 

kf = 2) 

 
Picture 15. PCM Plot with 

(nf = 25, pf = 2, mf = 2, kf 

= 2) 

 
Picture 16. PCM-Stand Plot 

with (nf = 25, pf = 2, mf = 2, 

kf = 2) 

 

 
Picture 17. FCM Plot with 

(nf = 25, pf = 2, mf = 2, kf = 

3) 

 
Picture 18. FCM-Stand Plot 

with (nf = 25, pf = 2, mf = 2, 

kf = 3) 

 
Picture 19. PCM Plot with 

(nf = 25, pf = 2, mf = 2, kf = 

3) 

 
Picture 20. PCM-Stand Plot 

with (nf = 25, pf = 2, mf = 2, 

kf = 3) 

 

 
Picture 21. FCM Plot with 

(nf = 25, pf = 2, mf = 2, kf = 

4) 

 
Picture 22. FCM-Stand Plot 

with (nf = 25, pf = 2, mf = 2, 

kf = 4) 

 
Picture 23.  PCM Plot with 

(nf = 25, pf = 2, mf = 2, kf = 

4) 

 
Picture 24. PCM-Stand Plot 

with (nf = 25, pf = 2, mf = 2, 

kf = 4) 
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Picture 25. FCM Plot with (nf 

= 50, pf = 2, mf = 2, kf = 2) 

 
Picture 26. FCM-Stand Plot 

with (nf = 50, pf = 2, mf = 2, 

kf = 2) 

 
Picture 27. PCM Plot with (nf 

= 50, pf = 2, mf = 2, kf = 2) 

 
Picture 28. PCM-Stand Plot 

with (nf = 50, pf = 2, mf = 2, 

kf = 2) 

 

 
Picture 29. PCM Plot with (nf 

= 50, pf = 2, mf = 2, kf = 3) 

 
Picture 30. PCM Plot with (nf 

= 50, pf = 2, mf = 2, kf = 3) 

 
Picture 31. PCM Plot with (nf 

= 50, pf = 2, mf = 2, kf = 3) 

 
Picture 32. PCM-Stand Plot 

with (nf = 50, pf = 2, m =2, 

kf=3) 

 

 

 
Picture 33. FCM Plot with 

(nf=50, pf = 2, mf = 2, kf = 4) 

 
Picture 34. FCM-Stand Plot 

with (nf=50, pf =2, mf =2, kf 

=4) 

 
Picture 35. PCM Plot with 

(nf = 50, pf = 2, mf = 2, kf = 

4) 

 
Picture 36. PCM-Stand Plot 

with (nf=50, pf =2, mf =2, kf 

=4) 

 

 
Picture 37. FCM Plot with (nf 

= 100, pf = 2, mf = 2, kf = 2) 

 
Picture 38. FCM-Stand Plot 

with (nf = 100, pf = 2, mf = 2, 

kf = 2) 

 
Picture 39. PCM Plot with (nf 

= 100, pf = 2, mf = 2, kf = 2) 

 
Picture 40. PCM-Stand Plot 

with (nf = 100, pf = 2, mf = 2, 

kf = 2) 

 

 
Picture 41. FCM Plot with (nf 

= 100, pf = 2, mf = 2, kf = 3) 

 
Picture 42. FCM-Stand Plot 

with (nf = 100, pf = 2, mf = 2, 

kf = 3) 

 
Picture 43. PCM Plot with (nf 

= 100, pf = 2, mf = 2, kf = 3) 

 
Picture 44. PCM-Stand Plot 

with (nf = 100, pf = 2, mf = 2, 

kf = 3) 
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Picture 45. FCM Plot with (nf 

= 100, pf = 2, mf = 2, kf = 4) 

 
Picture 46. FCM-Stand Plot 

with (nf = 100, pf = 2, mf = 2, 

kf = 4) 

 
Picture 47. PCM Plot with (nf 

= 100, pf = 2, mf = 2, kf = 4) 

 
Picture 48. PCM-Stand Plot 

with (nf = 100, pf = 2, mf = 2, 

kf = 4) 

 

Conclusions 

The performance of the proposed technique is 

compared with that of other approaches. The result 

implies that when fuzzy clustering methods FCM and 

PCM are applied, standardization is an essential initial 

phase to increasing the precision of outlier diagnosis. 

Substantial performance improvement and consistency in 

diagnostic outcomes can be attained by the 

implementation of standardization. Most of the time, 

uniformity is the ideal option because it can convert data 

into a consistent range, thus improving the precision of 

the clustering criterion.  

1- In the absence of standardization, FCM performs 

moderately well in identifying outliers. The number of 

iterations increases in both cases as the sample sizes 

and cluster numbers increase. Meanwhile, the values 

of objective functions begin to decrease as the number 

of clusters increases (pf = 2, 3). 

2- When the sample sizes and cluster numbers increase, 

the FCM method with the use of the standardization 

approach (FCM-Stand) exerts a positive effect on 

decreasing the degrees of objective functions and the 

number of iterations when (pf = 2, 3) compared with 

the FCM method. 

3- When the two different objective function formulas 

are used, the PCM method performs differently. In the 

first case, it performs well when the objective function 

in Eq. (8) that represents the method PCM 2 is used. It 

does not perform as well when the objective function 

in Eq. (7) that represents the method PCM 1 is 

employed. 

4- Excellent results are obtained together with high 

diagnostic accuracy and a noticeable improvement in 

identifying outliers when the standardization approach 

with the PCM method is adopted. Notable decrements 

in the values of the objective functions and the number 

of iterations are achieved when the number of clusters 

increases and when pf = 2, 3. 

5- The PCM 2 method performs better than the FCM 

method in the cases with and without using the 

standardization strategy. 

6- Dealing with standardized data makes the distance 

criteria used in FCM and PCM increasingly precise. 

For the best results, the model’s performance should 

be regularly assessed, and the standardization 

procedures should be improved when necessary. 
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