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 Rapid urbanization driven by population and economic growth reshapes land use 

patterns and challenges sustainable development. This trend, especially in densely 

populated areas, requires innovative urban planning and conservation strategies. Remote 

sensing provides essential imagery for monitoring these changes and capturing the 

evolving urban landscapes. In this study, we proposed an innovative framework that can 

automatically manage and visualize the deep learning-based image segmentation output 

with limited supervision in remote sensing applications. The framework was constructed 

by integrating recent advances in machine learning models to resolve the problems of 

scalability and accessibility in processing remote sensing images. We illustrated our 

methodology with a series of steps, which included preprocessing of remote sensing 

images, dividing the remote sensing images logically, converting the image data into 

grayscale images, and developing clustering models, such as K-means and self-

organizing maps, to cluster images into logical groups through the same regular pixel 

intensity. Thereafter, two primary deep learning architectures were implemented, which 

included a convolutional neural network (CNN) and a hybrid long short-term memory 

(LSTM)–gated recurrent unit (GRU), specifically designed to efficiently and effectively 

process image data. The CNN achieved a loss value of 0.015308, mean absolute error 

(MAE) of 0.083680, mean squared error (MSE) of 0.015308, and root mean squared 

error (RMSE) of 0.135449, indicating that the model provides accurate image 

reconstruction. The LSTM–GRU model yielded a slightly higher loss of 0.015364, MAE 

of 0.076740, MSE of 0.015364, and RMSE of 0.151264, indicating that it can preserve 

spatial hierarchies and contextual understanding due to slight performance variability. 

The two models demonstrated excellent processing capabilities that provide evidence on 

how they can be utilized in urban planning, environmental monitoring, and natural 

resource management. 
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Introduction 

Urban sprawl/extended urbanization in less-

developed areas, such as portions of Asia and Africa, 

frequently gives rise to unplanned settlements, including 

slums, shantytowns, and urban villages. These unplanned 

settlements are prevalent due to the rapid urbanization 

and the demand for low-cost housing among low-income 

urban citizens. Unplanned settlements are usually closely 

spaced, low-rise structures that offer inexpensive housing 

for low-income urban residents. 
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 However, these unplanned settlements typically 

feature extreme residential dissimilarities, limited or no 

access to amenities, unsanitary conditions, and safety 

concerns.  

Given that some cities attempt to manage destitute 

settlements, meet sustainability goals, or respond to 

institutional pressures, understanding the challenges and 

current status of unplanned settlements is essential for 

urban planners and policymakers. In some territories, 

policymaking and supporting reconstructions are 

addressed by unplanned settlement management and 

enhancement of the schemes. Urban village is the most 

prevalent form of an unplanned urban settlement in 

China. Traditionally, unplanned sites in urban regions 

have been identified by land use departments through 
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field studies aimed at collecting property dimensions. 

However, these field studies are costly and time-

consuming, particularly when covering urban villages. 

An additional technique is to use remote sensing to 

compensate for the high costs associated with their 

existence, widespread use, and limited updating of 

basement safety schemes. Low-altitude aerial photos or 

unmanned aerial vehicle images are utilized to collect and 

digitalize building footprints, a process that is often time-

consuming. Consequently, an efficient and smart system 

that utilizes graphics is urgently needed [1-9]. 

Mapping urban buildings using remote sensing has 

a long-established history and is well documented in the 

literature [10]. Increasingly available high-resolution 

optical images and object-based image analysis (OBIA) 

have become prominent methods for mapping urban 

buildings [9,11,12,13]. Image target detection methods 

typically use current spectral and spatial information. 

Lately, random forest, a machine learning tool, has been 

broadly used for mapping built-up areas [15,16]. Despite 

the availability of various classification strategies for land 

use/land cover mapping in urban areas, pixel-based or 

object-based methods may struggle to distinguish 

individual buildings in high-density built-up areas, often 

aggregating several buildings into a single segment [17]. 

Urban buildings exhibit high variability in spectral, 

textural, and shape features, and the traditional remote 

sensing framework is inadequate for capturing new 

feature characteristics [7,18,19,20]. Image segmentation 

is a process that divides an image into sections based on 

neighboring pixels with similar feature, such as 

brightness, texture, and color [13], which can be 

challenging for areas with a high density of built-up areas. 

OBIA segmentation faces significant challenges in this 

context, including the selection of scale parameter and 

rule application. Boundary delineation and shape 

preservation are difficult due to the noisy and textural 

information on the edge of the segments [21]. However, 

a universally applicable and implemented methodology is 

yet to be published to date. Consequently, how to develop 

a robust and reliable building segmentation method for 

mapping informal urban building remains a challenge. 

By contrast, several studies have shown that high-

density slums can be mapped from remote sensing images 

based on their physical characteristics, which distinguish 

them from formal outer settlements [1,2,4,16]. Finally, 

mapping slum areas should involve not only delineating 

entire areas but also identifying individual building types. 

For example, information on the potential of the benefits 

after urban renewal, from the perspective of public and 

private decision-makers, would require data on the 

number of reconstructed buildings, their distance from 

fire sources, and investments in public services and 

environmental amenities [22,23]. Accordingly, defining 

and distinguishing buildings are highly important. The 

semantic segmentation issue is another well-known 

challenge in computer vision, which involves masking 

spatial regions of interest. In recent years, machine 

learning technologies have gained popularity, and deep 

learning techniques have attracted increasing interest 

within the remote sensing society for data processing 

[14,17,24,25,26,27]. Deep convolution neural networks 

have been widely used for semantic segmentation 

[20,27]. The most well-known deep-learning algorithm 

for image segmentation is the fully convolutional neural 

network (CNN) proposed by Long et al. [28]. This deep-

learning framework enables end-to-end, pixel–pixel 

semantic classification possibilities of their recognition as 

long as they have been trained on their own network. 

Consequently, CNN has gained attention as it can extract 

relevant and important contextual information for 

decision making and image identification [28,29]. Thus, 

CNN-based semantic segmentation has been used for 

various pixel images, such as road extraction, building 

extraction, urban land use classification, pool semantic 

classification, vehicle detection, and damage and 

aftermath categorizations [1,24,30,31,32]. 

However, the classical image classification 

approach faces substantial problems in high-density built-

up areas. Given that CNNs typically outperform classical 

image classification methods, deep learning-based 

semantic segmentation is considered suitable for isolating 

separate houses in SPAs. Semantic segmentation is a type 

of deep learning that uses CNNs to grasp the preeminent 

representations of features and extract the object from an 

image. The CNN-based approach to learn feature 

representations from samples has multiple benefits for 

SPAs. First, this approach is fast because it eliminates the 

need for human supervision during the learning process. 

Network training takes several hours on a desktop 
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computer. Afterward, the classification process takes 

only a few seconds. Second, the application is automated 

because deep learning methods can extract feature 

representations from a vast pool of data, whereas classical 

visual recognition methods require human effort to 

extract a few features sufficient for the classification 

algorithm. Given the significant diversity of current urban 

land cover, manual feature extraction is impossible. 

Furthermore, deep learning methods can reapply the 

training to the tested samples, thus minimizing manual 

labor. However, training a network on traditional data 

takes approximately four working days. Moreover, deep 

learning outperforms classical methods in remote 

sensing, particularly in areas where boundary line 

quarrying is most challenging [19,26,27]. 

This study introduces an innovative framework 

designed to automate the management and visualization 

of deep learning-based image segmentation outputs. Our 

approach addresses the dual challenges of scalability and 

accessibility in processing remote sensing imagery by 

leveraging state-of-the-art machine learning models and 

advanced visualization techniques. We detail the 

development and implementation of this framework, 

emphasizing its potential to transform the analysis of 

remote sensing data by enabling efficient, accurate, and 

intuitive exploration of segmented images. 

In the following sections, we will explore the 

background and significance of image segmentation in 

remote sensing, review the current landscape of deep 

learning techniques tailored for this purpose, and 

highlight the importance of automated systems in 

managing and visualizing complex datasets. Our 

contribution aims to set a new standard for handling 

segmented remote sensing imagery, paving the way for 

enhanced environmental monitoring, urban planning, and 

natural resource management. 

 

Literature Review 

After reviewing the literature on the management 

and visualization of deep learning-based image 

segmentation in remote sensing aerial photographs, 

numerous methods and techniques have been proposed. 

These efforts aim to build on past technological advances 

to improve the accuracy of target identification and the 

general processing characteristics of remote sensing 

images. However, the presence of numerous subsidiary 

contributors remains a possibility. Key articles include 

those in which building footprint polygons are indirectly 

obtained: first, buildings are identified in remote sensing 

images, and their format is converted from raster to 

vector. Although buildings typically have well-defined 

edges, pixel-wise semantic segmentation algorithms fail 

to accurately delineate the lines between pixels, resulting 

in highly unpredictable maps. Building footprints can 

reflect such variation: one involves improving how 

buildings change shape with boundary regulation during 

the conversion from raster and vector data. 

An optimization method involves improving the 

accuracy of building boundary classification in remote 

sensing images. Wu et al. [33] proposed a boundary-

regulated network consisting of a modified U-Net and 

multitasking framework, wherein the segmentation maps 

are the building outlines. When considering the boundary 

regulation effect, the method proposed by Wi et al. 

demonstrates improved accuracy in delineating building 

boundaries in remote sensing images. This approach is an 

improvement over traditional U-Net by addressing the 

complexity of boundaries, although it does not effectively 

exploit their traits. To this end, the researchers have used 

a specialized neural network architecture to optimize the 

deployment of algorithms as descriptively as possible. 

Marmanis et al. [34] proposed DCNN models for 

semantic segmentation of high-resolution aerial images to 

address the problem of indistinct object boundaries. Their 

model incorporates class boundaries into the 

segmentation process, significantly improving the 

distinction between result classes on a pixel-by-pixel 

basis. Liao et al. [35] proposed a boundary-preserving 

building extraction approach based on artificial 

intelligence. Their method strengthened the building 

boundaries by embedding contour information in the 

labels, thereby improving performance on the boundary 

lines of adjacent buildings. 

Another optimization method is to improve the 

building boundary vertices during the data format 

conversion. Classical vector data processing algorithms 

include Douglas-Peucker [36], Wang-Müller [37], and 

Zhou-Jones [38]. Maggiori et al. [39] introduced a novel 

algorithm that exploits a labeled triangle grid to 

approximate the classification maps. Despite various 
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measures to improve the generated vector data of 

buildings, the final polygons often fail to accurately 

represent the route footprints. At times, these measures 

have a significant number of vertex points or exhibit 

artificial bends. In other instances, these measures are 

distorted due to the challenges faced by machine 

recognition software in distinguishing whether multiple 

buildings are adjacent and determining the optimal way 

to handle them based on their proximity. Numerous 

common methods for extracting building footprints were 

originally designed to generate polygons for individual 

buildings with regular shapes, such as rectangles. 

Polygon extraction differs from pixel classification 

or segmentation as it involves transforming raster data 

into vector data, presenting a challenging task for 

conventional deep learning models. Pixel classification or 

segmentation, which involves transforming raster data 

into raster data, is the opposite of polygon extraction. 

Although polygon extraction is a strict transformation of 

raster data into vector data, in a deep learning model for 

pixel-wise classification, the task is simply to determine 

whether pixels belong to objects or to the background. 

However, the task changes with polygon extraction. Here, 

the model must locate and identify the key vertices while 

perceiving the way they interrelate. In the field of 

geography, the use of deep learning methods to identify 

key points for geographical features from remote sensing 

images is rare. Using deep learning to directly detect key 

points presents two main problems. The first one is the 

imbalance between positive samples — of which there are 

few when detecting a key point — and negative samples; 

the other problem is the inability to determine how many 

key points are present in an image. When treated as a 

classification problem, training and debugging the deep 

learning network can become particularly challenging. 

Meanwhile, CNNs face a significant challenge when 

dealing with outputs of non-fixed lengths. 

Song et al. [40] proposed an FCN-based method to 

detect building corners in aerial images, based on the 

predicted building footprints. They extracted corners 

according to the contours of these footprints. However, 

the performance of this method is severely affected by the 

accuracy of semantic segmentation. To date, no deep 

learning-based model has been established to treat the 

geographical position of building corners as a direct 

optimization objective. 

 

Methodology 

The methodology adopted for the automated 

management and visualization of deep learning-based 

image segmentation for remote sensing data in Ramadi 

Municipality involved a streamlined sequence of steps 

starting from image acquisition to detailed analysis. First, 

remote sensing images were gathered and preprocessed to 

ensure uniformity in size and quality. The subsequent 

phases involved the application of advanced filtering 

techniques to improve the dataset, eliminating poor 

images according to the pixel-magnitude constraints. 

Thereafter, these images were transformed into gray 

scales to reduce the computational weight, and clusters 

were used to arrange the images in a meaningful manner. 

Afterward, the outcomes were further processed with 

deep learning models to perform precise image 

segmentation, followed by the last evaluation and overall 

data visualization. All particular stages were designed to 

improve the accuracy and speed of the image analysis 

and, in future sections, act as a rigorous basis for in-depth 

exploration. An illustrative graph is presented in Figure 

1. 

  

Data Acquisition 

Study Area 

The study area in this work is the Ramadi 

Municipality, Iraq. Ramadi holds a strategically 

important geographic and strategic location, 

encompassing a diverse range of landscapes. These 

landscapes cover high-density urban regions and fertile 

agricultural lands to expansive deserts. Accordingly, 

Ramadi presents an excellent research area for the diverse 

geographic and environmental analyses required. The 

boundaries that define the study area in this work are 

those of the administrative boundaries of Ramadi 

Municipality. This geographical area approximately 

covers 8340 km2. This region is positioned in the 

geographical coordinates 33.430866 to 43.295059. The 

above-mentioned geographical information indicates that 

the area is strategically situated along several major roads 

and encompasses a diverse range of landscapes. This 

geography is varied and influences various environmental 
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aspects, such as climate and agricultural activities. The 

study area was chosen due to its diverse and well-defined 

landscapes, which provide a solid foundation for the 

application and analysis of various remote sensing and 

image segmentation techniques. Consequently, the use of 

such an area as the area of interest equips the researcher 

with experience in data collection and management under 

varying conditions. Hence, the outcome of this study will 

provide information on how the remote sensing 

equipment can be used to manage and analyze a 

topographical diverse area, such as Ramadi. 

 

Figure 1: Methodology flowchart. 

 

Data Collection Period 

The data collection period was intentionally set 

between 2004 and 2017. Figure 2 presents an example of 

an image from the dataset. This time span was deemed 

most appropriate to ensure the use of only recently 

captured and high-quality images and facilitate a 

comprehensive examination of the various seasonal and 

annual alterations affecting urban and natural 
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development in Ramadi Municipality. This approach also 

makes it possible to analyze considerable transformations 

experienced by the region over time due to human 

interventions and natural causes. This knowledge can 

offer an in-depth understanding of the interdynamic 

nature of urban sprawl, agriculture, and desertification 

processes. 

 

Figure 2: Example of a sample from the dataset. 

 

The selection of satellite images was based on 

several criteria to ensure optimal data quality and 

applicability, implemented through a combination of 

manual review and programming tools. Cloud cover was 

a primary criterion, with only images containing less than 

10% overcast being selected to maximize clarity and 

minimize atmospheric interference. Lighting conditions 

were also considered, favoring images captured during 

peak light to avoid shadows and excessive glare that 

could impair analysis. Additionally, images from 

previously studied areas or those with available 

topographical maps and plans were prioritized to support 

data analysis and validation. These criteria were carefully 

applied, using manual evaluation and automated 

algorithms, to ensure that the selected remote sensing data 

would be highly relevant for detailed studies of 

geographic and environmental conditions. This approach 

guarantees that decision-makers receive comprehensive, 

spatially explicit information to aid in regional planning 

and management. 

Preprocessing 

During the preprocessing phase of our study, we 

performed a number of important steps to prepare the 

remote sensing images for the subsequent steps of the 

analysis. First, all the images in TIFF format are 

converted to JPEG files to reduce the file sizes and 

standardize the format for easy manipulation and 

analysis. After the conversion, the images are resized to 

ensure that the dimensions across the dataset are 

standardized because we need accurate image 

measurements for analysis. The lowest common image 

dimension is identified from the existing dataset, and all 

images are resized to that dimension to ensure that the 

aspect ratio and image integrity are preserved. The 

following steps of the methodology, including image 

segmentation and feature extraction, are efficiently and 

effectively conducted. Given that the accuracy of the 

clustering and deep learning models used in the 

subsequent phase of the study depends on the quality of 

the preprocessing, this phase must be properly performed. 

After the preprocessing, the dataset is divided into 

training and testing subsets to facilitate model 

development and evaluation. Specifically, 80% of the 
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images, totaling 100 images, are allocated to the training 

set, while the remaining 20%, consisting of 20 images, 

are designated as the testing set. This division ensures that 

the models are trained on a comprehensive dataset while 

being evaluated on a separate subset to accurately assess 

their performance. 

Image Segmentation 

Under this phrase, the resized images undergo 

image segmentation, which divides each image into 

smaller, more manageable components. This task is 

achieved by programmatically dividing each image into a 

5×5 grid, resulting in 25 segments per image. The 5×5 

grid is chosen to provide a balanced level of detail, 

allowing for a comprehensive coverage and detailed 

analysis. This approach helps focus the analysis on 

distinct identified features within the area of interest 

(Figure 3). Thereafter, the segmented images obtained are 

saved in a folder specified for processing. Some images 

are visualized to understand the quality of the 

segmentation through a visual assessment and ensure a 

random representation from the land cover. The 

visualization provides an indication of segmentation 

accuracy and offers a quick comparison of the natural and 

artificial land cover areas captured in the segmentation 

(Figure 2). This mechanism enables the subsequent deep 

learning models by allowing for the precise application of 

the models to the clearly identified image areas, 

significantly improving the analysis time and quality 

efficiency at the phase level. 

 

Figure 3: Example of a sample from the image segmentation 

result “satellite image from 2005”. 

Convert to Grayscale 

The conversion of the images to grayscale remains 

a preprocessing step in our workflow but is critical prior 

to highly sophisticated image analysis tasks. In this step, 

the segmented color images are transformed into 

grayscale. This mechanism simplifies the input data by 

reducing it to a single channel that represents intensity. 

This simplification of the processed data is desirable 

because it reduces the workload during processing and 

simplifies later processes of pattern recognition and 

feature extraction. The removal of color information 

ensures that the algorithms will generate patterns and 

features based on textural and structural cues in the 

images. This approach is generally sufficient for most 

image processing tasks, including image feature, edge 

detection, and as input prior to particularly advanced 

machine learning tasks. The grayscale images are saved 

in a systematic way in a designated directory, ensuring 

easy retrieval to facilitate the next steps in the image 

processing pipeline. This level of systematic processing 

facilitates a higher system performance in the efficiency 

of operation of the image analysis pipeline. 

Filtering 

Filtering is a crucial step in the image processing 

pipeline, aimed at enhancing data quality by excluding 

images that do not meet specific conditions for reliable 

analysis. This step involves examining each pixel in 

grayscale images to identify black pixels, which typically 

indicate non-informative regions or underexposed areas.  

In quantifying the quality of each image, the 

percentage of black pixels within an image is calculated 

using a predefined intensity threshold, set at (𝐼𝑡 = 10) on 

a scale of 255 (where 0 is pure black, and 255 is pure 

white). The formula used to determine the percentage of 

black pixels, (𝑃𝑏), in an image is expressed as follows: 

𝑃𝑏 = (
Number of pixels with intensity < 𝐼𝑡

Total number of pixels
) × 100. 

Images containing more than 50% of the black pixels are 

considered unsuitable for father processing and are 

automatically eliminated from the dataset. This threshold 

enables only those images with an adequate proportion of 

visible features to proceed further, which is vital for the 

subsequent feature extraction and machine-learning 

models used in this study. Consequently, only the most 

relevant and informative images are retained for further 
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analysis, thereby increasing the quality and robustness of 

the final results. 

Clustering 

In accomplish this task, our image processing 

workflow uses high-level clustering algorithms that 

consider the image pixels’ intensities in the grayscale and 

classify similarly intense pixels to the same group. This 

method is necessary for grouping, as it arranges the 

images in such a way that cameras that are similar are in 

the same cluster. This mechanism is important as the 

arrangement is necessary for the next level of analysis, 

which involves searching for signs that define the images 

or discrepancies within the images. In this stage, two 

clustering approaches were utilized, namely, “SOM” and 

K-means clustering. The former groups the images in a 

3×1 grid called a topographical representation in a bid to 

realize a 1D pattern while maintaining correlations in the 

input space. The strength of SOM lies in transforming 

high-dimensional data into lower dimensions, thereby 

highlighting the interrelationships and dependencies 

within the data. The latter groups the images into three in 

each cluster/pol after measuring the distance between the 

pixels, which lie on the Euclidean assumption, unless 

proven otherwise. 

The effectiveness of these clustering methods is 

assessed using several statistical measures: 

Silhouette score, which computes the closeness or 

separation of the cluster by measuring the distance within 

the clusters to that between the clusters [41]. The 

silhouette score of each image is represented as follows: 

𝑠 =
𝑏 − 𝑎

max(𝑎, 𝑏)
, 

where 𝑎 is the mean distance to the other instances in the 

same cluster (intra-cluster distance), and 𝑏 is the mean 

distance to the instances of the next closest cluster (inter-

cluster distance). 

Davies–Bouldin Index (DBI), wherein the metric is 

calculated as the mean ratio of distances within clusters 

to the distances between clusters. The smaller the DBI, 

the better the clustering stick together [42]. This factor is 

calculated as follows: 

𝐷𝐵𝐼 =
1

𝑘
∑ max

𝑗≠𝑖
(

𝜎𝑖 + 𝜎𝑗

𝑑(𝑐𝑖 , 𝑐𝑗)
)

𝑘

𝑖=1

, 

where σ𝑖 is the average distance of all points in cluster 𝑖 

to the centroid 𝑐𝑖, and 𝑑(𝑐𝑖 , 𝑐𝑗) is the distance between 

centroids 𝑐𝑖 and 𝑐𝑗 . 

Calinski–Harabasz Index, which is the ratio of the sum 

of between-clusters dispersion and of intra-cluster 

dispersion for all clusters [43]. The greater the value of 

this function, the better the clusters are defined. This 

factor is calculated as follows: 

𝑠 =
Tr(𝐵𝑘)/(𝑘 − 1)

Tr(𝑊𝑘)/(𝑛 − 𝑘)
, 

where 𝐵𝑘 is the between-group dispersion matrix, 𝑊𝑘 is 

the within-cluster dispersion matrix, 𝑘 is the number of 

clusters, and 𝑛 is the number of points. 

The results of those measurements are crucial for 

selecting the optimal clustering approach and adjusting its 

parameters. This mechanism allows for the effective 

grouping of images, ensuring that they are informative in 

the subsequent steps of image analysis, particularly when 

distinguishing between areas and surfaces. 

 
Figure 4: Silhouette score comparison: shows nearly equal 

performance, with K-means slightly outperforming SOM. 
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Figure 5: DBI comparison: lower scores indicate better 

performance, with K-means slightly outperforming SOM. 

 
Figure 6: Calinski–Harabasz Index comparison: measures cluster 

definition quality, showing K-means as superior to SOM. 

 

The visual comparison of the Figures 4, 5, and 6 

reveals the efficacy of the clustering algorithms SOM and 

K-means in clustering grayscale images based on their 

pixel intensity patterns. In Figure 3, the silhouette scores 

of SOM and K-means are particularly close to each other, 

and even narrowly. Meanwhile, K-means outperforms 

SOM, which does not bring about significant 

improvement in the cluster’s cohesion and separateness. 

The results indicate that the K-means clusters are slightly 

more compact and better separated than those of SOM. 

Figure 4 exhibits the DBI, where both methods display 

similar scores, with K-means outperforming SOM. K-

means forms clusters that are more compact than those 

formed by SOM, as the Davies–Bouldin score shows a 

clear relationship with that of Figure 3, the silhouette 

score. In Figure 5, the Calinski–Harabasz Index shows K-

means outperforming SOM again, although the 

improvement is minimal. The Calinski–Harabasz Index 

calculates the ratio of between cluster to within cluster 

sum of squares, with higher values indicating clearer 

clusters. The greater K-means score suggests that it has a 

clearer line to separate the clusters than SOM. Thus, K-

means would be a better choice of clustering. 

CNN Architecture  

In our study, we adapted CNN architecture that is 

specially designed for efficiently working with images. 

This model consists of multiple convolutional layers and 

down-sampling layers, also known as max-pooling 

layers, with batch normalization layers in between. The 

inclusion of batch normalization helps in stabilizing and 

accelerating the training process, making it highly 

efficient. The model starts with an input layer expecting 

images that are resized to 256×256 pixels in three color 

channels. The first three sequential 3×3 convolutions 

form the early part of the CNN, known as the encoder. 

These layers include 32 filters at first and become 

increasingly refined, finding edges of objects or textures, 

up to 128 filters. After convolution, max pooling is 

applied with a 2×2 window for each output. Max pooling 

involves reducing the spatial dimensions to focus on the 

critical components of the spatial data. Next in the CNN 

is the bottleneck layer, a dense convolutional layer with 

256 filters. This section is responsible for heavily 

distilling the information extracted from input images.  

The central component of the CNN on its path back 

to recreating the full image based on the extracted data is 

the decoder. This sector restores the feature information 

to the original pixel-wise size. This task is performed by 

deconvolutional aka transposed convolution layers. 

During this process, the dimensions are expanded 

multiple times, and the output is refined back into an 

image from a feature map. Each deconvolutional layer is 

concatenated with the encoder output of the same size to 

loop the data back into the process to preserve high-

resolution features from the input data in a ground-up 

manner. This task is carried out using skip flow, which is 

passed through each layer of the encoder. The ultimate 

output of the CNN is made up of two 3×3 convolutions 
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and a single 3×3 component, triggering a re-mapping of 

nodes into a functional output in grayscale form. The last 

function from the last two layers is a sigmoid, which, with 

modified x values, forces the output limit between zero 

and one, similar to the initial model. This terminator 

function ensures that the convolution will attempt to 

create clear, nuanced reconstructions of input images for 

detailed geophysical objects. 

 

Table 1: CNN parameters 

Parameter Value 

Input image size 256×256 pixels 

Number of layers 12 layers (3 Conv, 3 MaxPool, 3 

ConvTranspose, and 3 batch 

normalization) 

Filter size 3×3 

Filters per layer 32, 64, 128, and 256 

Activation function LeakyReLU and sigmoid (output) 

Pooling type MaxPooling 

Pooling size 2×2 

Strides in transpose 

convolution 

2 

Batch normalization Yes, after each layer 

Dropout 50% at the last convolutional layer 

Loss function MSE 

Optimizer Adam 

Learning metrics MAE, MSE, and RMSE 

Validation split 10% 

Epochs 2000 

 

Long Short-Term Memory (LSTM)–Gated 

Recurrent Unit (GRU) 

In our advanced image processing setup, we 

implemented a hybrid model with LSTM and GRU 

networks, tailored due to the specific nature of sequence 

data among the rows of the image. This type of 

architecture is especially suited for problems where a 

spatial hierarchy must be maintained among the image 

segments to obtain a complete contextual understanding. 

The model begins with the input layer set to take colored 

images that have been resized to the dimension of 

256×256 pixels. Subsequently, a series of 

TimeDistributed layers applies the same operation to the 

GRU at each frame, essentially treating every row in the 

images as a sequence, to find dependencies.  

The image data are first taken in by a GRU layer 

with 32 units, which helps in finding the first level of 

spatial dependencies. Thereafter, the sequenced output of 

this level is provided to another GRU layer with 64 units, 

which helps the model in gaining an in-depth 

understanding of the spatial connections. At this point, the 

architecture also includes two layers with LSTM, each 

with 64 units, which play a critical role in remembering 

long connections and further refining the feature 

extraction already performed by GRUs.  

The data outputted from the last LSTM layer is 

fully connected and passed through a dense layer with 

128 units that use the “ReLu” activation function to 

introduce nonlinearity and help in finding complex 

patterns. The final layer of the model is a dense output 

layer with the reshaping of results into the same format as 

the input image that uses sigmoid to ensure that the output 

pixel values are normalized between zero and one, similar 

to that performed for the input images to preprocess them. 

 

 

Table 2: LSTM–GRU Parameters 

Parameter Value 

Input image size 256×256 pixels 

Number of GRU layers 2 

Units in the first GRU layer 32 

Units in the second GRU layer 64 

Number of LSTM layers 2 

Units in LSTM layers 64 each 

Activation function (LSTM/GRU) Tanh (internal) and 

sigmoid (output) 

Dense layer units 128 

Activation function (dense layer) ReLu 

Output layer activation Sigmoid 

Optimizer Adam 

Loss function MSE 

Metrics MAE, MSE, and RMSE 

Training epochs 2000 

Batch size 16 

Validation split 10% 

 

Experimental Results 

In summary, the experimental outcomes between 

the CNN and the LSTM–GRU hybrid models showed that 

both models are effective in image processing tasks, as 

revealed by their metrics presented in Table 4. For 

instance, the CNN obtained a loss of 0.015308, an mean 

absolute error (MAE) of 0.083680, a mean squared error 

(MSE) of 0.015308, and a root mean squared error 

(RMSE) of 0.135449. The reconstruction’s high accuracy 

provides the evidence suggesting that the CNN’s model 

is good at learning and reconstructing the images’ critical 

features as fed to it.  
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By contrast, the LSTM–GRU indicates that it had 

a loss of 0.015364, an MAE of 0.076740, an MSE of 

0.015364, and a higher RMSE of 0.151264. The only 

indicators that the LSTM–GRU model had better 

performance than the CNN were the lower MAE and the 

slightly higher RMSE. The lower MAE indicates that the 

LSTM–GRU was closer to the actual pixel values; 

however, the final image may still show a slight variation 

because the RMSE value is relatively higher. Both 

models have the potential to learn and analyze complex 

images, although they appear to serve different aspects of 

the image analysis in terms of detail and the overall 

reconstruction accuracy. 

 

Table 3: Comparison metrics 

Model Loss MAE MSE RMSE 

CNN 0.01530 0.0836 0.01533 0.1354 

LSTM–GRU 0.015362 0.07673 0.015363 0.151263 

 

 

Figure 7: Training metrics for CNN: graphs of training and 

validation loss 

 

Figure 7 exhibits the progression of training 

metrics over epochs for a CNN applied to an image 

processing task. The figure consists of four subplots 

representing loss, MAE, MSE, and RMSE for the training 

data (blue line) and validation data (orange line). We 

observe a notable decrease in training loss and errors 

across all metrics with the increase in the number of 

epochs, indicating the model’s effective learning and 

improvement. However, the validation metrics 

demonstrate fluctuation, suggesting some degree of 

overfitting or instability in model performance on unseen 

data as training progresses. 

 

Figure 8: CNN prediction comparison 

Figure 8 compares the results of the CNN’s 

predictions with actual imagery. This figure displays 

three images: the “Input Image”, which is the original 

image fed into the CNN, the “Predicted Image”, which is 

the output from the CNN, and the “Desired Image”, 

which represents the ideal or target outcome for the input 

image. The “Predicted Image” shows a commendable 

resemblance to the “Desired Image”, indicating that the 

CNN has effectively learned and replicated significant 

features from the input. However, discrepancies in clarity 

and detail are evident between the predicted and the 

desired images, suggesting areas where the model may 

still be improved to enhance accuracy and image detail in 

its predictions. The visual comparison provides a 

straightforward assessment of the model’s current 

capabilities and limitations in recreating precise image 

features and textures. 

 

Figure 9: Training metrics for LSTM–GRU: graphs of training 

and validation loss 

 

Figure 9 exhibits the LSTM–GRU hybrid model 

for image processing training and validation metrics for 

different epochs. Data in loss, MAE, MSE, and RMSE. 

MSE shows a decreasing trend for the training data, 

implying improvement while learning occurs. However, 

the validation curve maintains a fluctuating movement 

that implies changes in the learning patterns for data 

unseen. MAE and RMSE are similar, with a slight decline 

in training error balance, followed by a trend of increased 

error variation on validation, indicating overfitting, or the 

model is becoming unstable as the training progresses. 
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Figure 10: LSTM–GRU prediction comparison 

 

After training the LSTM–GRU model with LSTM 

units, the best models are used to predict results. Figure 

10 presents a visual set that includes an “Input Image”, a 

“Predicted Image”, and a “Desired Image”, showcasing 

the model’s practical outcomes in predicting 2022 results. 

The “Input Image” displays the original data provided to 

the model, the “Predicted Image” shows the model’s 

output, and the “Desired Image” represents the expected 

outcomes. A comparison of these images indicates that 

the Predicted Image captures the general physical layout, 

the main structural elements, and other common features 

present in the Desired Image. The accuracy of this image 

varies due to differences in texture, with some aspects 

remaining unclear. The results indicate the model’s 

accuracy in predicting major topographic features. Areas 

for improvement have been identified, particularly in 

capturing finer details and enhancing the quality of the 

outputs. Strengthening the model in these aspects can lead 

to highly accurate predictions and improved overall 

performance. 

 

Conclusion 

This study proposed an innovative framework to 

automate the management and visualization of deep 

learning based image segmentation outputs on remote 

sensing data. The framework utilized state-of-the-art 

machine learning models and enhanced visualization 

techniques to improve the scalability and accessibility of 

image processing of remote sensing imagery. Remote 

sensing technologies have made an affordable manner of 

gather spatial data and updating base map data without 

extensive field surveys. Deep learning-based image 

segmentation is essential for detailed urban planning, 

environmental monitoring, and natural resource 

management. In this study, we preprocessed the remote 

sensing imagery for load reduction. Second, the image 

was segmented into small manageable parts and merged 

as grayscale data for easy handling. We utilized K-means 

and self-organizing map clustering techniques to label the 

images according to pixel intensity patterns and cluster 

the segmented parts. Finally, we proposed a deep learning 

image segmentation model. We proposed two 

architectures and implemented the primary models: CNN 

and the hybrid LSTM and GRU model. CNN was 

implemented to validate the performance of 

reconstruction accuracy, which revealed high metrices 

and proved the selection of essential features. The second 

hybrid LSTM and GRU model depicted performance 

variations and validated the image in segmentation 

accuracy and also revealed group 3 data’s behavior. 

However, the models exhibit promising performance in 

solving complex images and convey insights for further 

applications. 
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