Two-row resolution of the Weyl module in case partition (12,6)

Adraa Abbas Sadeq¹, Haytham Razooki Hassan²

¹ Ministry of Education/General Directorate of Education in Maysan Governorate, Maysan, Iraq
² Department of Mathematics, College of Science, Mustansiriya University, Baghdad, Iraq; <u>athraa.a.s@uomustansiriyah.edu.iq</u>, <u>haythamhassaan@uomustansiriyah.edu.iq</u>

ARTICLE INFO

Received: 07 / 07 /2024 Accepted: 21/ 08 /2024 Available online: 21/ 06 /2025

DOI: 10.37652/juaps.2024.151635.1286

Keywords:

Weyl module, graded contracting, homotopy, divided power algebra.

Copyright[®] Authors, 2025, College of Sciences, University of Anbar. This is an open-access article under the CC BY 4.0 license (<u>http://creativecommons.org/licens</u> <u>es/by/4.0/</u>).

A B S T R A C T

Let \mathcal{F} be a free R-module, where R is a commutative ring with 1 and D_nF be the nth degree divided power. The place polarization technique is a combinatorial approach for computing the complex elements, in which $\partial_{21}^{(k)}$ is a location polarization that occurs from place one to place two. The induction argument on the amount of overlaps between the two rows provides a description of the result that we want and identifies whether the resolution is a Koszul-like complex (also known as "arithmetic Koszul Complex"). The Weyl module is given by $K_{\lambda/\mu} \mathcal{F} = Im (d'_{\lambda/\mu})$, where $d'_{\lambda/\mu}$ and $d'_{\lambda/\mu} : \mathbb{Z}_{\lambda/\mu} \mathcal{F} \to \Lambda_{\chi/\mu} \mathcal{F}$ is the Weyl map, from which the term "Weyl module" is derived. In this paper, we investigate the two-row Weyl module resolution for the partition (12,6) using homological diagram, contracting homotopy, and place polarization.

INTRODUCTION

Akin and Buchsbaum (or basic representations) tackled the problem of resolving Schur modules in terms of direct sums of the tensor products of exterior powers in the early 1980s [1],[2]. Applying the two-row Schur module "basic precise sequence" (more on this will be discussed in a later section), we have:

, we will review the "substantial" module theory that may be performed using letter-place techniques. Specifically, we define the equivariant filtration on a two-rowed skew shape using the letter-place basis. This results in the Pieri decomposition of the relevant Weyl module [3],[4]. Assume that we have the following tworow, skew shape:

ORCID: https://orcid.org/0000-0001-7361-9670,

Tel: +964 7711491460

Email: athraa.a.s@uomustansiriyah.edu.iq

As previously mentioned [3], this is the result of $D_p \otimes D_q$ by the Weyl map, and the letter-place basis for $D_p \otimes D_q$ is the set of all double standard tableaux $\left\{ \binom{r_1}{r_2} \binom{1^{(p)}2^{(l)}}{2^{(q-l)}} \right\}$, with $q \leq p + l$, and where w and w'0 are words in the letter alphabet (In this case, just the numbers 1 and 2 in their usual sequence make up the place alphabet).

$$\sum \mathbb{Z}_{p+k} \otimes \mathbb{Z}_{q-k} \xrightarrow{\Box} \mathbb{Z}_p \otimes \mathbb{Z}_q$$

Additionally, the maps are explained as follows using letter-place:

$$\begin{pmatrix} r_1 \\ r_2 \\ 2(q-k) \end{pmatrix} \xrightarrow{\partial_{21}^{(k)}} \begin{pmatrix} r_1 \\ r_2 \\ 2(q-k) \end{pmatrix} \xrightarrow{(r_1)} r_2 \\ \sum_{r} \begin{pmatrix} r_1 \\ r_2 \\ 1'2'3' \dots q' \end{pmatrix} \xrightarrow{(p+1)'} r_2 \\ (p+1)' \\$$

where $w \otimes w' \in \mathbb{Z}_{p+k} \otimes \mathbb{Z}_{q-k}$, $\Box = \sum_{k=t+1}^{q} \partial_{21}^{(k)}$ is the box map,

^{*}Corresponding author Department of Mathematics, College of Science, Mustansiriya University, Baghdad, Iraq;

and $d'_{\lambda/\mu} = \partial_{1/2} \partial_{(p+t)/1}$ is the arrangement of polarized places, starting from positive locations $\{1,2\}$ and ending at negative locations $\{1', 2', \dots, (p+t)'\}$.

Additionally, as (2) illustrates, \Box delivers a component $x \otimes y$ of $\mathbb{Z}_{p+k} \otimes \mathbb{Z}_{q-k}$ to

 $\sum x_p \otimes x'_k y$, where $\sum x_p \otimes x'_k$ in which the element of the diagonal of x in $\mathbb{Z}_p \otimes \mathbb{Z}_q$ divides the power element $z_{21}^{(k)}$ of the degree k of the free generator. Here, (\mathcal{Z}_{21}) acts on $\mathbb{Z}_{p+k} \otimes \mathbb{Z}_{q-k}$ through the place polarization of degree k from place (1) to place (2) This algebra is "graded" with identity. $A = \mathbb{Z}(\mathcal{Z}_{21})$ acts on the graded module $\mathcal{M} = \mathbb{Z}_{p+k} \otimes \mathbb{Z}_{q-k} = \sum \mathcal{M}_{q-k}$. Given that $w = z_{21}^{(k)} \in A$ and $v \in \mathbb{Z}_{\beta 1} \otimes \mathbb{Z}_{\beta 2}$, \mathcal{M} is a graded *A*-module. Thus, we have:

 $r(u) = z_{21}^{(k)}(u) = \partial_{21}^{(k)}(u).$

If we take (t^+) graded strand of degree q, we have:

 $\mathcal{M} \cdot : 0 \to \mathcal{M}_{q-t} \xrightarrow{\partial_{21}} \dots \to \mathcal{M}_e \xrightarrow{\partial_s} \mathcal{M}_1 \xrightarrow{\partial_s} \mathcal{M}_0$, Bar $(\mathcal{M}, A, ; \bullet)$ of the normalized *B*ar complex, where $S = \{x\}$. Here are some illustrations of key basic notions that we require in our work.

The following is the definition of the maps $\{\Box_i\}$ [2]:

 $\begin{array}{c} \Box_{0}: \overline{\mathbb{Z}}_{p} \otimes \overline{\mathbb{Z}}_{q} \longrightarrow \sum_{k>0} z^{(t+k)} x \ \overline{\mathbb{Z}}_{p+t+k} \otimes \ \overline{\mathbb{Z}}_{q-t-k} \\ \begin{pmatrix} r_{1} \\ r_{2} \\ 2^{(q-k)} \end{pmatrix} \longrightarrow \\ \begin{cases} z_{21}^{(k)} x \\ r_{2} \\ 1 \\ 2^{(q-k)} \end{pmatrix} &; if \ k \leq t \\ \\ 0 \\ \end{cases} ; if \ k > t \\ \end{array}$

Additionally, with the higher dimensions, we have:

 $\begin{bmatrix} \sum_{t-1} & \sum_{t=1}^{k} k_{i} > 0 \ z_{21}^{(t+k_{1})} x \ z_{21}^{(k_{2})} x \dots z_{21}^{(k_{t-1})} x \\ z_{21}^{(t+k_{1})} x \ z_{21}^{(k_{t-1})} x \ z_{21}^{(k_{t-1})} x \\ \end{bmatrix} \\ \rightarrow z_{21}^{(t+k_{1})} x \ z_{21}^{(k_{2})} x \dots z_{21}^{(k_{t-1})} x \begin{pmatrix} r_{1} \\ r_{2} \end{vmatrix} \frac{1^{(p+t+k)} 2^{(u)}}{2^{(q-t-k)}} \end{pmatrix} \rightarrow \\ \begin{cases} z_{21}^{(t+k_{1})} x \ z_{21}^{(k_{2})} x \dots z_{21}^{(k_{t-1})} x z_{21}^{(u)} x \begin{pmatrix} r_{1} \\ r_{2} \end{vmatrix} \frac{1^{(p+t+k)} 2^{(u)}}{2^{(q-t-k)}} \end{pmatrix} \rightarrow \\ \begin{cases} z_{21}^{(t+k_{1})} x \ z_{21}^{(k_{2})} x \dots z_{21}^{(k_{t-1})} x z_{21}^{(u)} x \begin{pmatrix} r_{1} \\ r_{2} \end{vmatrix} \frac{1^{(p+t+k)} 2^{(u)}}{2^{(q-t-k)}} \end{pmatrix} \\ \vdots \ if \ u > 0 \\ 0 & \vdots \ if \ u > 0 \end{cases}$

where the resolution's modules define the following terms:

$$\begin{aligned} & (\mathcal{M}_i) \text{ for } (i=0,1, \ \dots, \ q-t), \text{ with } \mathcal{M}_0 = \mathbb{Z}_p \otimes \mathbb{Z}_q \text{ ,} \\ & \mathcal{M}_i = z_{21}^{(t+k_1)} x \, z_{21}^{(k_2)} x \ \dots \ z_{21}^{(k_i)} x \, \mathbb{Z}_{p+t+|\mathsf{K}|} \otimes \mathbb{Z}_{q-t-|\mathsf{K}|}; \text{ for } i \\ & \geq 1 \ [2]. \end{aligned}$$

A previous study examined the Weyl module resolution for the two-rowed skew shape problem $(p^+,t,q)/(t,0)$ [4]. However, in the situation of skew shape (12,6), another investigation [5] demonstrated the terms and the accuracy of the Weyl resolution.

2.1 Weyl module resolution of the case partition (12,6)

The terms of the sequence of the characteristic free resolution are given below.

$$\begin{split} &M_{0} = D_{12} \otimes D_{6} \\ &M_{1} = Z_{21}^{(1)} x \ D_{13} \otimes D_{5} \oplus Z_{21}^{(2)} x \ D_{14} \otimes D_{4} \oplus \\ &Z_{21}^{(3)} x \ D_{15} \otimes D_{3} \oplus Z_{21}^{(4)} x \ D_{16} \otimes D_{2} \oplus \\ &Z_{21}^{(5)} x \ D_{17} \otimes D_{1} \oplus Z_{21}^{(6)} x \ D_{18} \otimes D_{0} \\ &M_{2} = Z_{21}^{(1)} x Z_{21}^{(1)} x \ D_{14} \otimes D_{4} \oplus \\ &Z_{21}^{(2)} x Z_{21}^{(1)} x \ D_{15} \otimes D_{3} \oplus Z_{21}^{(1)} x Z_{21}^{(2)} x \ D_{15} \otimes D_{3} \oplus \\ &Z_{21}^{(3)} x Z_{21}^{(1)} x \ D_{16} \otimes D_{2} \oplus Z_{21}^{(1)} x Z_{21}^{(3)} x \ D_{16} \otimes D_{2} \oplus \\ &Z_{21}^{(2)} x Z_{21}^{(2)} x \ D_{16} \otimes D_{2} \oplus Z_{21}^{(4)} x Z_{21}^{(1)} x \ D_{17} \otimes D_{1} \oplus \\ &Z_{21}^{(2)} x Z_{21}^{(2)} x \ D_{17} \otimes D_{1} \oplus Z_{21}^{(2)} x Z_{21}^{(3)} x \ D_{17} \otimes D_{1} \oplus \\ &Z_{21}^{(3)} x Z_{21}^{(2)} x \ D_{17} \otimes D_{1} \oplus Z_{21}^{(5)} x Z_{21}^{(1)} x \ D_{18} \otimes D_{0} \oplus \\ &Z_{21}^{(4)} x Z_{21}^{(5)} x \ D_{18} \otimes D_{0} \oplus Z_{21}^{(2)} x Z_{21}^{(3)} x \ D_{18} \otimes D_{0} \oplus \\ &Z_{21}^{(4)} x Z_{21}^{(2)} x \ D_{18} \otimes D_{0} \oplus Z_{21}^{(3)} x Z_{21}^{(3)} x \ D_{18} \otimes D_{0} \end{split}$$

$$\begin{split} & \mathcal{M}_{3} = Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x D_{15} \otimes D_{3} \oplus \\ & Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(1)} x D_{16} \otimes D_{2} \oplus \\ & Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(1)} x D_{16} \otimes D_{2} \oplus \\ & Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(2)} x D_{16} \otimes D_{2} \oplus \\ & Z_{21}^{(3)} x Z_{21}^{(1)} x Z_{21}^{(2)} x D_{17} \otimes D_{1} \oplus \\ & Z_{21}^{(1)} x Z_{21}^{(3)} x Z_{21}^{(1)} x D_{17} \otimes D_{1} \oplus \\ & Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(3)} x D_{17} \otimes D_{1} \oplus \\ & Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(2)} x D_{17} \otimes D_{1} \oplus \\ & Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(2)} x D_{17} \otimes D_{1} \oplus \\ & Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(2)} x D_{17} \otimes D_{1} \oplus \\ & Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(2)} x D_{17} \otimes D_{1} \oplus \\ & Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(2)} x D_{18} \otimes D_{0} \oplus \\ & Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x D_{18} \otimes D_{0} \oplus \\ & Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x D_{18} \otimes D_{0} \oplus \\ & Z_{21}^{(3)} x Z_{21}^{(1)} x Z_{21}^{(2)} x D_{18} \otimes D_{0} \oplus \\ & Z_{21}^{(3)} x Z_{21}^{(1)} x Z_{21}^{(3)} x D_{18} \otimes D_{0} \oplus \\ & Z_{21}^{(2)} x Z_{21}^{(3)} x Z_{21}^{(2)} x D_{18} \otimes D_{0} \oplus \\ & Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(3)} x D_{18} \otimes D_{0} \oplus \\ & Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(3)} x D_{18} \otimes D_{0} \oplus \\ & Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(2)} x D_{18} \otimes D_{0} \oplus \\ & Z_{21}^{(1)} x Z_{21}^{(3)} x Z_{21}^{(2)} x D_{18} \otimes D_{0} \oplus \\ & Z_{21}^{(1)} x Z_{21}^{(3)} x Z_{21}^{(2)} x D_{18} \otimes D_{0} \oplus \\ & Z_{21}^{(1)} x Z_{21}^{(3)} x Z_{21}^{(2)} x D_{18} \otimes D_{0} \oplus \\ & Z_{21}^{(1)} x Z_{21}^{(3)} x Z_{21}^{(2)} x D_{18} \otimes D_{0} \oplus \\ & Z_{21}^{(1)} x Z_{21}^{(3)} x Z_{21}^{(2)} x D_{18} \otimes D_{0} \oplus \\ & Z_{21}^{(1)} x Z_{21}^{(3)} x Z_{21}^{(2)} x D_{18} \otimes D_{0} \oplus \\ & Z_{21}^{(1)} x Z_{21}^{(3)} x Z_{21}^{(2)} x D_{18} \otimes D_{0} \oplus \\ & Z_{21}^{(1)} x Z_{21}^{(3)} x Z_{21}^{(2)} x D_{18} \otimes D_{0} \oplus \\ & Z_{21}^{(1)} x Z_{21}^{(3)} x Z_{21}^{(2)} x D_{18} \otimes D_{0} \oplus \\ & Z_{21}^{(1)} x Z_{21}^{(3)} x Z_{21}^{(2)} x D_{18} \otimes D_{0} \oplus \\ & Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{2$$

P- ISSN 1991-8941 E-ISSN 2706-6703 2025,(19), (01):285 – 290

$$\begin{split} &M_4 = Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x D_{16} \otimes D_2 \oplus \\ &Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x D_{17} \otimes D_1 \oplus \\ &Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(1)} x D_{17} \otimes D_1 \oplus \\ &Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x D_{17} \otimes D_1 \oplus \\ &Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x D_{18} \otimes D_0 \oplus \\ &Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x D_{18} \otimes D_0 \oplus \\ &Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x D_{18} \otimes D_0 \oplus \\ &Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x D_{18} \otimes D_0 \oplus \\ &Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x D_{18} \otimes D_0 \oplus \\ &Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x D_{18} \otimes D_0 \oplus \\ &Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(1)} x D_{18} \otimes D_0 \oplus \\ &Z_{21}^{(2)} x Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(2)} x D_{18} \otimes D_0 \oplus \\ &Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(2)} x Z_{21}^{(2)} x D_{18} \otimes D_0 \oplus \\ &Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x D_{18} \otimes D_0 \oplus \\ &Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x D_{18} \otimes D_0 \oplus \\ &Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x D_{18} \otimes D_0 \oplus \\ &Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x D_{18} \otimes D_0 \oplus \\ &Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x D_{18} \otimes D_0 \oplus \\ &Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x D_{18} \otimes D_0 \oplus \\ &Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1)} x D_{18} \otimes D_0 \oplus \\ &Z_{21}^{(1)} x Z_{21}^{(1)} x Z_{21}^{(1$$

2.2 The Weyl resolution exactness in the partition case (12,6)

This section explains the building of a contracting homotopies $\{\Box_i\}$, where i=1, 2,....5. We define the \Box_i map by:

$$\begin{split} \Box_{0}: D_{12} \otimes D_{6} \to \sum_{k>0} Z_{21}^{(k)} x D_{12+k} \otimes D_{6-k} \\ \Box_{0} \left(\begin{pmatrix} r_{1} \\ r_{2} \\ 2^{(6-k)} \end{pmatrix}^{(12)} \right) = \\ \begin{cases} 0 & ; if k = 0 \\ Z_{21}^{(k)} x \begin{pmatrix} r_{1} \\ r_{2} \\ 2^{(6-k)} \end{pmatrix}^{(12+k)} & ; if k = 1,2,3,4,5,6 \\ \Box_{1}: \sum_{k>0} Z_{21}^{(k)} x D_{12+k} \otimes D_{6-k} \to Z_{21}^{(k_{1})} x Z_{21}^{(k_{2})} x D_{12+k} \otimes D_{6-k} \\ \Box_{1} \left(Z_{21}^{(k)} x \begin{pmatrix} r_{1} \\ r_{2} \\ 2^{(6-k-u)} \end{pmatrix}^{(12+k)} 2^{(u)} \\ Z_{21}^{(k)} x Z_{21}^{(u)} x \begin{pmatrix} r_{1} \\ r_{2} \\ 2^{(6-k-u)} \end{pmatrix}^{(k)} ; if u = 0 \\ Z_{21}^{(k)} x Z_{21}^{(k_{1})} x Z_{21}^{(k_{2})} x D_{12+|k|} \otimes D_{6-|k|} \\ \Box_{2}: \sum_{k_{i}>0} Z_{21}^{(k_{1})} x Z_{21}^{(k_{2})} x D_{12+|k|} \otimes D_{6-|k|} \\ Z_{21}^{(k_{1})} x Z_{21}^{(k_{2})} x \begin{pmatrix} r_{1} \\ 2^{(6-k-u)} \\ 2^{(6-|k|-u)} \end{pmatrix} \end{pmatrix} \end{pmatrix} \end{split}$$

$$\begin{cases} 0 & ; if \ u = 0 \\ z_{21}^{(k_1)} x \ Z_{21}^{(k_2)} x \ Z_{21}^{(u)} x \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} \frac{1}{2^{(6-|k|-u)}} & ; if \ u = 1,2,3,4 \\ \text{where } |k| = k_1 + k_2. \\ \Box_3 : \sum_{k_i > 0} Z_{21}^{(k_1)} x \ Z_{21}^{(k_2)} x \ Z_{21}^{(k_2)} x \ D_{12+|k|} \otimes D_{6-|k|} \rightarrow \\ Z_{21}^{(k_1)} x \ Z_{21}^{(k_2)} x \ Z_{21}^{(k_2)} x \ Z_{21}^{(k_2)} x \ Z_{21}^{(k_2)} x \ D_{12+|k|} \otimes D_{6-|k|} \\ \text{such that} \\ \Box_3 \left(Z_{21}^{(k_1)} x \ Z_{21}^{(k_2)} x \ Z_{21}^{(k_3)} x \ Z_{21}^{(k_2)} x \ Z_{21$$

2.3 The exactness of the Weyl module resolution Considering the following diagram:

we need to prove that

$$\{ \Box_{0}, \Box_{1}, \Box_{2}, \Box_{3}, \Box_{4}, \Box_{5} \} \text{ is a contracting homotopy, i. e.,} \\ \Box_{0} \partial_{x} + \partial_{x} \Box_{1} = \mathrm{id}_{M1} \\ \Box_{1} \partial_{x} + \partial_{x} \Box_{2} = \mathrm{id}_{M2} \\ \Box_{2} \partial_{x} + \partial_{x} \Box_{3} = \mathrm{id}_{M3} \\ \Box_{3} \partial_{x} + \partial_{x} \Box_{5} = \mathrm{id}_{M4} \\ \Box_{4} \partial_{x} + \partial_{x} \Box_{5} = \mathrm{id}_{M5} \\ \mathrm{Now} \\ \Box_{0} \partial_{x} \left(Z_{21}^{(k)} x \begin{pmatrix} r_{1} \\ r_{2} \\ 2^{(6-k-u)} \end{pmatrix}^{2(u)} \\ 2^{(k+u)} \\ Z_{21}^{(k+u)} x \begin{pmatrix} r_{1} \\ r_{2} \\ 2^{(6-k-u)} \end{pmatrix} \end{pmatrix} \right) = \Box_{0} \partial_{21}^{(k)} \begin{pmatrix} r_{1} \\ r_{2} \\ 2^{(6-k-u)} \end{pmatrix} \\ = \begin{pmatrix} k + u \\ u \end{pmatrix} Z_{21}^{(k+u)} x \begin{pmatrix} r_{1} \\ r_{2} \\ 2^{(6-k-u)} \end{pmatrix},$$
 and

287

 $\partial x \Box_1 \left(Z_{21}^{(k)} x \begin{pmatrix} r_1 & 1^{(12+k)} & 2^{(u)} \\ r_2 & 2^{(6-k-u)} \end{pmatrix} \right) =$ $\partial_{x} \left(Z_{21}^{(k)} x Z_{21}^{(u)} x \begin{pmatrix} r_{1} & 1^{(12+k+u)} \\ r_{2} & 2^{(6-k-u)} \end{pmatrix} \right)$ $= -\binom{k+u}{u} Z_{21}^{(k+u)} x \binom{r_1}{r_2} \frac{1^{(12+k+u)}}{2^{(6-k-u)}} + Z_{21}^{(k)} x \binom{r_1}{r_2} \frac{1^{(12+k)}}{2^{(6-k-u)}} 2^{(u)}$ $\therefore \ \Box_0 \partial_x + \partial_x \Box_1 = i d_1$ $\Box_1 \partial_x \left(Z_{21}^{(k_1)} x \, Z_{21}^{(k_2)} x \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} \frac{1^{(12+|k|)} 2^{(u)}}{2^{(6-|k|-u)}} \right)$ $= \Box_1 \left(-\binom{|k|}{k_2} Z_{21}^{(|k|)} x \binom{r_1}{r_2} \frac{1^{(12+|k|)} 2^{(u)}}{2^{(6-|k|-u)}} \right) +$ $Z_{21}^{(k_1+1)} x \,\partial_{21}^{(k_2)} \begin{pmatrix} r_1 & 1^{(12+|k|)} & 2^{(u)} \\ r_2 & 2^{(6-|k|-u)} \end{pmatrix} \end{pmatrix}$ $= -\binom{|k|}{k_2} Z_{21}^{(|k|)} x Z_{21}^{(u)} x \binom{r_1}{r_2} \frac{1^{(12+|k|+u)}}{2^{(6-|k|-u)}} +$ $\binom{k_{2}+u}{u}Z_{21}^{(k_{1})}xZ_{21}^{(k_{2}+u)}x\binom{r_{1}}{r_{2}}\frac{1^{(12+|k|+u)}}{2^{(6-|k|-u)}}$ $\partial_{x} \Box_{2} \left(Z_{21}^{(k_{1})} x \, Z_{21}^{(k_{2})} x \begin{pmatrix} r_{1} & 1^{(12+|k|)} & 2^{(u)} \\ r_{2} & 2^{(6-|k|-u)} \end{pmatrix} \right)$ $=\partial_{x}\left(Z_{21}^{(k_{1})}x\,Z_{21}^{(k_{2})}x\,Z_{21}^{(u)}x\left(\begin{matrix}r_{1}\\r_{2}\end{matrix}\right|\frac{1^{(12+|k|+u)}}{2^{(6-|k|-u)}}\end{matrix}\right)\right)$ $= \binom{|k|}{k_2} Z_{21}^{(|k|)} x \, Z_{21}^{(u)} x \binom{r_1}{r_2} \frac{1}{2^{(6-|k|-u)}}$ $-\binom{k_{2}+u}{u}Z_{21}^{(k_{1})}xZ_{21}^{(k_{2}+u)}x\binom{r_{1}}{r_{2}}\frac{1^{(12+|k|+u)}}{2^{(6-|k|-u)}}$ $+Z_{21}^{(k_1)} x \, Z_{21}^{(k_2)} x \begin{pmatrix} r_1 \\ r_2 \\ 2^{(6-|k|-u)} \end{pmatrix}$ where $|k| = k_1 + k_2$ $\therefore \ \Box_1 \partial_x + \partial_x \Box_2 = id_{M2}$ $\Box_{2}\partial_{x}\left(Z_{21}^{(k_{1})}x\,Z_{21}^{(k_{2})}x\,Z_{21}^{(k_{3})}x\binom{r_{1}}{r_{2}}\begin{vmatrix}1^{(12+|k|)}&2^{(u)}\\2^{(6-|k|-u)}\end{vmatrix}\right)$ $= \Box_2 \left(\binom{k_1 + k_2}{k_2} Z_{21}^{(k_1 + k_2)} x Z_{21}^{(k_3)} x \binom{r_1}{r_2} \frac{1^{(12+|k|)} 2^{(u)}}{2^{(6-|k|-u)}} \right)$ $-\binom{k_{2}+k_{3}}{k_{3}}Z_{21}^{(k_{1})}xZ_{21}^{(k_{2}+k_{3})}x\binom{r_{1}}{r_{2}}\frac{1^{(12+|k|)}}{2^{(6-|k|-u)}}$ $+Z_{21}^{(k_1)} x Z_{21}^{(k_2)} x \partial_{21}^{(k_3)} \begin{pmatrix} r_1 \\ r_2 \\ 2^{(6-|k|-u)} \end{pmatrix} \end{pmatrix}$ $= \binom{k_1 + k_2}{k_2} Z_{21}^{(k_1 + k_2)} x \, Z_{21}^{(k_3)} x \, Z_{21}^{(u)} x \binom{r_1}{r_2} \frac{1^{(12+|k|+u)}}{2^{(6-|k|-u)}}$ $-\binom{k_2+k_3}{k_3}Z_{21}^{(k_1)}x\,Z_{21}^{(k_2+k_3)}x\,Z_{21}^{(u)}x\binom{r_1}{r_2}\frac{1^{(12+|k|+u)}}{2^{(6-|k|-u)}}$ $+\binom{k_{3}+u}{u}Z_{21}^{(k_{1})}x\,Z_{21}^{(k_{2})}x\,Z_{21}^{(k_{2}+u)}x\binom{r_{1}}{r_{2}}\frac{1^{(12+|k|+u)}}{2^{(6-|k|-u)}},$ $\partial_{x} \Box_{3} \left(Z_{21}^{(k_{1})} x \, Z_{21}^{(k_{2})} x \, Z_{21}^{(k_{3})} x \begin{pmatrix} r_{1} \mid 1^{(12+|k|)} & 2^{(u)} \\ r_{2} \mid 2^{(6-|k|-u)} \end{pmatrix} \right)$

where $|K| = \kappa_1 + \kappa_2 + \kappa_3$. $\therefore \ \Box_2 \partial_x + \partial_x \Box_3 = id_{M3}$ Now, we have to prove that $\Box_{3}\partial_{x}\left(Z_{L1}^{(k_{1})}x\,Z_{21}^{(k_{2})}x\,Z_{21}^{(k_{3})}x\,Z_{21}^{(k_{4})}x\left(r_{1}^{k_{1}}\left|\frac{1^{(12+|k|)}}{2^{(6-|k|-u)}}\right)\right)\right)$ $= \Box_{3} \left(-\binom{k_{1}+k_{2}}{k_{2}} Z_{21}^{(k_{1}+k_{2})} x \, Z_{21}^{(k_{3})} x \, Z_{21}^{(k_{4})} x \, \binom{r_{1}}{r_{2}} \frac{1^{(12+|k|)}}{2^{(6-|k|-u)}} \right) \right)$ $+\binom{k_2+k_3}{k_3}Z_{21}^{(k_1)}x\,Z_{21}^{(k_2+k_3)}x\,Z_{21}^{(k_4)}x\binom{r_1}{r_2}\frac{1^{(12+|k|)}}{2^{(6-|k|-u)}}2^{(u)}$ $-\binom{k_3+k_4}{k_4}Z_{21}^{(k_1)}x\,Z_{21}^{(k_2)}x\,Z_{21}^{(k_3+k_4)}x\binom{r_1}{r_2}\frac{1^{(12+|k|)}}{2^{(6-|k|-u)}}\frac{2^{(u)}}{2^{(k_1-u)}}\right)$ $+Z_{21}^{(k_1)} x \, Z_{21}^{(k_2)} x \, Z_{21}^{(k_3)} x \, \partial_{21}^{(k_4)} \begin{pmatrix} r_1 \\ r_2 \\ 2^{(6-|k|-u)} \end{pmatrix}$ $= -\binom{k_1 + k_2}{k_2} Z_{21}^{(k_1 + k_2)} x \, Z_{21}^{(k_3)} x \, Z_{21}^{(k_4)} Z_{21}^{(u)} x \binom{r_1}{r_2} \frac{1^{(12+|k|+u)}}{2^{(6-|k|-u)}}$ $+\binom{k_{2}+k_{3}}{k_{3}}Z_{21}^{(k_{1})}x\,Z_{21}^{(k_{2}+k_{3})}x\,Z_{21}^{(k_{4})}x\,Z_{21}^{(u)}x\binom{r_{1}}{r_{2}}\frac{1^{(12+|k|+u)}}{2^{(6-|k|-u)}}$ $-\binom{k_3+k_4}{k_4}Z_{21}^{(k_1)}x\,Z_{21}^{(k_2)}x\,Z_{21}^{(k_3+k_4)}x\,Z_{21}^{(u)}x\binom{r_1}{r_2}\frac{1^{(12+|k|+u)}}{2^{(6-|k|-u)}}$ $+\binom{k_4+u}{u}Z_{21}^{(k_1)}x\,Z_{21}^{(k_2)}x\,Z_{21}^{(k_3)}x\,Z_{21}^{(k_4+u)}x\binom{r_1}{r_2}\binom{1(12+|k|+u)}{2^{(6-|k|-u)}},$ $\partial_{x} \Box_{4} \left(Z_{21}^{(k_{1})} x \, Z_{21}^{(k_{2})} x \, Z_{21}^{(k_{3})} x \, Z_{21}^{(k_{4})} x \begin{pmatrix} r_{1} & 1^{(12+|k|)} & 2^{(u)} \\ r_{2} & 2^{(6-|k|-u)} \end{pmatrix} \right)$ $=\partial_{x}\left(Z_{21}^{(k_{1})}x\,Z_{21}^{(k_{2})}x\,Z_{21}^{(k_{3})}x\,Z_{21}^{(k_{4})}x\,Z_{21}^{(u)}x\,Z_{1}^{(u)}x\left(\begin{matrix}r_{1}&1^{(12+|k|+u)}\\r_{2}&2^{(6-|k|-u)}\end{matrix}\right)\right)$ $= \binom{k_1 + k_2}{k_2} Z_{21}^{(k_1 + k_2)} x \, Z_{21}^{(k_3)} x \, Z_{21}^{(k_4)} x \, Z_{21}^{(u)} x \binom{r_1}{r_2} \frac{1^{(12+|k|+u)}}{2^{(6-|k|-u)}}$ $-\binom{k_2+k_3}{k_3}Z_{21}^{(k_1)}x\,Z_{21}^{(k_2+k_3)}x\,Z_{21}^{(k_4)}x\,Z_{21}^{(u)}x\,\binom{r_1}{r_2}\frac{1^{(12+|k|+u)}}{2^{(6-|k|-u)}}\right)$

$$\begin{split} &= \partial_x \left(Z_{21}^{(k_1)} x \, Z_{21}^{(k_2)} x \, Z_{21}^{(k_3)} x \, Z_{21}^{(u)} x \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} \frac{1}{2^{(6-|k|-u)}} \right) \right) \\ &= - \begin{pmatrix} k_1 + k_2 \\ k_2 \end{pmatrix} Z_{21}^{(k_1+k_2)} x \, Z_{21}^{(k_3)} x \, Z_{21}^{(u)} x \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} \frac{1}{2^{(6-|k|-u)}} \right) \\ &+ \begin{pmatrix} k_2 + k_3 \\ k_2 \end{pmatrix} Z_{21}^{(k_1)} x \, Z_{21}^{(k_2+k_3)} x \, Z_{21}^{(u)} x \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} \frac{1}{2^{(6-|k|-u)}} \right) \\ &- \begin{pmatrix} k_3 + u \\ u \end{pmatrix} Z_{21}^{(k_1)} x \, Z_{21}^{(k_2)} x \, Z_{21}^{(k_3+u)} x \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} \frac{1^{(12+|k|+u)}}{2^{(6-|k|-u)}} \right) \\ &+ Z_{21}^{(k_1)} x \, Z_{21}^{(k_2)} x \, Z_{21}^{(k_3)} x \, Z_{21}^{(u)} x \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} \frac{1^{(12+|k|+u)}}{2^{(6-|k|-u)}} \right) \\ &= - \begin{pmatrix} k_1 + k_2 \\ k_2 \end{pmatrix} Z_{21}^{(k_1+k_2)} x \, Z_{21}^{(k_3)} x \, Z_{21}^{(u)} x \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} \frac{1^{(12+|k|+u)}}{2^{(6-|k|-u)}} \right) \\ &+ \begin{pmatrix} k_2 + k_3 \\ k_3 \end{pmatrix} Z_{21}^{(k_1)} x \, Z_{21}^{(k_2+k_3)} x \, Z_{21}^{(u)} x \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} \frac{1^{(12+|k|+u)}}{2^{(6-|k|-u)}} \right) \\ &- \begin{pmatrix} k_3 + u \\ u \end{pmatrix} Z_{21}^{(k_1)} x \, Z_{21}^{(k_2)} x \, Z_{21}^{(k_3+u)} x \, Z_{21}^{(u)} x \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} \frac{1^{(12+|k|+u)}}{2^{(6-|k|-u)}} \right) \\ &+ Z_{21}^{(k_1)} x \, Z_{21}^{(k_2)} x \, Z_{21}^{(k_2+k_3)} x \, Z_{21}^{(u)} x \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} \frac{1^{(12+|k|+u)}}{2^{(6-|k|-u)}} \right) \\ &+ Z_{21}^{(k_1)} x \, Z_{21}^{(k_2)} x \, Z_{21}^{(k_3+u)} x \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} \frac{1^{(12+|k|+u)}}{2^{(6-|k|-u)}} \right) \\ &+ Z_{21}^{(k_1)} x \, Z_{21}^{(k_2)} x \, Z_{21}^{(k_3+u)} x \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} \frac{1^{(12+|k|+u)}}{2^{(6-|k|-u)}} \right) \\ &+ Z_{21}^{(k_1)} x \, Z_{21}^{(k_2)} x \, Z_{21}^{(k_3+u)} x \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} \frac{1^{(12+|k|+u)}}{2^{(6-|k|-u)}} \right) \\ &+ Z_{21}^{(k_1)} x \, Z_{21}^{(k_2)} x \, Z_{21}^{(k_3+u)} x \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} \frac{1^{(12+|k|+u)}}{2^{(6-|k|-u)}} \right) \\ &+ Z_{21}^{(k_1)} x \, Z_{21}^{(k_2)} x \, Z_{21}^{(k_3+u)} x \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} \frac{1^{(12+|k|+u)}}{2^{(6-|k|-u)}} \right) \\ &+ Z_{21}^{(k_1)} x \, Z_{21}^{(k_2)} x \, Z_{21}^{(k_3+u)} x \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} \frac{1^{(12+|k|+u)}}{2^{(6-|k|-u)}} \end{pmatrix} \\ &+ Z_{21}^{(k_1)} x \, Z_{21}^{(k_2)} x \, Z_{21}^{(k_3+u)} x \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} \frac{1^{(12+|k|+u)}}{2^{(6-|k|-u)}} \end{pmatrix} \\ &+ Z_{21}^{(k_1)} x \, Z_{21}^{(k_2)} x \, Z_{21}^{(k_3+u)} x \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} \frac{1^{(k_1)} x \, r_1} x \begin{pmatrix}$$

288

Journal of University of Anbar for Pure Science (JUAPS)

Open Access

P- ISSN 1991-8941 E-ISSN 2706-6703 2025,(19), (01):285 – 290

$$\begin{split} &+ \binom{k_3 + k_4}{k_4} \binom{2(k_1)}{2(1+k_2)} x \ Z_{21}^{(k_2)} x \ Z_{21}^{(k_1+k_2)} x \ Z_{21}^{(k_2+k_2)} x \ Z_{21}^{(k_1+k_2)} x \ Z_{21}^{(k_2+k_2)} x \$$

$$\begin{split} &+ \binom{k_{2}+k_{3}}{k_{3}} Z_{21}^{(k_{1})} x \, Z_{21}^{(k_{2}+k_{3})} x \, Z_{21}^{(k_{3})} x \, Z_{21}^{(k_{5})} x \, Z_{21}^{(u)} x \, \binom{r_{1}}{r_{2}} \left[\frac{1(12+|k|+u)}{2(6-|k|-u)} \right] \\ &- \binom{k_{3}+k_{4}}{k_{4}} Z_{21}^{(k_{1})} x \, Z_{21}^{(k_{2})} x \, Z_{21}^{(k_{3})} x \, Z_{21}^{(k_{5})} x \, Z_{21}^{(u)} x \, \binom{r_{1}}{r_{2}} \left[\frac{1(12+|k|+u)}{2(6-|k|-u)} \right] \\ &+ \binom{k_{4}+k_{5}}{k_{4}} Z_{21}^{(k_{1})} x \, Z_{21}^{(k_{2})} x \, Z_{21}^{(k_{3})} x \, Z_{21}^{(k_{4}+k_{5})} x \, Z_{21}^{(u)} x \, \binom{r_{1}}{r_{2}} \left[\frac{1(12+|k|+u)}{2(6-|k|-u)} \right] \\ &- \binom{k_{5}+u}{u} Z_{21}^{(k_{1})} x \, Z_{21}^{(k_{2})} x \, Z_{21}^{(k_{3})} x \, Z_{21}^{(k_{3})} x \, Z_{21}^{(k_{4}+k_{5})} x \, Z_{21}^{(k_{4}+k_{1})} x \, \binom{r_{1}}{r_{2}} \left[\frac{1(12+|k|+u)}{2(6-|k|-u)} \right] \\ &+ Z_{21}^{(k_{1})} x \, Z_{21}^{(k_{2})} x \, Z_{21}^{(k_{3})} x \, Z_{21}^{(k_{4})} x \, Z_{21}^{(k_{5})} x \, Z_{21}^{(u)} x \, \binom{r_{1}}{r_{2}} \left[\frac{1(12+|k|+u)}{2(6-|k|-u)} \right] \\ &= \\ &- \binom{k_{1}+k_{2}}{k_{2}} Z_{21}^{(k_{1}+k_{2})} x \, Z_{21}^{(k_{3})} x \, Z_{21}^{(k_{4})} x \, Z_{21}^{(k_{5})} x \, Z_{21}^{(u)} x \, \binom{r_{1}}{r_{2}} \left[\frac{1(12+|k|+u)}{2(6-|k|-u)} \right] \\ &+ \binom{k_{2}+k_{3}}{k_{3}} Z_{21}^{(k_{1})} x \, Z_{21}^{(k_{2}+k_{3})} x \, Z_{21}^{(k_{3})} x \, Z_{21}^{(k_{3})} x \, Z_{21}^{(k_{3})} x \, Z_{21}^{(k_{4}+k_{5})} x \, Z_{21}^{(u)} x \, \binom{r_{1}}{r_{2}} \left[\frac{1(12+|k|+u)}{2(6-|k|-u)} \right] \\ &- \binom{k_{3}+k_{4}}{k_{4}} Z_{21}^{(k_{1})} x \, Z_{21}^{(k_{2})} x \, Z_{21}^{(k_{3})} x \, Z_{21}^{(k_{5})} x \, Z_{21}^{(u)} x \, \binom{r_{1}}{r_{2}} \left[\frac{1(12+|k|+u)}{2(6-|k|-u)} \right] \\ &+ \binom{k_{4}+k_{5}}{k_{5}} Z_{21}^{(k_{1})} x \, Z_{21}^{(k_{2})} x \, Z_{21}^{(k_{3})} x \, Z_{21}^{(k_{3})} x \, Z_{21}^{(k_{4}+k_{5})} x \, Z_{21}^{(u)} x \, \binom{r_{1}}{r_{2}} \left[\frac{1(12+|k|+u)}{2(6-|k|-u)} \right] \\ &- \binom{k_{5}+u}{u} Z_{21}^{(k_{1})} x \, Z_{21}^{(k_{2})} x \, Z_{21}^{(k_{3})} x \, Z_{21}^{(k_{3})} x \, Z_{21}^{(k_{4}+k_{5})} x \, \binom{r_{1}}{r_{2}} \left[\frac{1(12+|k|+u)}{r_{2}} \right] \\ &- \binom{k_{5}+u}{u} Z_{21}^{(k_{1})} x \, Z_{21}^{(k_{2})} x \, Z_{21}^{(k_{3})} x \, Z_{21}^{(k_{3})} x \, Z_{21}^{(k_{4}+k_{5})} x \, \binom{r_{1}}{r_{2}}$$

REFERENCES

- Akin K, David A B and Weyman J Schur Functors and Schur complexes Advances in mathematics 44,207_278 (1982).
- [2] David A B and Rota, G C 2001 Approaches resolution of weyl modules Adv In Applied Math, 27 182-191.
- [3] Hassan H R and Jasim N S 2018 On Free Resolution of Wely module and Zero Characteristic Resolution in the case of Partition (8,7,3), Baghdad Science Journal.
- [4] Hassan H R and Abd -Alridah N SH 2020 Complex of Characteristic Zero in the Skew-Shape (8,6,3)/(u,1) where u=1 and 2,Iraqi Journal of Science, phys.: Conf.ser 1003(012051)1-15.
- [5] L.R. Vermani , 2003 An elementry approach to homotopical algebra, Chapman and Hall /CRC, Monpgraphs and Surveys in pure and applied Mathematics 130.

تحلل صفين لمقاس وايل في حالة التجزئة (12,6) عذراء عباس صادق¹، هيثم رزوقي حسن²* ¹وزارة التربية، المديرية العامة للتربية في محافظة ميسان، ميسان، العراق ² قسم الرياضيات – كلية العلوم – الجامعة المستنصرية – بغداد – العراق.

<u>خلاصة</u>

Open Access

في هذا البحث سوف نركز على دراسة تحلل مقاس وايل في حالة صفين للتجزئة (12,6) باستخدام المخطط المتماثل، التوافق المهوموتوبي والاستقطاب المكاني.