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 This study focuses on the application of numerous fuzzy linear regression models to 

analyze medical data regarding myocardial infarction, particularly with troponin level, which 

is essential for identifying heart attacks. Specifically, the physiological indicators that 

describe the state of a patient, including blood pressure, blood sugar, and creatinine levels, 

and the relationship between these indicators and heart attack enzyme level, are determined.  

To accomplish the objective of this study, the necessary data were obtained from 

hospitals that treated patients diagnosed with myocardial infarction. Then, the performance of 

several fuzzy regression methods was compared by employing these data. 

This study shows that the fuzzy least-squares method presents the lowest mean squared 

error values among all the models and exhibits the best accuracy in simulating the effect of 

physiological factors on the level of the heart attack enzyme. Moreover, this study emphasizes 

the importance of applying fuzzy regression to medical statistics due to the existence of 

uncertainty in this field and the applicability of this method to enhancing predictive power 

and decision-making in healthcare. 
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Introduction  

Regression analysis is a statistical technique used 

in various scientific domains. Its objective is to study a 

regression equation that provides options for analyzing 

and forecasting the relation between a dependent variable 

with one or more independent variables [1]. 

In settings wherein a model is ambiguous, the 

relationships among model parameters are indefinite, 

sample size is small, or the data are hierarchically 

structured; therefore, fuzzy regression offers an 

alternative to regular statistical regression. Fuzzy 

regression can be used in situations wherein statistical 

analysis is hindered by data structure [2], [3]. Hence, 

fuzziness deserves more attention, and fuzzy data 

analysis has increased in significance since Zadeh [4], [5] 

introduced fuzzy sets in 1965.  
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Tanaka [6], [7] presented the concept of fuzzy 

linear regression (FLR) in 1982 with the intention of 

solving this limitation and applying fuzzy set theory to the 

formulation of a regression equation. In 1988, Diamond 

[8] suggested a method, called fuzzy least squares (FLS), 

as a process for producing a number of basic least-squares 

models by fitting fuzzy datasets into the models and 

derived the analogues of normal equations by using 

distance measurements to implement FLS regression 

(FLSR). In 1989, Tanaka et al. [9] considered fuzzy data 

derived from expert knowledge as a possibility 

distribution that characterizes possibilistic linear systems 

by condensing fuzzy data into a single linear 

programming (LP) problem. They offer three 

formulations of possibilistic linear regression analysis, 

making extracting fuzzy parameters from possibilistic 

linear models easier and enabling the observation of 

additional constraint conditions due to specialist fuzzy 

parameter knowledge. In 1999, Lee and Tanaka [10] 

suggested using nonsymmetric fuzzy coefficients in 

fuzzy regression analysis. They used the quadratic 
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programming (QP) technique and assumed nonsymmetric 

triangular fuzzy coefficients. 

In addition, they proposed an integrated QP 

problem in which the centers of the two approximation 

models are assumed to be the same. In this problem, the 

higher approximation model always includes the lower 

approximation model at any threshold level. These 

researchers also used actual data to conduct weight 

coefficient sensitivity studies of the suggested QP 

techniques. Fuzzy regression analysis that used 

nonsymmetric fuzzy coefficients was proposed by 

Nasrabadi et al. in 2005 [11]. These authors employed the 

QP technique and assumed nonsymmetric triangular 

fuzzy coefficients. In 2008, Arabpour and Tata [12] used 

mathematical programming techniques to estimate fuzzy 

coefficients in linear regression models. Their 

study employed a measure developed via the Diamond 

technique. This new approach exhibits lower total 

estimation errors and simple computing. In 2017, Zeng et 

al. [13] presented a new measure of the distance between 

triangular fuzzy numbers, combined it with the least 

absolute deviation technique, and suggested a fuzzy 

regression model. In addition, they transformed the fuzzy 

least absolute linear regression model into LP 

and investigated its characteristics and model algorithm. 

In 2020, Hasanain [14] used discernment regression to 

assess teachers’   knowledge about tuberculosis at a 

primary school. In 2021, Škrabánek et al. [15] developed 

the Boscovich regression method, which was designed 

for a simple linear regression model. Boscovich’s 

estimate was predicated on two limitations: the positive 

and negative residuals that are added together (as 

measured along the y-axis) must be equal and the 

residuals’ best absolute values must be as small as 

possible when added together. In 2023, Li et al. [16] 

constructed a fuzzy multiple linear least-squares 

regression model based on two distance measures 

between LR-type fuzzy numbers. They also defined a 

similarity measure between LR-type fuzzy numbers and 

introduced two criteria: the error index and the similarity 

index, which use the distance and similarity measures 

between LR-type fuzzy numbers as measurements, 

respectively, to assess the efficacy of the proposed model. 

 

Methods and Materials of the Fuzzy Regression 

Models 

FLR was introduced by Tanaka et al. in 1982 [7], 

[9]. This method was further developed by researchers in 

the years that followed as an extension of the classical 

linear regression modeling. Estimating a dataset by using 

FLR was determined to fit most closely with the notion 

of fuzziness after using numerous fuzzy methods. 

 

FLS Linear Regression Method 

Regression analysis by using FLS linear regression 

is a technique used when working with fuzzy data. It was 

proposed by Phil Diamond [8] in 1988, when the fitted 

line and data points’ squared deviations are minimized 

when using regular least-squares regression to determine 

the line. To manage uncertainty and imprecision in data, 

the FLS linear regression approach combines least-

squares linear regression with fuzzy set theory. 

The basic summary of the essential steps is 

provided as follows: 

1. The inputted data points are examined, i.e., (𝑥𝑖 , 𝑦�̃�𝑖) 

for i=1, 2, … n. The input crisp numbers are denoted 

by 𝑥𝑖, and the output is represented by the fuzzy 

numbers 𝑦�̃�𝑖. 

2. Each fuzzy output 𝑦�̃�𝑖 should be represented by a 

membership function. Triangular fuzzy numbers 

(TFNs) and trapezoidal fuzzy numbers are two 

examples of common formats. Assuming TFNs are as 

follows: 

     𝑦�̃�𝑖 = (𝑦�̃�𝑖
𝐿

 , 𝑦�̃�𝑖
𝑀

 , 𝑦�̃�𝑖
𝑈

),                                    (1) 

     where  𝑦�̃�𝑖
𝐿
 is the lower end, 𝑦�̃�𝑖

𝑀
 is the middle, and 

𝑦�̃�𝑖
𝑈

 is the upper end. 

3. The fuzzy linear regression model is set as 

    𝑦�̃�𝑖 =  𝑏𝑓0̃ + 𝑏𝑓1̃𝑥𝑖 , 𝑖 = 1, 2, … , 𝑛;                       (2) 

     where   𝑏𝑓0̃ and 𝑏𝑓1̃ are fuzzy coefficients,  

     𝑏𝑓0̃ = (𝑏𝑓0̃
𝐿

 , 𝑏𝑓0̃
𝑀

 , 𝑏𝑓0̃
𝑈

),  

     and  𝑏𝑓1̃ = (𝑏𝑓1̃
𝐿

 , 𝑏𝑓1̃
𝑀

 , 𝑏𝑓1̃
𝑈

).                  (3) 

4. TFNs are transformed into intervals  𝑐�̃�. 

    For 𝑇𝐹𝑁𝑠  𝑐�̃� = (𝑐�̃�𝐿  , 𝑐�̃�𝑀  , 𝑐�̃�𝑈), the  

representation of the interval is ( 𝑐�̃� ∈ (𝑐�̃�𝐿 , 𝑐�̃�𝑈)). 

5. After constructing the fuzzy regression coefficients, the 

criteria for fuzzy least squares is known as the fuzzy 

objective function, which minimizes the squared 
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deviation or distance between the expected fuzzy 

output, as follows: 

     𝑦�̃�𝑖
^ = 𝑏𝑓0̃ +  𝑏𝑓1̃𝑥𝑖,                                              (4) 

     and the real fuzzy output of 𝑦�̃�𝑖 is an objective 

function, as follows: 

     𝑂𝐽𝑓 = ∑ [𝑦�̃�𝑖 − (𝑏𝑓0̃ + 𝑏𝑓1̃ 𝑥𝑖)]𝑛
𝑖=1 .                    (5) 

       Then, by dividing it into three components, i.e., 

managing the intervals’ lower and upper limits separately 

and identifying their midpoints, the objective function is 

transformed as follows:  

𝑀𝐼𝑁(𝑂𝐽𝑓) =  𝑀𝐼𝑁 {∑ [𝑦�̃�𝑖
𝐿

− (𝑏𝑓0̃
𝐿

+ 𝑏𝑓1̃
𝐿

 𝑥𝑖)]𝑛
𝑖=1 +

 ∑ [𝑦�̃�𝑖
𝑈

− (𝑏𝑓0̃
𝑈

+ 𝑏𝑓1̃
𝑈

 𝑥𝑖)]𝑛
𝑖=1 }.                            (6) 

 

Fuzzy Least Absolute Residual (FLAR) Method 

       FLAR, introduced by Zeng et al. [13] in 2017, is a 

method for fitting a linear regression model into data 

when the dependent variable is fuzzy and the independent 

variable is crisp. The process minimizes the total 

absolute residuals between the observed and expected 

values. 

The description formula for FLAR is as follows: 

1. The fuzzy numbers of yi, including triangular fuzzy 

numbers defined by the mean, lower, and upper 

spreads, and the membership functions µyf (yfi) are 

determined. 

2. The coefficient of parameters is initialized. 

3. A definition is provided for the residuals’ fuzzy 

membership functions, and then, the residuals 

for β’s estimate (ef = yf – xf) are determined.  

4. A measure for fuzzy distance is selected. The signed 

distance between membership functions is a common 

choice for FLAR. 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑦𝑓𝑖  , 𝑓(𝑥𝑖)) = ∫[𝜇𝑦𝑓(𝑦𝑓𝑖) −

 𝜇𝑓(𝑓(𝑥𝑖)]𝑑𝑦𝑓,                                                                  (7) 

where 𝜇𝑦𝑓(𝑦𝑓𝑖) represent the membership function of 

the fuzzy number yfi, and 𝜇𝑓(𝑓(𝑥𝑖) represents the 

membership function of the predicted value f(xi) from 

the model at a given value yfi. 

5. Fuzzy weights are assigned using the membership 

function to determine the fuzzy weight (wfi) for each 

residual (efi). 

6.The objective that minimizes the weighted sum of the 

absolute residuals is determined by applying an 

iterative optimization approach, such as iteratively 

reweighted least squares, to solve the weighted least 

absolute residual problem. For each iteration, 

- the current β’s residuals (efi) is determined. 

- the weights (wfi) are recalculated to the updated 

residuals to obtain a new estimate of βfs. 

       𝑀𝑖𝑛⏟
β

 ∑ 𝑤𝑓𝑖
𝑛
𝑖=1  |𝑦𝑓𝑖 − 𝑥𝑖

′β|                                  (8)  

  

Possibilistic Linear Regression (PLR) Analysis for the 

Fuzzy Data Method 

An additional strategy for handling ambiguous data 

in regression analysis is PLR. In 1989, Tanaka, Hayashi, 

and Watada [17] pointed out that the basis of this strategy 

was possibility theory, a mathematical theory for 

handling specific types of imprecision and uncertainty. 

The objective of PLR is fitting a regression model into 

fuzzy data points, where the input and the output may be 

both fuzzy numbers. 

 Possibilistic regression uses possibility 

distributions to describe ambiguous data points. These 

distributions describe the probability (from 0 to 1) that a 

given data point belongs to a certain value. 

From these possibility distributions, crisp 

information is obtained via α-cuts. An α-cut level (0 ≤ α 

≤ 1) establishes a possibility threshold. For each fuzzy 

number yfi, all values with a probability larger than or 

equal to α are included in the α-cut. 

An approach for PLR analysis with fuzzy data is 

described as follows: 

1. The fuzzy coefficients are set to their initial values of 

yi, as shown in Eq. (3), by using the triangular fuzzy 

number from a membership function µy(yi) [17] and 

then applying the α-cut level to the representation of 

each yi. 

2. The possibility distribution for the predicted fuzzy 

output 𝑦�̃� is constructed. 

3. The possibilistic error of the fuzzy output that are 

anticipated and those that are seen is determined. A 

simple technique for accomplishing this task is to 

reflect the distance spaced by the fuzzy numbers. 

4. An optimization approach, such as the FLS method, is 

utilized to minimize all the possibilistic errors by 

adjusting 𝑏𝑓0̃ and 𝑏𝑓1̃. 
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5. The optimization procedure is continuously iterated 

until the fuzzy coefficient changes fall below a 

predetermined threshold or until convergence is 

achieved. 

6. An objective function of fuzzy regression is 

established to minimize the sum of squared errors 

between the observed and predicted fuzzy output, as 

shown in Eq. (9). 

  OJf =

∑ {[((lower bound of estimated intervali) −𝑛
𝑖=1

 (lower bound of α − cut interval_i))2] +

  [((upper bound of estimated intervali) −

  (upper bound of α − cut interval_i))2]},               (9)  

    where 

- n is the number of data points. 

- The α-cut of a fuzzy number is an interval that contains 

all values with a membership degree greater than or 

equal to α. The fuzzy number’s endpoints at the α level 

correspond to the interval’s lower and upper limits. 

- The lower and upper limits of the PLR model yields the 

estimated interval. 

- The lower and upper limits of the α-cut interval of the 

observed fuzzy output intervals at a specific α-cut level. 

 

PLR Combined with Least Squares (PLRLS) 

Lee et al. [10] introduced fuzzy regression analysis 

based on a QP approach (1999). In fuzzy regression 

analysis, a QP strategy produces more varied spread 

coefficients than an LP strategy. 

Moreover, a QP technique can be used to merge the 

central tendency of least squares with the possibilistic 

properties of fuzzy regression. 

 𝑦�̃�𝑖 = 𝑏𝑓0̃ + 𝑏𝑓1̃𝑥𝑖1 + ⋯ + 𝑏𝑓�̃�𝑥𝑖𝑛, 𝑖 = 1, 2, … , 𝑛  (10) 

An optimization problem in Eq. (11) that involves 

minimizing a quadratic function under linear constraint 

conditions is known as a QP formulation.  

𝑀𝑖𝑛⏟
a,c

= ∑ 𝑐𝑡

𝑚

𝑗=1

|𝑥𝑗| 

  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝑦𝑗𝜖[𝑦(𝑥𝑗)]
ℎ

    , 𝑗 = 1, … , 𝑚               (11) 

𝑐𝑖 ≥ 0,       ,   𝑖 = 0, … , 𝑛, 

where 𝑐 = (𝑐0, … , 𝑐𝑛)𝑡 and |𝑥𝑗| = (1, |𝑥𝑗1|, … , |𝑥𝑗𝑛|)𝑡. 

       The following steps are performed for a fuzzy 

regression analysis that uses nonsymmetric triangular 

fuzzy coefficients: 

(i)  The data for input–output are given as (xi, yi) = (1, xi1, 

… xin; yi),  j = 1, …, m.  

(ii) The data can be expressed using the fuzzy linear 

model in Eq. (10).  

(iii) When a threshold (h) is specified, the output 𝑦�̃�𝑖 

should be part of the h-level set of the estimated fuzzy 

output yf(xj), fulfilling 

        [𝑦𝑓(𝑥𝑖)]ℎ ∋ 𝑦𝑓𝑖 ↔

 {
𝜃𝐶(𝑥𝑗) + (1 − ℎ)𝜃𝑅(𝑥𝑗) ≥ 𝑦𝑓𝑗

𝜃𝐶(𝑥𝑗) − (1 − ℎ)𝜃𝐿(𝑥𝑗) ≤ 𝑦𝑓𝑗

}  , 𝑗 = 1, … , 𝑚.     (12)   

This particular aspect is regarded as a potential 

property of fuzzy regression. 

(iv) The objective function is defined as 

𝑜𝑏𝑗 = 𝑤1 ∑ (𝑦𝑗 − (𝑎)𝑡𝑥𝑗)
2

+𝑚
𝑗=1 𝑤2(1 −

ℎ) ∑ (𝑐𝑡|𝑥𝑗| + 𝑑𝑡|𝑥𝑗|)𝑚
𝑗=1 ,                                    (13) 

where 𝑐 = (𝑐0, … , 𝑐𝑛)𝑡 and 𝑑 = (𝑑0, … , 𝑑𝑛)𝑡 denote 

the left and right spread coefficient vectors, and 𝑎 =

(𝑎0, … , 𝑎𝑛)𝑡 is the center, where m denotes data size, 

and w1 and w2 are the coefficients of weight. 

(v) Fuzzy regression via QP aims to identify the optimal 

fuzzy coefficients, βi = (ai, ci, di), which reduce the 

objective function in Eq. (13) under the constraint 

conditions imposed by Eq. (12). This scenario can 

be formulated as a QP problem provided that 

(vi) 𝑀𝑖𝑛⏟
a,c,d

= 𝑜𝑏𝑗 = 𝑤1 ∑ (𝑦𝑗 − (𝑎)𝑡𝑥𝑗)
2

+𝑚
𝑗=1 𝑤2(1 −

ℎ) ∑ (𝑐𝑡|𝑥𝑗| + 𝑑𝑡|𝑥𝑗|)𝑚
𝑗=1 + 𝜗(𝑐𝑡𝑐 + 𝑑𝑡𝑑) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     𝜃𝐶(𝑥𝑗) + (1 − ℎ)𝜃𝑅(𝑥𝑗) ≥ 𝑦𝑓𝑗 

     𝜃𝐶(𝑥𝑗) − (1 − ℎ)𝜃𝐿(𝑥𝑗) ≤ 𝑦𝑓𝑗 ,   𝑗 = 1, … , 𝑚    (14) 

𝑐𝑖 ≥ 0 , 𝑑𝑖 ≥ 0,   𝑖 = 0, … , 𝑛. 

Suppose 𝜗 is a small positive number where 

(𝑤1 , 𝑤2) ≫ 𝜕. By incorporating the term 𝜗(𝑐𝑡𝑐 + 𝑑𝑡𝑑) 

into Eq. (13), the objective function outlined in Eq. (14) 

is modified to form a quadratic function that involves the 

decision variables a, c, and d. This strategy is a well-

established approach for attaining optimal solution by 

using QP. Through this method, a regression model with 

a more pronounced central tendency can be derived, in 

contrast with the models with symmetric triangular fuzzy 

coefficients in the LP problem in Eq. (11). 
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Boscovich Fuzzy Regression Line (BFRL) Method 

BFRL is a technique developed by Škrabánek [15] 

in 2021 for fitting a fuzzy linear relationship between the 

real number of independent variables and the fuzzy 

number of dependent variables. It combines the principles 

of fuzzy logic with Boscovich’s classical method. The 

method is described as follows: 

1. Fuzzy intervals for the data points (xi, yi) are defined. 

Every data point yi is substituted with a fuzzy number 

𝑦�̃�𝑖, which is typically represented by 

𝑦�̃�𝑖 = (𝑏𝑓𝑖
𝐿 , 𝑏𝑓𝑖

𝑀  , 𝑏𝑓𝑖
𝑈), where 𝑏𝑓𝑖

𝐿 and 𝑏𝑓𝑖
𝑈 are the 

lower and upper bounds, respectively, and 𝑏𝑓𝑖
𝑀 is the 

peak (possible value) or the middle. 

2. The proper fuzzy distance measurement is chosen, 

such as the sum of absolute deviations (L1 norm): 

𝑑(𝑦�̃�𝑖  , 𝑦�̃�𝑗) =  
1

3
 (|𝑏𝑓𝑖

𝐿 − 𝑏𝑓𝑗
𝐿| + |𝑏𝑓𝑖

𝑀 − 𝑏𝑓𝑗
𝑀| +

|𝑏𝑓𝑖
𝑈 − 𝑏𝑓𝑗

𝑈|).                                                       (15) 

3. The situation is inputted into an LP problem, and the 

simplex approach is used to solve it to determine the 

best regression coefficients. Then, the final regression 

formula and objective function are determined: 

  𝑂𝐽𝑓 =  ∑ [𝑦�̃�𝑖 − (𝑏𝑓0̃ + 𝑏𝑓1̃ 𝑥𝑖)]𝑛
𝑖=1 .                  (16)  

Troponin Factor  

The enzyme troponin is a part of a group of proteins 

that operate directly to control calcium levels before heart 

and skeletal muscles can contract. The testing of troponin 

enzyme levels is used to detect cardiac muscle failure. 

The protein groups of troponin are dispersed 

throughout  muscle fibers. This test is called cardiac 

troponin test or cardiac enzyme examination.   

In addition to the troponin test, the following test may be 

necessary: blood troponin level typical for creatine 

kinase. 

The normal troponin level in blood, as determined 

by a normal troponin test, is as follows: 

- Cardiac troponin T: The level of cardiac troponin T is 

less than 0.1 ng/mL of blood. 

- Cardiac troponin I: Less than 0.03 ng/mL of cardiac 

troponin I are present in blood. 

- A slight increase in blood troponin levels to 0.04–0.39 

ng/mL indicates the existence of a cardiac disease, 

while a minor increase in blood troponin levels 

indicates a heart attack, particularly if levels vary 

between high and low over several hours 

[government website that belongs to an official 

government organization in the United States]. 

 

Statistical Analysis 

A linear regression model was fitted and 

developed, where R statistical program and MATLAB 

R22 were used for the analysis. The data being studied 

were fitted using fuzzy regression techniques, and 

parameter estimates were computed to illustrate the roles 

and influences of each predictor on troponin enzyme 

levels. 

The analysis of clinical data related to myocardial 

infarction has focused on the potential effects of 

physiological factors on the enzyme troponin, which is 

the primary significant indicator of a heart attack. The 

variables include a dataset of blood pressure 

measurements, blood sugar measurements, creatinine 

levels, and troponin levels approved by medical facilities, 

namely, Al-Furat Hospital and Ibn Al-Bitar Cardiac 

Surgery Hospital. 

This model allows for the independent assessment 

of the effect of each factor or the cumulative effect of all 

the variables on troponin level, and thus, it assists in 

understanding the physiological relationships that occur 

in instances of myocardial infarction. 

 

Applications and Results 

This section uses a set of medical data from patients 

with myocardial infarction. 

1. Description of data and sources: The present dataset 

was obtained from Al-Furat Hospital and the statistics 

department of Ibn Al-Bitar Cardiac Surgery Hospital 

with sample size n = 75. Experts from the internal 

medicine and cardiac surgery departments 

organized this dataset. A simple random sampling was 

utilized to gather information regarding areas 

associated with changes in troponin enzyme levels. 

2. Defined variables: 

- Dependent variable (Yi): A change in the percentage  

 

- of troponin enzyme in response to the heart’s enzyme 

reaction to other external stimuli 

- Independent variable (Xi): Three independent 

variables are included, as follows:   
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Xi1: Blood pressure as a function of change in cardiac 

enzyme.  

Xi2: Blood glucose fluctuations and their effect on 

 

Table 1. Estimated parameters with (𝑏�̃�'s: L, M, U) and 

MSE(f) for the lower dependent variable (𝑦�̃�𝐿) using the 

models of (FSLR) 

 

Table 2. Estimated parameters with (𝛽�̃�'s: L, M, U) and 

MSE(f) for the middle dependent variable (𝑦�̃�𝑀) using 

the models of (FSLR)   

 

Table 3. Estimated parameters with (𝛽�̃�'s: L, M, U) and 

MSE(f) for the upper dependent variable (𝑦�̃�𝑈) using 

the models of (FSLR) 

 

 
Figure 1. Plots of the actual and fuzzy values of 

(𝑦�̂�𝑖) , (𝑦�̂�𝑖
̃ ) of Blood Pressure for FLS. 

 

 
Figure 2. Plots of the actual and fuzzy values of 

(𝑦�̂�𝑖) , (𝑦�̂�𝑖
̃ ) of Blood Pressure for FLAR. 

 
Figure 3. Plots of the actual and fuzzy values of 

(𝑦�̂�𝑖) , (𝑦�̂�𝑖
̃ ) of Blood Pressure for PLR. 

 
Figure 4. Plots of the actual and fuzzy values of 

(𝑦�̂�𝑖) , (𝑦�̂�𝑖
̃ ) of Blood Pressure for PLRLS. 

 
Figure 5. Plots of the actual and fuzzy values of 

(𝑦�̂�𝑖) , (𝑦�̂�𝑖
̃ ) of Blood Pressure for BFRL. 

 
Figure 6. Plots of the actual and fuzzy values of 

(𝑦�̂�𝑖) , (𝑦�̂�𝑖
̃ ) of Blood Glucose for FLS. 

 
Figure 7. Plots of the actual and fuzzy values of 

(𝑦�̂�𝑖) , (𝑦�̂�𝑖
̃ ) of Blood Glucose for FLAR. 
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Figure 8. Plots of the actual and fuzzy values of 

(𝑦�̂�𝑖) , (𝑦�̂�𝑖
̃ ) of Blood Glucose for PLR. 

 
Figure 9. Plots of the actual and fuzzy values of 

(𝑦�̂�𝑖) , (𝑦�̂�𝑖
̃ ) of Blood Glucose for PLRLS. 

 
Figure 10. Plots of the actual and fuzzy values of 

(𝑦�̂�𝑖) , (𝑦�̂�𝑖
̃ ) of Blood Glucose for BFRL. 

 
Figure 11. Plots of the actual and fuzzy values of 

(𝑦�̂�𝑖) , (𝑦�̂�𝑖
̃ ) of Creatine for FLS. 

 
Figure 12. Plots of the actual and fuzzy values of 

(𝑦�̂�𝑖) , (𝑦�̂�𝑖
̃ ) of Creatine for FLAR. 

 
Figure 13. Plots of the actual and fuzzy values of 

(𝑦�̂�𝑖) , (𝑦�̂�𝑖
̃ ) of Creatine for PLR. 

 
Figure 14. Plots of the actual and fuzzy values of 

(𝑦�̂�𝑖) , (𝑦�̂�𝑖
̃ ) of Creatine for PLRLS. 

 
Figure 15. Plots of the actual and fuzzy values of 

(𝑦�̂�𝑖) , (𝑦�̂�𝑖
̃ ) of Creatine for BFRL. 

        

       Fuzzy multiple linear regression (FMLR) is a 

development of traditional multiple linear regression [2], 

[18]. It uses a fuzzy logic to deal with an improvement on 

classical multiple linear regression imprecision and 

uncertainty in the data. This is especially helpful in cases 

where there are ambiguous relationships between the 

variables which are common in real-world issues 

particularly in medical. 

       For the purpose to assess the simultaneous effect of 

the three independent variables on the dependent variable, 

fuzzy multiple regression was employed and applied it to 

the data set utilizing the two approaches (FLR, PLFLR) 

and the results are shown in table (4). 

 

Table 4. Estimated parameters of FMLR with (𝛽�̃�'s: L, 

M, U) and MSE(f) of the dependent variable (𝑦�̃�) using 

(FLS, PLRLS) 

Method 𝜷�̃�𝟎
𝑳 𝜷�̃�𝟎

𝑴 𝜷�̃�𝟎
𝑼 MSE(f) 

FLS 

MSE(f) 

PLRLS 

FLS -2.82748 -2.85652 -2.88427  

 

 

 

0.26893 

 

 

 

 

0.27444 

PLRLS -2.98380 -3.00386 -3.04483 

FLS 𝜷�̃�𝟏
𝑳 𝜷�̃�𝟏

𝑴 𝜷�̃�𝟏
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PLRLS 0.25502 0.25757 0.26033 

FLS 𝜷�̃�𝟐
𝑳 𝜷�̃�𝟐

𝑴 𝜷�̃�𝟐
𝑼 

PLRLS 0.00125 0.00127 0.00128 

FLS 𝜷�̃�𝟑
𝑳 𝜷�̃�𝟑

𝑴 𝜷�̃�𝟑
𝑼 

PLRLS 0.14390 0.14501 0.14424 
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Figure16. Plots of the actual and fuzzy values of 

(𝑦�̂�𝑖) , (𝑦�̂�𝑖
̃ ) for FLS  

 
Figure 17. Plots of the actual and fuzzy values of 

(𝑦�̂�𝑖) , (𝑦�̂�𝑖
̃ ) for PLRLS method 

 

Conclusion 

The sample that comprised myocardial infarction 

patients and troponin enzyme levels was used as a model 

in this study’s extensive exploration of FLR models to 

study uncertainty in medical data. The effectiveness of 

these methods in understanding the effects of the model 

on one another and on troponin was assessed. The data 

were analyzed using several fuzzy regression methods 

(FLS, FLAR, PLR, PLRLS, and BFRL). Finally, the 

following significant results were obtained: 

1. From the results presented in Tables 1, 2, and 3, the 

MSE(f) of FLS exhibited the smallest value (0.28921 

at 𝑦�̃�𝑖
𝐿
, 0.70152 at 𝑦�̃�𝑖

𝑀
, and 0.65340 at 𝑦�̃�𝑖

𝑈
) 

compared with the values of the other methods, 

followed by these methods (in this order): FLAR, 

PLR, PLRLS, and BFRL. 

2. The results presented in Table 4 show that after 

utilizing and studying the two fuzzy multiple 

regression methods (i.e., FLS are PLRLS), the MSE(f) 

results are extremely close. However, the FLS method 

appears to be slightly preferred, as indicated in the 

value of MSE(f) = 0.26893. 

3. Troponin enzyme was demonstrated to exhibit an 

exact relationship with blood pressure and blood sugar 

levels, in accordance with the regression model used 

in this study. These factors definitely exert an effect on 

heart enzyme level. By contrast, the heart enzyme is 

unaffected or barely affected by the change in 

creatinine enzyme levels. 

Beneficial development and potential for more 

precise medical data analysis beyond several dimensions 

are provided. Medical research and clinical practice will 

be significantly affected by the alternatives offered and 

more thoughtful reliance on the model’s comparative 

explanatory skill, where physicians can obtain a more in-

depth grasp of the elements that govern life-saving signals 

by employing fuzzy regression approaches. 

Consequently, physicians may be assured that patients are 

receiving the most accurate diagnosis possible. 
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