
Tikrit Journal of Pure Science Vol. 30 (3) 2025 

 DOI: https://doi.org/10.25130/tjps.v30i3.1754  

 

49 

  

Tikrit Journal of Pure Science 
ISSN: 1813 – 1662 (Print) --- E-ISSN: 2415 – 1726 (Online) 

 

Journal Homepage: https://tjpsj.org/  

 

 

Study of Dynamical Behavior of a Prey-Predator Model when the 

Prey Population Affected by Multifactor 

Arkan Nawzad Mustafa   ,  Bakhan Bahman Kamal   
Department of Mathematics, College of Education, University of Sulaimani, Sulaymaniyah, Iraq 

 

Received: 6 Sep. 2024 Received in Revised Form: 12 Oct. 2024 Accepted: 24 Oct. 2024 

Final Proof Reading: 3 Apr. 2025 Available Online: 25 Jun. 2025 

 

ABSTRACT  

In this work, a prey-predator model with Holling type II functional response is 

considered. The proposed model incorporates the cost of the fear of predators in prey, 

effect of environmental pollution and harvesting on prey population. Firstly, the 

details of model derivation of are given and then some of behaviors of the model 

solutions are proved, the existence criteria for each of the model equilibrium points 

are determined. For each of the equilibrium point, the sufficient and necessary 

conditions for being locally asymptotically stable are found. Via Lyapunov method, 

the sufficient conditions for global stability of the model equilibrium point are 

determined. Some numerical simulations are performed to discover the impact of the 

fear, harvesting population and environmental pollution on prey dynamics. 
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 المفترس عندما يتأثر عدد الفرائس بعوامل متعددة -دراسة السلوك الديناميكي لنموذج الفريسة 
 باخان بهمن كمال  ،اركان نوزاد مصطفى

 العراق ، ة، جامعة السليمانية، السليمانية قسم الرياضيات، كلية التربي

 الملخص 

مفترس مع استجابة وظيفية من النوع الثاني لهولنج. يتضمن النموذج المقترح تكلفة الخوف من  -في هذا العمل، تم النظر في نموذج فريسة

بات بعض  الحيوانات المفترسة في الفريسة، وتأثير التلوث البيئي والحصاد على أعداد الفرائس. أولًا، تم تقديم تفاصيل اشتقاق النموذج ثم تم إث 

ستقرار  سلوكيات حلول النموذج، وتم تحديد معايير الوجود لكل من نقاط توازن النموذج. لكل نقطة توازن، تم إيجاد الشروط الكافية والضرورية للا
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، تم تحديد الشروط الكافية للاستقرار العالمي لنقطة توازن النموذج. تم إجراء بعض المحاكاة  Lyapounvالمحلي المقارب. من خلال طريقة 

 العددية لاكتشاف تأثير الخوف والحصاد والتلوث البيئي على ديناميكيات الفرائس.

INTRODUCTION

Prey predator model is critical in mathematical 

ecology. Many mathematician authors considered 

mathematical models through differential equations 

on a variety of problems arising in ecological 

interaction between species (1-3). Population 

dynamics may be affected by many factor like; fear, 

harvesting, toxicity, stage structure, delay, 

harvesting, cannibalism, anti-predator skills, refuge, 

infectious illness, and other population-affecting 

elements of the natural environment (4-11).  

Physiological changes of prey population may be 

caused by predation fears and these physiological 

changes may reduce the reproduction of prey 

population. In (3)  the authors showed that the bird 

reduce forty percent less offspring by predation 

fears. In (4) the authors considered a predator–prey 

model incorporating  fear effect on reproduction of 

prey individuals, in their study they noticed that the 

fear has no impact on the stability of the model when 

the system incorporate bilinear functional response, 

but the system become stable under fear effect, if it 

incorporate the Holling type II functional response, 

based on their system in (8) the authors considered a 

prey predator with fear effect and harvesting 

cooperation, they discussed the stability, Hopf-

bifurcation and Bogdanov –Takens bifurcation the 

system. In(11) the authors considered an ecological 

model with fear effect and prey refuge, they showed 

that effect of both factor can stabilize the system. 

For more results about fear effect, see (2, 12-14). 

In the recent decades, the impact of harvesting 

activities on organisms and ecosystems are globally 

concerned. Several types of harvesting in predator-

prey systems are already being formed and studied, 

mathematician authors have added many terms to 

the predator or prey density. The most common of 

these harvesting terms are; nonzero constant 

functions; functions of linear harvesting rate or 

nonlinear Michaelis-Menten type of predator 

harvesting (15-20). Models studied with one of these 

harvesting forms exhibit far richer dynamics 

compared to the models with no harvesting. In (18) 

the authors studied the effect the harvesting in form 

of linear function on an eco-epidemiological model 

incorporating prey refuge.in their model a simple 

change of model dynamics happened. In (17) the 

authors consider a predator– prey system with a 

nonlinear Michaelis–Menten type of predator 

harvesting. They argue that harvesting with 

nonlinear form is more realistic and reasonable than 

modeling constant effort harvesting or linear 

harvesting. In their study the complexity of the 

model dynamics with this form of harvesting effect 

is demonstrated. 

In recent years, ecological models incorporating the 

toxicant that emitted into the environment from 

external sources, as well as formed by precursors of 

biological species, have been proposed and 

analyzed by several researchers on (21-24). In 

particular. The authors in(24) proposed a 

mathematical model to study the effect of pollution 

on natural stable two species communities. In their 

work, effects of a toxicant simultaneously on 

growth rate and carrying capacity of the species 

have not been considered. However, the authors 

in(23) proposed an ecological model to study the 

effects of environmental pollution on single-species 

and predator-prey system by assuming that the 

intrinsic growth rate of species decreases as the 

uptake concentration of the toxicant increases, while 

its carrying capacity decreases with the 

environmental concentration of the toxicant. The 

authors in (21) proposed an ecological model to study 

the survival of resource-dependent competing 

species. They assumed that competing species and 

its resource are affected simultaneously by a 

toxicant emitted into the environment from external 

sources as well as formed by precursors of 
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competing species. Inspired by the aforementioned 

works, the aim of the current work is to develop 

Lotka-Volterra prey-predator system with Holling 

type II functional response, by incorporating the 

impact of effect of fear, harvesting and pollution on 

the dynamics of the prey population. In the next 

section the derivation of the model is given and 

some results regarding to the model are proved. In 

the third section, the bounded and the permanence 

of the model solutions studid.in the section four, the 

existence conditions of all feasible equilibrium 

points are found. In section five and six, stability 

analysis (local, as well as globally) of the model is 

studied. In section seven, the model numerically 

solved. Finally in section eight, a brief conclusion 

on the total work is given.  

THE MATHEMATICAL MODEL 

To derive the proposed model, the following 

assumptions are assumed: 

1. In the absence of predators, fear of predator, 

harvesting, and pollution, the prey population grows 

logistically. 

2. The prey population is killed directly by predators 

with Holling type II functional response(1). 

3. The prey population growth affected by fear from 

predator effect. 

4. The prey population harvested with a nonlinear 

Michaelis–Menten type of prey harvesting (21). 

5. Only the effect of pollution on prey population is 

taken in to consideration. 

Therefore, the dynamics of above assumptions can 

be modeled mathematically through the following 

system of differential equations.  

𝑑𝑋

𝑑𝑡
=

𝑏𝑋

1+𝑓𝑌
− 𝑑1𝑋 − 𝑐1𝑋

2 − [
𝛼𝑌

1+𝛼𝑇𝑋
+

𝑞𝐸

𝑚1+𝑚2𝑋
+ 𝜎1𝑊] 𝑋                        

𝑑𝑌

𝑑𝑡
=

𝑒𝛼𝑋𝑌

1+𝛼𝑇𝑋
− 𝑑2𝑌 − 𝑐2𝑌

2                                                                           

                  
𝑑𝑍

𝑑𝑡
= 𝜋 − 𝜇1𝑍 − 𝜎2𝑋𝑍                                                                                                      

                    
𝑑𝑤

𝑑𝑡
= 𝜎2𝑋𝑍 − 𝜇2𝑊                                                                                                             

… (1)  

 

Where, 𝑋(0) > 0, 𝑌(0) > 0, 𝑍(0) > 0, 𝑊(0) > 0, 

𝑋(𝑡) is the prey density, 𝑌(𝑡) is the predator 

population number of first species, Z(t) is the 

environment concentration of toxicant at time t, 

W(t) be the toxicant concentration in the prey 

population at time and the parameter descriptions is 

given in Table 1. 

The right-hand side of each equation in system (1), 

satisfy the Lipschitzian condition. Therefor the 

model solution is unique. Further, the time 

derivative of each 𝑋, 𝑌, 𝑍 and 𝑊 are zero or positive 

at Space 𝑌𝑍𝑊, Space 𝑋𝑍𝑊, Space 𝑋𝑌𝑊 and Space 

𝑋𝑌𝑍, respectively. Therefore, if the solution 

initiates at a non-negative point, then the component 

𝑋, 𝑌and 𝑍 of the solution points of system 1, cannot 

cross any coordinates of the solution points. Hence 

components 𝑋, 𝑌and 𝑍 of solution points is always 

non negative.
 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.25130/tjps.v30i3.1754


Arkan Nawzad Mustafa ,  Bakhan Bahman Kamal 

52 

Table 1: Parameter description of system (1). 

parameters Description 

𝒃 Prey Birth rate in absence fears  

𝒇 Level of fear due to prey response to anti-predators  

𝒅𝟏,𝒅𝟐 Natural death rate of prey and predator, respectively 

 𝒄𝟏, 𝒄𝟐 Intraspecific  competition rates  

𝜶 the predator’s search efficiency for prey. 

𝒆 ≤ 𝟏 Conversion efficiency from biomass of prey to biomass of predator 

T 

𝒒 

𝑬 

𝒎𝟏,𝒎𝟐 

𝝅 

𝝁𝟏 

𝝁𝟐 

𝝈𝟏 

𝝈𝟐 

the predator’s average handling time of prey.  

catch ability coefficient of prey. 

the effort made to harvest prey individual. 

are suitable positive constant. 

the exogenous input rate of the toxicant in the environment 

the natural depletion rate of the environmental pollution. 

the natural washout rate of the pollution from the organism. 

the rates at which prey population is decreasing due to pollution. 

uptake rate of pollution by organism. 

 

BOUNDEDNESS AND PERSISTENCE 

Regarding to boundedness and persistence of 

system (1), we proved the following lemma and 

theorem 

Lemma 1. In system (1), the following hold: 

a. lim
𝑡→∞

𝑆𝑢𝑝 𝑋(𝑡) ≤
1

𝑐1
|𝑏 − 𝑑1|   

b. lim
𝑡→∞

𝑆𝑢𝑝 𝑌(𝑡) ≤
1

𝑐1𝑐2
|𝑒𝛼|𝑏 − 𝑑1| − 𝑐1𝑑2| 

c. lim
𝑡→∞

𝑆𝑢𝑝 [𝑍(𝑡) + 𝑊(𝑡)] ≤
𝜋

𝜇
 

where,  𝜇 = 𝑀𝑖𝑛{𝜇1, 𝜇2} 

Proof: a/ From first equation of system (1), it gets:  

𝑑𝑋

𝑑𝑡
≤ |𝑏 − 𝑑1|𝑋 − 𝑐1𝑋

2   

So, 

 lim
𝑡→∞

𝑆𝑢𝑝 𝑋(𝑡) ≤
|𝑏−𝑑1|

𝑐1
    

b/ Applying part(a) at the second equation of system 

(1) then as 𝑡 → ∞, it gets:  

𝑑𝑌

𝑑𝑡
≤

1

𝑐1

|𝑒𝛼|𝑏 − 𝑑1| − 𝑐1𝑑2|𝑌 − 𝑐2𝑌
2 

Thus,  

lim
𝑡→∞

𝑆𝑢𝑝 𝑌(𝑡) ≤
1

𝑐1𝑐2
|𝑒𝛼|𝑏 − 𝑑1| − 𝑐1𝑑2|  

c/ Let    𝑁 = 𝑍 + 𝑊 , then:  

𝑑𝑁

𝑑𝑡
≤ 𝜋 − 𝜇𝑁                   

Thus,      

lim
𝑡→∞

𝑆𝑢𝑝 𝑁 ≤
𝜋

𝜇
      

This completes the proof. 

Note 1. Above guarantees that all solutions of 

system (1), are bounded. 

Definition 1. (1) The population of Prey and 

predator in System (1) is said to be permanent if 

there exist positive constants  𝜑 and  𝜙such that: 

𝜑 ≥ 𝑀𝑎𝑥 { lim
𝑡→∞

𝑆𝑢𝑝 𝑋(𝑡) ,  lim
𝑡→∞

𝑆𝑢𝑝 𝑌(𝑡)}   and: 

𝑀𝑖𝑛 { lim
𝑡→∞

𝐼𝑛𝑓 𝑋(𝑡) ,  lim
𝑡→∞

𝐼𝑛𝑓 𝑌(𝑡)} ≥ 𝜙  

Theorem 1. If the following conditions are 

provided, then system 1, is permanent.                  

𝑏 > (1 + 𝑓𝑌𝑚) [
𝑞𝐸

𝑚1
+ 𝑑1 + 𝛼𝑌𝑚𝑎𝑥 + 𝜎1

𝜋

𝜇
]     … (2) 

𝑒𝛼𝑋𝑚𝑖𝑛 > 𝑑2(1 + 𝛼𝑇𝑋𝑚𝑎𝑥)                          … (3)  

Where,  𝑋𝑀𝑎𝑥 =
1

𝑐1
|𝑏 − 𝑑1|, 𝑌𝑀𝑎𝑥 =

1

𝑐1𝑐2
|𝑒𝛼|𝑏 −

𝑑1| − 𝑐1𝑑2|  and:  

𝑋𝑚𝑖𝑛 =
1

𝑐1
[

𝑏

1+𝑓𝑌𝑚
−

𝑞𝐸

𝑚1
− 𝑑1 − 𝛼𝑌𝑚 − 𝜎1𝑀]  

Proof. From lemma 1, we have 

lim
𝑡→∞

𝑆𝑢𝑝 𝑋(𝑡) ≤𝑋𝑀𝑎𝑥 , lim
𝑡→∞

𝑆𝑢𝑝 𝑌(𝑡) ≤𝑌𝑀𝑎𝑥  

𝑎𝑛𝑑   lim
𝑡→∞

𝑆𝑢𝑝 𝑊(𝑡) ≤
𝜋

𝜇
   

So, as 𝑡 → ∞, it gets: 

𝑑𝑋

𝑑𝑡
≥ 𝑋 [

𝑏

1+𝑓𝑌𝑚𝑎𝑥
−

𝑞𝐸

𝑚1
− 𝑑1 − 𝛼𝑌𝑚 − 𝜎1

𝜋

𝜇
] − 𝑐1𝑋

2  

So, under condition (2), it gets:   
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 lim
𝑡→∞

𝐼𝑛𝑓 𝑋 ≥
1

𝑐1
[

𝑏

1+𝑓𝑌𝑚
−

𝑞𝐸

𝑚1
− 𝑑1 − 𝛼𝑌𝑚 −

𝜎1
𝜋

𝜇
] = 𝑋𝑚𝑖𝑛 > 0  

and then  

𝑑𝑌

𝑑𝑡
≥ 𝑌 [

𝑒𝛼𝑋𝑚𝑖𝑛

1+𝛼𝑇𝑋𝑚𝑎𝑥
− 𝑑2] − 𝑐2𝑌

2  

Under condition (3), it gets  

lim
𝑡→∞

𝐼𝑛𝑓 𝑋 ≥
1

𝑐2
[

𝑒𝛼𝑋𝑚𝑖𝑛

1+𝛼𝑇𝑋𝑚𝑎𝑥
− 𝑑2] = 𝑌𝑚𝑖𝑛 > 0 

𝑀𝑎𝑥{𝑋𝑚𝑖𝑛, 𝑌𝑚𝑎𝑥, 𝑀} ≥

𝑚𝑎𝑥 { lim
𝑡→∞

𝑆𝑢𝑝 𝑋(𝑡) ,  lim
𝑡→∞

𝑆𝑢𝑝 𝑌(𝑡)}   and   

𝑚𝑖𝑛 { lim
𝑡→∞

𝐼𝑛𝑓 𝑋(𝑡) ,  lim
𝑡→∞

𝐼𝑛𝑓 𝑌(𝑡)} ≥

𝑚𝑖𝑛{𝑋𝑚𝑖𝑛, 𝑌𝑚𝑖𝑛}  

This completes the proof. 

EXISTENCE OF EQUILIBRIUM POINTS 

In the third section, all the existence equilibrium 

points of system (1) has been founded, they are 

𝐸1(0,0,
𝜋

𝜇1
, 0), 𝐸2(�̅�, 0, �̅�, �̅�), 𝐸3(𝑋

∗, 𝑌∗, 𝑍∗,𝑊∗). 

1. The extinct equilibrium point  𝐸1 (0,0,
𝜋

𝜇1
, 0)  is 

always existing.  

2. The predator free equilibrium point   

𝐸2(�̅�, 0, �̅�, �̅�), where,  

�̅� =  
𝜋

𝜇1+𝜎2�̅�
, , �̅� =  

𝜎2�̅�𝜋

𝜇1𝜇2+𝜇2𝜎2�̅�
 , and �̅� is a positive 

root of the equation: 

𝐴𝑋3 + 𝐵𝑋2 + 𝐶𝑋 + 𝐷 = 0                            … (4) 

Where  

𝐴 = − 𝑐1𝑚2𝜎2  

𝐵 = 𝑏𝑚2𝜇2𝜎2  −  𝑑1𝑚2𝜇2𝜎2 − 𝑐1𝑚1𝐸𝜇2𝜎2 −

𝑐1𝑚2𝜇1𝜇2 − 𝜋𝜎1𝜎2𝑚2  

𝐶 = 𝑏𝑚1𝜇2𝜎22
𝜇2𝜎2 + 𝑏𝑚2𝜇1𝜇2  −  𝑑1𝑚1𝜇2𝜎2 −

𝑑1𝑚2𝜇1𝜇2 − 𝑐1𝑚1𝜇1𝜇2 − 𝑞𝜇2𝜎2 − 𝜋𝜎1𝜎2𝑚1  

𝐷 = 𝑏𝑚1𝑒𝜇1𝜇2  − 𝑑1𝑚1𝐸𝜇1𝜇2 − 𝑞𝐸𝜇1𝜇2  

According to Descartes's rule, equation (4) has a 

unique positive root, if and only if one of the 

following cases holds: 

𝐵 > 0,𝐷 > 0  and 𝐶 > 0,  

 𝐶 > 0,𝐷 > 0  𝑎𝑛𝑑  𝐵 < 0 or  

𝐵 < 0, 𝐶 < 0   𝑎𝑛𝑑  𝐷 > 0  

3. The coexistence equilibrium point 

𝐸3(𝑋
∗, 𝑌∗, 𝑍∗,𝑊∗) exists uniquely if in the 

following algebraic system there is a positive 

solution. 

𝑏

1+𝑓𝑌
− 𝑑1 − 𝑐1𝑋 −

∝𝑌

1+∝𝑇𝑋
−

𝑞𝐸

𝑚1+𝑚2𝑋
− 𝜎1𝑊 = 0  

 
𝑒𝛼𝑋

1+𝛼𝑇𝑋
− 𝑑2 − 𝑐2𝑌 = 0  

 𝜋 − 𝜇1𝑧 − 𝜎2𝑋𝑍 = 0  

𝜎2𝑋𝑍 − 𝜇2𝑊 = 0 

This algebraic system gives the following:  

𝑌∗ =
1

𝑐2(1+𝛼𝑇𝑋∗)
(𝑒𝛼𝑋∗ − 𝑑1(1 + 𝛼𝑇𝑋∗)) =

 𝑡1(𝑋
∗)  

𝑍∗ = 
𝜋

𝜇1+𝜎2𝑋∗  =  𝑡2(𝑋
∗)  

𝑊∗ = 
𝜎2𝑋

∗ 𝜋

𝜇2(𝜇1 + 𝜎1𝑋∗)
 =  𝑡3(𝑋

∗) 

While 𝑋∗represents a positive root of the following 

equation:  

𝑇(𝑋) = 
𝑏

1+𝑓 𝑡1(𝑋)
− 𝑑1 − 𝑐1𝑋 −

∝𝑡1(𝑋)

1+∝𝑇𝑋
−

𝑞𝐸 

𝑚1+𝑚2𝑋
−

𝜎1𝑡3(𝑋) = 0 

suppose the following condition holds:  

𝑏𝑐2

𝑐2−𝑓𝑑1
+

𝛼𝑑1

𝑐2
> 𝑑1 +

𝑞𝐸 

𝑚1+𝑚2𝑋
                          … (5) 

Then: 

lim
𝑋→∞

𝑇(𝑋) < 0 and   𝑇(0) =
𝑏𝑐2

𝑐2−𝑓𝑑1
− 𝑑1 +

𝛼𝑑1

𝑐2
−

𝑞𝐸 

𝑚1+𝑚2𝑋
> 0 

Therefore, a positive root 𝑋∗ exist, if condition (5) 

holds: 

Further,  𝑌∗ > 0, if 

𝑒𝛼𝑋∗

(1+𝛼𝑇𝑋∗)
 >  𝑑1                                                 … (6)       

Consequently 𝐸3(𝑋
∗, 𝑌∗, 𝑍∗,𝑊∗) exist if conditions 

(5) and (6) hold. 

LOCAL STABILITY AND HOPF-BIFURCATION 

To study the topological structure near (local 

stability) an equilibrium point (𝑋, 𝑌, 𝑍,𝑊) of 

system (1), the following transformation used: 

   𝑉1(𝑡) = 𝑋(𝑡) − 𝑋, 𝑉1(𝑡) = 𝑌(𝑡) − 𝑌,𝑉3(𝑡) =

𝑍(𝑡) − 𝑍  𝑉4(𝑡) = 𝑊(𝑡) − 𝑊. 

Then the following linear system is obtained:  

𝑑𝑉(𝑡)

𝑑𝑡
= 𝐽(𝑋, 𝑌, 𝑍,𝑊)𝑉(𝑡)   
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Where, 𝑉(𝑡) =

(

 

𝑉1(𝑡)

𝑉2(𝑡)

𝑉3(𝑡)

𝑉4(𝑡))

      and     𝐽(𝑋, 𝑌, 𝑍,𝑊) = 

[
 
 
 
 
 

𝑏

1+𝑓𝑌
− 𝑑1 − 2𝑐2𝑋 −

𝛼𝑌

(1+𝛼𝑇𝑋)2
−

𝑞𝐸𝑚1

(𝑚1+𝑚2𝑋)2
− 𝜎1𝑊

−𝑏𝑓𝑋

(1+𝑓𝑌)2
−

𝛼𝑋

1+𝛼𝑇𝑋
0 −𝜎1𝑋

𝑒𝛼𝑌

(1+𝛼𝑇𝑋)2

𝑒𝛼𝑋

1+𝛼𝑇𝑋
− 𝑑2 − 2𝑐2𝑌 0 0

−𝜎2𝑍 0 −(𝜇1 + 𝜎2𝑋) 0
𝜎2𝑍 0  𝜎2𝑋 −𝜇2 ]

 
 
 
 
 

  

 

The local stability conditions for  𝐸1, 𝐸2 and 𝐸3 of 

the system (1) are established in Theorem 2, 

Theorem3 and Theorem 4, respectively.  

Theorem 2. 𝐸1 (0,0,
𝜋

𝜇1
, 0) is locally asymptotically 

stable if and only if: 

𝑏 < 𝑑1 +
𝑞𝐸

𝑚1
                                                    … (7) 

Proof.   𝐽(𝐸1) has only the following eigenvalues:  

𝜆1 =  𝑏 − 𝑑1 −
𝑞𝐸

𝑚1
 ,   𝜆2 = −𝑑2 < 0 ,   𝜆3 = −𝜇1 <

0 and    𝜆4 = −𝜇2 < 0   

𝜆1 is negative if and only if condition (7) holds and 

this completes the proof.  

Note 2. Since the eigenvalues of 𝐽(0,0,
𝜋

𝜇1
, 0) are 

always real. So, there is no possibility for 

undergoing hopf-bifurcation near 𝐸1(0,0,
𝜋

𝜇1
, 0). 

Theorem 3.   

i. If  𝐸2(�̅�, 0, �̅�, �̅�) is exist, it is locally 

asymptotically stable Provided that: 

𝑑2(1 + 𝛼𝑇�̅�) > 𝑒𝛼�̅�                                       … (8) 

𝑏 < 𝑚𝑖𝑛 {𝑅4,
𝑅6

𝜇1𝜇2+𝜇2𝜎2�̅�
}                                … (9) 

 𝑅6 + 𝑏𝑅5 + 𝑏(𝜇1 + 𝜇2 + 𝜎2�̅�)𝑅4   <   𝑅4𝑅5 +

𝑏(𝜇1𝜇2 + 𝜇2𝜎2�̅�) + 𝑏2(𝜇1 + 𝜇2 + 𝜎2�̅�)     … (10)  

ii. System (1)exhibits a Hopf bifurcation near  

𝐸2(�̅�, 0, �̅�, �̅�) if the parameter values satisfy 

condition(8) holds and the following: 

 (𝑅1 − 𝑏)(𝑅2 − 𝑏(𝜇1 + 𝜇2 + 𝜎2�̅�)) + 𝑏(𝜇1𝜇2 +

𝜇2𝜎2�̅�) − 𝑅3 = 0                          … (11) 

𝑑1 + 2𝑐2�̅� +
𝑞𝐸𝑚1

(𝑚1+𝑚2�̅�)2
+ 𝜎1�̅� > 𝑏             … (12) 

Where 𝑅1, 𝑅2 and 𝑅3 are given in the proof. 

Proof. i. The eigenvalue in the Y-direction of 𝐽(𝐸2) 

is:     𝜆𝑌 =
𝑒𝛼�̅�

1+𝛼𝑇�̅�
− 𝑑2  

and the eigenvalues of 𝐽(𝐸2) in the  𝑋 − direction, 

𝑍 − direction, and 𝑊 − direction are roots of the 

equation: 

𝜆3 + 𝐴1𝜆
2 + 𝐴2𝜆 + 𝐴3 = 0                           … (13) 

Where:  

𝐴1 = 𝑅1 − 𝑏,  𝐴2 = 𝑅2 − 𝑏(𝜇1 + 𝜇2 + 𝜎2�̅�)  and     

𝐴3 = 𝑅3 − 𝑏(𝜇1𝜇2 + 𝜇2𝜎2�̅�) 

With:  

𝑅1 = 𝑑1 + 2𝑐2�̅� +
𝑞𝐸𝑚1

(𝑚1+𝑚2�̅�)2
+ 𝜎1𝑊

∗ + 𝜇1 +

𝜇2 + 𝜎2�̅�  

𝑅2 = (𝑑1 + 2𝑐2�̅� +
𝑞𝐸𝑚1

(𝑚1+𝑚2�̅�)2
+ 𝜎1�̅�) (𝜇1 +

𝜇2 + 𝜎2�̅�) + 𝜇2(𝜇1 + 𝜎2�̅�) + 𝜎1𝜎2�̅��̅�  

𝑅3 = 𝜇2 (𝑑1 + 2𝑐2�̅� +
𝑞𝐸𝑚1

(𝑚1+𝑚2�̅�)2
+ 𝜎1�̅�) (𝜇1 +

𝜎2�̅�) + 𝜎2𝜇1�̅�  

Due to conditions (8-10) guarantee that 𝜆𝑌 is 

negative and all Routh-Hurwize criteria 𝐴1 >

0,𝐴3 > 0 and 𝐴1𝐴2 > 𝐴3 ,that is all the roots of 

(13) have negative part. 

Proof. ii. Suppose at the parameter 𝑝 equation 

satisfied, the eigenvalues of 𝐽(𝐸2) satisfy the 

following equation: 

(𝜆2 + 𝐴2)(𝜆 + 𝐴1) = 0  

Where, 𝐴2 is positive under condition (12). And 

hence the roots of Eq. (13) are:   

𝜆1(𝑝) = 𝑖√𝐴2 , 𝜆2(𝑓3) = −𝑖√𝐴2 , and 𝜆3(𝑝) =

−𝐴1 

However, there exists a neighborhood𝑁(𝛿, 𝑝) of 𝑝 

such that for all values of 𝑓 in (𝛿, 𝑝) , these roots of 

Eq.13can be written in general as 

𝜆1 = 𝑎(𝑝) + 𝑖𝑏(𝑝), 𝜆2 = 𝑎(𝑝) − 𝑖𝑏(𝑝), and  𝜆3 =

−𝐴3(𝑝)   

Thus, by substituting𝜆1 = 𝑎(𝑓) + 𝑖𝑏(𝑓)  in (13), it 

is obtained that:             
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{
𝐷1(𝑝)

𝑑𝑎(𝑝)

𝑑𝑓
− 𝐷2(𝑝)

𝑑𝑏(𝑝)

𝑑𝑝
+ 𝐷3(𝑝) = 0

𝐷1(𝑝)
𝑑𝑏(𝑝)

𝑑𝑝
+ 𝐷2(𝑝)

𝑑𝑎(𝑝)

𝑑𝑝
+𝐷4(𝑝) = 0

    … (14) 

Where: 

𝐷1(𝑝) = 3 [(𝑎(𝑝))
2
− (𝑏(𝑝))

2
] + 2𝐴2(𝑝)𝑎(𝑝) +

𝐵2(𝑝)  

𝐷2(𝑝) = 6𝑎(𝑝)𝑏(𝑝) + 2𝐴2(𝑝)𝑏(𝑝)  

𝐷3(𝑝) = [(𝑎(𝑝))
2
− (𝑏(𝑝))

2
]

𝑑𝐴3(𝑝)

𝑑𝑝
+

𝑎(𝑝)
𝑑𝐵2(𝑝)

𝑑𝑝
+ 𝐶2(𝑝)  

𝐷4(𝑝) = 2𝑎(𝑝)𝑏(𝑝)
𝑑𝐴3(𝑝)

𝑑𝑝
+ 𝑏(𝑝)

𝑑𝐵2(𝑝)

𝑑𝑝
  

Thus, by solving the linear system (14) for the 

unknown 
𝑑𝑅𝑒𝑒(𝜆1(𝑝))

𝑑𝑝
 ,it gets: 

𝑑𝑅𝑒𝑒(𝜆1(𝑝))

𝑑𝑝
=

𝑑𝑎(𝑝)

𝑑𝑝
= −

𝐷2(𝑝)𝐷4(𝑝)+𝐷1(𝑝)𝐷3(𝑝)

[𝐷1(𝑝)]2+[𝐷2(𝑝)]2
  

it is easy to verify that: 

[
𝑑𝑅𝑒𝑒(𝜆1(𝑝))

𝑑𝑝
]
𝑓=𝑓3

≠ 0  

The proof is completed. 

Theorem 4. Suppose that    𝐸3(𝑋
∗, 𝑌∗, 𝑍∗,𝑊∗) is 

exist, then it is locally asymptotical stable if:   

𝑚𝑎𝑥 {
𝛼2𝑇𝑌∗

(1+𝛼𝑇𝑋∗)2
+

𝑞𝐸𝑚2

(𝑚1+𝑚2𝑋∗)2
,

𝑒𝛼

(1+𝛼𝑇𝑋∗)2
} < 𝑐2 …(15)  

|−𝑐2 +
𝛼2𝑇𝑌∗

(1+𝛼𝑇𝑋∗)2
+

𝑞𝐸𝑚2

(𝑚1+𝑚2𝑋∗)2
| >

𝑏𝑓

(1+𝑓𝑌∗)2
+

𝛼

1+𝛼𝑇𝑋∗ + 𝜎1                                                    … (16) 

 𝜇1 > 𝜎2(𝑍
∗ − 𝑋∗)                                        … (17)  

 𝜇2 > 𝜎2(𝑋
∗ + 𝑍∗)                                        … (18)  

Proof.  
 

 𝐽(𝑋∗, 𝑌∗, 𝑍∗,𝑊∗ ) =              

[
 
 
 
 
 −𝑐2𝑋 +

𝛼2𝑇𝑋∗𝑌∗

(1+𝛼𝑇𝑋∗)2
+

𝑞𝐸𝑚2𝑋∗

(𝑚1+𝑚2𝑋∗)2

−𝑏𝑓𝑋∗

(1+𝑓𝑌∗)2
−

𝛼𝑋∗

1+𝛼𝑇𝑋∗ 0 −𝜎1𝑋
∗

𝑒𝛼𝑌∗

(1+𝛼𝑇𝑋∗)2
−𝑐2𝑌

∗ 0 0

−𝜎2𝑍
∗ 0 −(𝜇1 + 𝜎2𝑋

∗) 0
𝜎2𝑍

∗ 0  𝜎2𝑋
∗ −𝜇2 ]

 
 
 
 
 

 

 

If 𝜆 is an eigenvalue of 𝐽(𝑋∗, 𝑌∗, 𝑍∗,𝑊∗ ), from the 

Theorem of Gerschgorin,  𝜆 lies within at least one 

of the following Gershgorin discs. 

|𝜆 + 𝑐2𝑋
∗ −

𝛼2𝑇𝑋∗𝑌∗

(1+𝛼𝑇𝑋∗)2
−

𝑞𝐸𝑚2𝑋∗

(𝑚1+𝑚2𝑋∗)2
| ≤

𝑏𝑓𝑋∗

(1+𝑓𝑌∗)2
+

𝛼𝑋∗

1+𝛼𝑇𝑋∗ + 𝜎1𝑋
∗  

 |𝜆 + 𝑐2𝑌
∗| ≤

𝑒𝛼𝑌∗

(1+𝛼𝑇𝑋∗)2
  

 |𝜆 + 𝜇1 + 𝜎2𝑋
∗| ≤ 𝜎2𝑍

∗  

|𝜆 + 𝜇2| ≤ 𝜎2𝑍
∗ + 𝜎2𝑋

∗  

Then, under due the given conditions (15-18) in this 

theorem, all the eigenvalue has negative real part. 

This completes the proof. 

Note 3. Because of complexity, we did not 

determine the bifurcation parameter for hop 

bifurcation around𝐸3(𝑋
∗, 𝑌∗, 𝑍∗,𝑊∗), but in section 

seven we will do it numerically. 

GLOBAL STABILITY     

Global stability means that any trajectories finally 

tend to the attractor of the system, regardless of 

initial conditions. Therefore, Most of biological 

systems, especially prey predator system, are 

needed to be globally stable. The global 

asymptotically stable stability GAS for each  

𝐸1, 𝐸2, and 𝐸3 of the system1 is established in 

Theorem 5, Theorem 6, and Theorem 7, 

respectively. 

Theorem 5. 𝐸1 (0,0,
𝜋

𝜇1
, 0) is GAS, if there exist a 

small positive number 𝜖, such that: 

𝑏 + 𝜖
𝜋𝜎2

𝜇1
< 𝑑1 +

𝑞𝐸

𝑚1+𝑚2𝑋𝑚𝑎𝑥
                         … (19) 

Proof.  Consider the function   𝐿1(𝑋, 𝑌, 𝑍,𝑊) =

𝑋 + 𝑌 + 𝜖 [𝑍 −
𝜋

𝜇1
−

𝜋

𝜇1
ln (

𝜇1𝑍

𝜋
)] + 𝜖𝑊 

It is clear that,  𝐿1(𝑋, 𝑌, 𝑍,𝑊) > 0, for  

(𝑋, 𝑌, 𝑍,𝑊) ∈ 𝑅+
4  and 𝐿1 (0,0,

𝜋

𝜇1
, 0) = 0.  

Further, 

𝑑𝐿1

𝑑𝑡
=

𝑏𝑋

1+𝑓𝑌
− 𝑑1𝑋 − 𝑐1𝑋

2 −
𝛼(1−𝑒)𝑋𝑌

1+𝛼𝑇𝑋
−

𝑞𝐸𝑋

𝑚1+𝑚2𝑋
−

𝜎1𝑋𝑊  

  −𝑑2𝑌 − 𝑐2𝑌
2 − 𝜖𝜇2𝑊 − 𝜖𝜇1 (𝑍 −

𝜋

𝜇1
)
2
+

𝜎2𝜖
𝜋

𝜇1
𝑋        

Accordingly,         
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𝑑𝐿1

𝑑𝑡
   ≤  (𝑏 + 𝜖

𝜋𝜎2

𝜇1
− 𝑑1 −

𝑞𝐸

𝑚1+𝑚2𝑋
)𝑋 − 𝜖𝜇1 (𝑍 −

𝜋

𝜇1
)
2
   

Thus,  
𝑑𝐿1

𝑑𝑡
  is negative under condition (19), and this 

completes the proof. 

Theorem 6. If  𝐸2(�̅�, 0, �̅�, �̅�) is exist, then it is 

GAS if,  

 �̅� <
𝑑2

𝛼
                                                           … (20) 

 𝐹1 > 𝑚𝑎𝑥 {
3𝑏2𝑓2

2𝜎2
,
3𝜎2

2𝜋2

2𝜇1
2𝜇2

}                              … (21)  

 𝐹2 > 𝑚𝑎𝑥 {
𝜎2

2�̅�2

𝜇2
,
3𝜎2

2𝜋2

2𝜇1
2𝐹1

}                                … (22) 

 𝐹1 = 𝑐1 −
𝑞𝐸𝑚2

𝑚1(𝑚1+𝑚2�̅�)
      𝑎𝑛𝑑      𝐹2 = 𝜎2�̅� − 𝜇1     

Proof. Consider the function: 

 𝐿2(𝑋, 𝑌, 𝑍,𝑊) = 𝑋 − �̅� − �̅� ln (
𝑋

�̅�
)𝑌 +

1

2
(𝑍 −

�̅�)2 +
1

2
(𝑊 − �̅�)2  

It is clear that, 

𝐿2(𝑋, 𝑌, 𝑍,𝑊) > 0, for (𝑋, 𝑌, 𝑍,𝑊) ∈ 𝑅+
4  and   

𝐿2(�̅�, 0, �̅�, �̅�) = 0. Further, 

𝑑𝐿2

𝑑𝑡
= (𝑋 − �̅�) [

𝑏

1+𝑓𝑌
− 𝑑1 − 𝑐1𝑋 −

𝛼𝑌

1+𝛼𝑇𝑋
−

𝑞𝐸

𝑚1+𝑚2𝑋
− 𝜎1𝑊]  

+ 
𝑒𝛼𝑋𝑌

1+𝛼𝑇𝑋
− 𝑑2𝑌 − 𝑐2𝑌

2  + (𝑍 − �̅�)(𝜋 − 𝜇1𝑍 −

𝜎2𝑋𝑍)  

+(𝑊 − �̅�)(𝜎2𝑋𝑍 − 𝜇2𝑊)    

Due to condition (20), it gets:  

 
𝑑𝐿2

𝑑𝑡
≤ −

1

3
𝐹1(𝑋 − �̅�)2 −

𝑏𝑓𝑌(𝑋−�̅�)

1+𝑓𝑌
− 𝑐2𝑌

2  

−
1

3
𝐹1(𝑋 − �̅�)2 − 𝜎2𝑍(𝑋 − �̅�)(𝑍 − �̅�) −

1

2
𝐹2(𝑍 −

�̅�)2    

−
1

3
𝐹1(𝑋 − �̅�)2 +  𝜎2𝑍(𝑋 − �̅�)(𝑊 − �̅�) −

1

2
𝜇2(𝑊 − �̅�)2  

−
1

2
𝐹2(𝑍 − �̅�)2 + 𝜎2�̅�(𝑍 − �̅�)(𝑊 − �̅�) −

1

2
𝜇2(𝑊 − �̅�)2  

Thus, 
𝑑𝐿2

𝑑𝑡
< 0, if conditions (21), (22) holds and 

This completes the proof. 

Theorem 7. If   𝐸3(𝑋
∗, 𝑌∗, 𝑍∗,𝑊∗)  is exist, then it 

is GAS if,  

𝐹3 > 𝑚𝑎𝑥 {
3𝑏2𝑓2

2𝑘2𝑐2
,
3𝜎2

2𝜋2

2𝜇1
2𝜇2

}                               … (23) 

 𝐹4 > 𝑚𝑎𝑥 {
𝜎2

2𝑋∗2

𝜇2
,
3𝜎2

2𝜋2

2𝜇1
2𝐹3

}                              … (24) 

Where: 

 𝐹3 = 𝑘1 (𝑐1 −
𝑞𝐸𝑚2

𝑚1(𝑚1+𝑚2𝑋∗)
−

𝛼2𝑇𝑌∗

1+𝛼𝑇𝑋∗) , 𝐹4 =

𝜎2𝑋
∗ − 𝜇1   and the positive constants  𝑘1 and 𝑘2 

satisfy the equation: 

𝑘1 =
𝑒

1+𝛼𝑇𝑋∗ 𝑘2  

Proof. Consider the functions: 

𝐿1(𝑋, 𝑌, 𝑍,𝑊) = 𝑘1 [𝑋 − 𝑋∗ − 𝑋∗𝑙𝑛 (
𝑋

𝑋∗)] +

𝑘2 [𝑌 − 𝑌∗ − 𝑌∗𝑙𝑛 (
𝑌

𝑌∗)] +
1

2
(𝑍 − 𝑍∗)2 +

1

2
(𝑊 −

𝑊∗)2  

Clearly, 𝐿2(𝑋, 𝑌, 𝑍,𝑊) > 0, for (𝑋, 𝑌, 𝑍,𝑊) ∈ 𝑅+
4  

and  𝐿2(𝑋
∗, 𝑌∗, 𝑍∗,𝑊∗)  = 0. Further, 

𝑑𝐿2

𝑑𝑡
=

𝑘1(𝑋−𝑋∗)

𝑋
[

𝑏𝑋

1+𝑓𝑌
− 𝑑1𝑋 − 𝑐1𝑋

2 −
𝛼𝑋𝑌

1+𝛼𝑇𝑋
−

𝑞𝐸𝑋

𝑚1+𝑚2𝑋
− 𝜎1𝑋𝑊 − 𝑘1 (

𝑏

1+𝑓𝑌∗ − 𝑑1 − 𝑐1𝑋
∗ −

𝛼𝑌∗

1+𝛼𝑇𝑋∗ −
𝑞𝐸

𝑚1+𝑚2�̅�
− 𝜎1𝑊

∗)]    

   +𝑘2(𝑌 − 𝑌∗) [
𝑒𝛼𝑋

1+𝛼𝑇𝑋
− 𝑑2 − 𝑐2𝑌]    

+(𝑍 − �̅�)[𝜋 − 𝜇1𝑍 − 𝜎2𝑋𝑍 − (𝜋 − 𝜇1𝑍
∗ −

𝜎2𝑋
∗𝑍∗)]     

+(𝑊 − 𝑊∗)[𝜎2𝑋𝑍 − 𝜇2𝑊 − (𝜎2𝑋
∗𝑍∗ − 𝜇2𝑍

∗)]  

  ≤ −
1

3
𝐹3(𝑋 − 𝑋∗)2 − 𝑘1

𝑏𝑓(𝑌−𝑌∗)(𝑋−𝑋∗)

(1+𝑓𝑌)(1+𝑓𝑌∗)
−

𝑐2𝑘2(𝑌 − 𝑌∗)2 

−
1

3
𝐹3(𝑋 − 𝑋∗)2 − 𝜎2𝑍(𝑋 − 𝑋∗)(𝑍 − 𝑍∗) −

1

2
𝐹4(𝑍 − 𝑍∗)2

  

−
1

3
𝐹3(𝑋 − 𝑋∗)2 +  𝜎2𝑍(𝑋 − 𝑋∗)(𝑊 − 𝑊∗) −

1

2
𝜇2(𝑊 − 𝑊∗)2    

−
1

2
𝐹4(𝑍 − 𝑍∗)2 + 𝜎2𝑋

∗(𝑍 − 𝑍∗)(𝑊 − 𝑊∗) −

1

2
𝜇2(𝑊 − 𝑊∗)2     

So,  
𝑑𝐿2

𝑑𝑡
  is negative due to the conditions (23,24), 

and this complete the proof. 

NUMERICAL SOLUTION  

In order to discover the impact of fear, harvesting 

and toxicant on system (1), some numerical 

simulations are performed; all the simulations are 

carried out through Runge- kutta method of order 
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six (21), using MATLAB. it is observed that system 

(1) approaches 𝐸3(1.34,8.77,41.74,58.25), when 

system (1) with the parameter values in (25) as 

illustrated in Fig1. Also Fig.1 illustrates the 

analytical finding regarding to stability for 𝐸3, 

because the parameter valued in (25) satisfies the 

conditions in Theorem 4 and Theorem 7. 

these parameter value satisfy stability conditions for 

the coexistence equilibrium point, therefore: 

𝑏 = 1.5, 𝑓 = 0.01, 𝑑1 = 0.01, 𝑐1 = 0.01, 𝛼 =

0.1, 𝑇 = 1                  

𝑞 = 0.01, 𝐸 = 0.01,𝑚1 = 1,𝑚2 = 1, 𝜎1 =

0.01, 𝑒 = 0.8                                                 … (25) 

𝑑2 = 0.01, 𝑐2 = 0.01, 𝜋 = 1, 𝜇1 = 0.01, 𝜎2 =

0.01, 𝜇2 = 0.01  
 

 

Fig. 1:  Trajectory of System (1) when parameter values 

are as given by (25). 

 

If, we solve system (1) with decreasing the level fear 

to (𝑓 = 0.001) and fixed other parameter values as 

given by (25), then dynamics of system (1) shows 

periodic solution near the coexistence equilibrium 

point; see Fig. 2.  
 

 

Fig. 2: Periodic oscillations of system (1), when 𝒇 =

𝟎. 𝟎𝟎𝟏 with the rest of parameters are given by (25). 

 

Also if the uptake rate of pollution by organism, 

decreased to (𝜎2 = 0.001) and fixed other 

parameter values as given by (25), then system (1) 

shows larger periodic solution near the coexistence 

equilibrium point; see Fig.3. 

 

Fig. 3: Time series diagram shows large periodic 

oscillations around  𝑬𝟑, when  𝝈𝟐 = 𝟎. 𝟎𝟎𝟏with therest 

of parameters are given by (25). 
 

But, if the parameter value of catch ability 

coefficient of prey and the effort made to harvest 

prey individual increased to (𝑞 = 0.1) and (𝐸 =

0.1) and fixed other parameter values as given by 

(25), then trajectories of system (1) show Small 

periodic solution near the coexistence equilibrium 

point; see Fig.4. 
 

 

Fig. 4: Small periodic oscillations around  𝑬𝟑, when𝒒 =

𝟎. 𝟏, 𝑬 = 𝟎. 𝟏 with the rest of parameters are given by 

(25). 
 

Not that the above figures show that dynamics of the 

model population may induce a transition from the 

a stability situation to the state where the 

populations oscillate periodically or induce a 

transition from oscillate periodically situation to the 

stable situation. 

DISCUSSION AND CONCLUSIONS 

In this paper, it has been proposed an ecological 

system consisting of two interacting species (prey 

and predator). The reproduction of prey species was 

affected by fear from predators and the effect of 

harvesting and environmental pollution on prey 

population are also considered. The boundedness of 
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the model solutions is guaranteed. Two criteria that 

make system (1) permanent are determined. All the 

criteria for locally as well as globally stability for 

the model equilibrium points are found. It is 

observed that criteria for both persistence and stable 

status, including parameters relative to the fear of 

predators in prey, environmental pollution and 

harvesting on prey population. Numerical 

computation showed that dynamics of the model 

population may induce a transition from the a 

stability situation to the state where the populations 

oscillate periodically or induce a transition from 

oscillate periodically situation to the stable situation 

if we change the parameter values of level fear, 

uptake rate of pollution catch ability coefficient of 

prey and the effort made to harvest prey individual. 
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