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ABSTRACT

In this work, a prey-predator model with Holling type Il functional response is
considered. The proposed model incorporates the cost of the fear of predators in prey,
effect of environmental pollution and harvesting on prey population. Firstly, the
details of model derivation of are given and then some of behaviors of the model
solutions are proved, the existence criteria for each of the model equilibrium points
are determined. For each of the equilibrium point, the sufficient and necessary
conditions for being locally asymptotically stable are found. Via Lyapunov method,
the sufficient conditions for global stability of the model equilibrium point are
determined. Some numerical simulations are performed to discover the impact of the
fear, harvesting population and environmental pollution on prey dynamics.
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INTRODUCTION

Prey predator model is critical in mathematical
ecology. Many mathematician authors considered
mathematical models through differential equations
on a variety of problems arising in ecological
species ). Population
dynamics may be affected by many factor like; fear,
harvesting, toxicity, stage delay,
harvesting, cannibalism, anti-predator skills, refuge,

interaction between

structure,

infectious illness, and other population-affecting
elements of the natural environment “-11),
Physiological changes of prey population may be
caused by predation fears and these physiological
changes may reduce the reproduction of prey
population. In @ the authors showed that the bird
reduce forty percent less offspring by predation
fears. In “ the authors considered a predator—prey
model incorporating fear effect on reproduction of
prey individuals, in their study they noticed that the
fear has no impact on the stability of the model when
the system incorporate bilinear functional response,
but the system become stable under fear effect, if it
incorporate the Holling type Il functional response,
based on their system in © the authors considered a
prey predator with fear effect and harvesting
cooperation, they discussed the stability, Hopf-
bifurcation and Bogdanov —Takens bifurcation the
system. In the authors considered an ecological
model with fear effect and prey refuge, they showed
that effect of both factor can stabilize the system.
For more results about fear effect, see 1214,

In the recent decades, the impact of harvesting
activities on organisms and ecosystems are globally
concerned. Several types of harvesting in predator-
prey systems are already being formed and studied,
mathematician authors have added many terms to
the predator or prey density. The most common of
these harvesting terms are;
functions; functions of linear harvesting rate or
nonlinear Michaelis-Menten type of predator

nonzero constant

50

harvesting 1520, Models studied with one of these
harvesting forms exhibit far richer dynamics
compared to the models with no harvesting. In (8
the authors studied the effect the harvesting in form
of linear function on an eco-epidemiological model
incorporating prey refuge.in their model a simple
change of model dynamics happened. In @7 the
authors consider a predator— prey system with a
nonlinear Michaelis—-Menten type of predator
harvesting. They argue that harvesting with
nonlinear form is more realistic and reasonable than
modeling constant effort harvesting or linear
harvesting. In their study the complexity of the
model dynamics with this form of harvesting effect
is demonstrated.

In recent years, ecological models incorporating the
toxicant that emitted into the environment from
external sources, as well as formed by precursors of
biological species, have been proposed and
analyzed by several researchers on (@124) |n
The in@  proposed
mathematical model to study the effect of pollution

particular. authors a
on natural stable two species communities. In their
work, effects of a toxicant simultaneously on
growth rate and carrying capacity of the species
have not been considered. However, the authors
in@®) proposed an ecological model to study the
effects of environmental pollution on single-species
and predator-prey system by assuming that the
intrinsic growth rate of species decreases as the
uptake concentration of the toxicant increases, while
carrying capacity decreases with the
environmental concentration of the toxicant. The

its

authors in 1) proposed an ecological model to study
the survival of resource-dependent competing
species. They assumed that competing species and
its resource are affected simultaneously by a
toxicant emitted into the environment from external
sources as well as formed by precursors of
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competing species. Inspired by the aforementioned
works, the aim of the current work is to develop
Lotka-Volterra prey-predator system with Holling
type Il functional response, by incorporating the
impact of effect of fear, harvesting and pollution on
the dynamics of the prey population. In the next
section the derivation of the model is given and
some results regarding to the model are proved. In
the third section, the bounded and the permanence
of the model solutions studid.in the section four, the
existence conditions of all feasible equilibrium
points are found. In section five and six, stability
analysis (local, as well as globally) of the model is
studied. In section seven, the model numerically
solved. Finally in section eight, a brief conclusion
on the total work is given.

THE MATHEMATICAL MODEL
tjz_)t( - % —diX —cX? — [1+O;YTX +

dy _ eaXy

dt ~ 1+aTX
az
Ezn—,ulZ—JzXZ
dw

E = O'ZXZ - ‘UZW

- dzy - C2Y2

Where, X(0) > 0, Y(0) > 0, Z(0) > 0, W(0) > 0,
X(t) is the prey density, Y(t) is the predator
population number of first species, Z(t) is the
environment concentration of toxicant at time t,
W(t) be the toxicant concentration in the prey
population at time and the parameter descriptions is
given in Table 1.

The right-hand side of each equation in system (1),
satisfy the Lipschitzian condition. Therefor the

ol
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To derive the proposed model, the following
assumptions are assumed:

1. In the absence of predators, fear of predator,
harvesting, and pollution, the prey population grows
logistically.

2. The prey population is killed directly by predators
with Holling type Il functional response®.

3. The prey population growth affected by fear from
predator effect.

4. The prey population harvested with a nonlinear
Michaelis—Menten type of prey harvesting Y.

5. Only the effect of pollution on prey population is
taken in to consideration.

Therefore, the dynamics of above assumptions can
be modeled mathematically through the following
system of differential equations.

L+t71W]X
mq+myX
. (D
model solution is unique. Further, the time

derivative of each X, Y, Z and W are zero or positive
at Space YZW, Space XZW, Space XYW and Space
XYZ,
initiates at a non-negative point, then the component

respectively. Therefore, if the solution
X, Yand Z of the solution points of system 1, cannot
cross any coordinates of the solution points. Hence
components X, Yand Z of solution points is always
non negative.
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Table 1: Parameter description of system (1).

parameters | Description

b Prey Birth rate in absence fears

f Level of fear due to prey response to anti-predators

d,d, Natural death rate of prey and predator, respectively

c1,Cy Intraspecific competition rates

a the predator’s search efficiency for prey.

e<1 Conversion efficiency from biomass of prey to biomass of predator
T the predator’s average handling time of prey.

q catch ability coefficient of prey.

E the effort made to harvest prey individual.

my,m; are suitable positive constant.

T the exogenous input rate of the toxicant in the environment

Iy the natural depletion rate of the environmental pollution.

U the natural washout rate of the pollution from the organism.

o4 the rates at which prey population is decreasing due to pollution.
g, uptake rate of pollution by organism.

BOUNDEDNESS AND PERSISTENCE
Regarding to boundedness and persistence of
system (1), we proved the following lemma and
theorem

Lemma 1. In system (1), the following hold:

a. gimSup X(t)scilb—dll
—00 1

b. limSup Y(¢t) < - lealb — d;| — ¢;d,]|
t—ooo C1Co

c. limSup [Z(®) +W(D] < g

where, u = Min{yu,, uo}
Proof: a/ From first equation of system (1), it gets:

ax
E S |b - d1|X_ C1X2
So,

lim Sup X(t) < =l

C1

b/ Applying part(a) at the second equation of system
(1) thenas t — oo, it gets:

dy 1
—_ S R
dt ~ ¢
Thus,

limSup Y(t) < LIecrlb —dq| — c1d,|
t—oo C1Cy

|€a|b - dll - Cldzly - Czyz

c/Let N=Z+W,then:
dN
EST[_MN

Thus,

52

lim Sup N Sg

t—>oo

This completes the proof.

Note 1. Above guarantees that all solutions of
system (1), are bounded.

Definition 1. (1) The population of Prey and
predator in System (1) is said to be permanent if
there exist positive constants ¢ and ¢such that:

@ = Max {tlim Sup X(t), tlim Sup Y(t)} and:
Min{lim Inf X(t), lim Inf Y(£)} = ¢

Theorem 1. If the following conditions are

provided, then system 1, is permanent.

E
b>(1+me)[zl—1+d1+aYmax+01§] )
eaXmin > dy(1 + aTXpay) ..(3)

1 1
Where, XMax=C—1|b—d1|,YMax=E|€a’|b—

dll - C1d2| and

i[> _@E_ 4 _ _
Xmin = 2 [1+me m dy = alm UIM]
Proof. From lemma 1, we have

tlimSup X(t) SXMax,tlimSup Y(t) <Vyax
and gimSup w() Sg

So,ast — oo, it gets:
d_X
at —

qE

mq

b _ _ E _ 2
[1+meax d, —aY, 01#] X

So, under condition (2), it gets:
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lim Inf X > —

t—>oo [

01 ;] = Xmin > 0

b
1+fYm

qE

my

dl —OIYm—

and then
dy

Ly

dt
Under condition (3), it gets

eaXml-n
min__q,| - c,¥
1+aTXmax
E(XXmln
5 L1+aTXmax

Max{Xmin» max M} =

11m InfX > dz] =Ynin>0

max {tlim Sup X(¢), tlim Sup Y(t)} and
min {tll)rg Inf X(t), tl_i)r(g Inf Y(t)} =
min{Xminr Ymin}

This completes the proof.

EXISTENCE OF EQUILIBRIUM POINTS

In the third section, all the existence equilibrium

points of system (1) has been founded, they are

E1(00 0) E,(X,0,Z,W), E5(X*,Y*,Z*,W™).

1. The extinct equilibrium point E; (0,0,u—,O) is
1

always existing.

2. The predator free equilibrium  point

E,(X,0,Z,W), where,

7= —"_ W=—2%"__ andXisa positive
Ui+0,X Uil +Up02X

root of the equation:
AX®*+BX?*+CX+D=0
Where

A= — C1My0,

(@)

B = bmyuy0, — dimypyo, — cymiEpyop —

C1My 1y — TTO1021M;

C = bmyu, 05,10, + bmypypy — dymyp, o, —
dima gty — CyMy iy fly — qUa 03 — OO, My

D =bmyepyp; — dymyEugp; — qEu

According to Descartes's rule, equation (4) has a
unique positive root, if and only if one of the
following cases holds:

B>0,D>0 andC > 0,

C>0,D>0and B<Oor

B<0,<0 and D>0
3. The coexistence
E;(X*,Y*,Z*,W*) exists

equilibrium
if

point

uniquely in the

53
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following algebraic system there is a positive

solution.
b <Y qE
1+fY di — ¢ 1+«TX  my+myX W =0
eaX
d2 Y=0
1+aTXx

0,X7 — u,W =
This algebralc system gives the following:
(eaX* —d;(1+ aTX™)) =

*

- c2(1+aTX )

t1(X7)

*

s

e = 2
_ o X' _ i
B pz2(py + 01X) = L)
While X*represents a positive root of the following

equation:
—_ b g _ _xta _ eE
TX) = 1+£ t,(X) dy — 1 X 1+xTX  my+meX
O-1t3(X) = 0
suppose the following condition holds:
_be; | ady qE
—T + o >d, + —— .. (5)
Then:
i bea _ ady _
}%T(X) <0and T(0)= ora, G + o
%50
mq+myX

Therefore, a positive root X* exist, if condition (5)
holds:
Further, Y* > 0, if

eaX*
(1+aTx*) > dy - (6)
Consequently E;(X*,Y*, Z*, W*) exist if conditions
(5) and (6) hold.

LOCAL STABILITY AND HOPF-BIFURCATION

To study the topological structure near (local

stability) an equilibrium point (X,Y,Z,W) of

system (1), the following transformation used:
o =x@O-X, WhoO=Y®-YVO-=

Z({t)—Z V,(t) =W(t) —

Then the following linear system is obtained:

dV(t)

=J(X,Y,Z, W)V (¢)
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(@)
V,(t
Where, V(t) = 2(t) and J(X,Y,Z,W) =
V3 (1)
V,(t)
b ay qEm, -bfX aX
14fY di — 22X — (14aTX)2  (my+maX)2 oW (1+f1)2  1+aTx 0 —oX
eay eaX
(1+aTx)? 1+aTX dz — 2¢,Y 0 0
_022 O —(,Lll + O-2X) 0
O'ZZ 0 UzX _MZ

The local stability conditions for Ej, E, and E5 of
the system (1) are established in Theorem 2,
Theorem3 and Theorem 4, respectively.

Theorem 2. E; (0,0,%, 0) is locally asymptotically
stable if and only if:
b<d,+ jn—E (7
Proof. J(E,) has only the following eigenvalues:
A= b—dl—;—i, dy=—dy <0, A3=—p <
Oand A, =-u, <0

A, is negative if and only if condition (7) holds and
this completes the proof.

Note 2. Since the eigenvalues of ](0,0,%,0) are
always real. So, there is no possibility for
undergoing hopf-bifurcation near El(0,0,i, 0).

Theorem 3.

i. If E,(X,0,Z,W) is exist, it is locally
asymptotically stable Provided that:

dy(1+ aTX) > eaX .. (8)
b < min {RMﬁ} .. (9
R + bRs + b(uy + up + 0,X)R, < R4Rs +
b(uipz + pp02X) + b*(uy + ptp + 02X) ... (10)

ii. System (1)exhibits a Hopf bifurcation near
E,(X,0,Z,W) if the parameter values satisfy
condition(8) holds and the following:

(R, — b)(Rz —b(uy +py + 02)?)) + b(uypy +

— qEmM,4 _
di +2c,X + T +aW >b ...(12)

Where Ry, R, and R5 are given in the proof.
Proof. i. The eigenvalue in the Y-direction of J(E,)

eaX
Ay

is: = —
1+aTX

dp

54

and the eigenvalues of J(E,) in the X — direction,
Z — direction, and W — direction are roots of the
equation:
MB+AA2+A,1+4;=0
Where:

Ay =R, —b, A, =R, —b(u; +py, +0,X) and
A3 = Rs — b(uy iy + 10,X)

With:

... (13)

qEm,

R1 = dl + 2C2X + (1, 41, %) + O'1W + Hq +
Hy + 02X

_ = qEmM4 —
Rz = (d1 + 2C2X + —(m1+m2)?)2 + O'1W) (‘U.l +

ty + 02X) + pp(py + 02X) + 010,ZX
qEmy
(my+myX)?

R3 = Uy (d1 + ZCZX + + O'1W) (‘U.l +

0,X) + oy Z

Due to conditions (8-10) guarantee that A, is
negative and all Routh-Hurwize criteria A; >
0,A; > 0 and A;A, > A5 ,that is all the roots of
(13) have negative part.

Proof. ii. Suppose at the parameter p equation
satisfied, the eigenvalues of J(E,) satisfy the
following equation:

(A2+A4,)A+4,)=0

Where, A, is positive under condition (12). And
hence the roots of Eq. (13) are:

1(p) = i\/A_ , A2(f3) = —iyJAz , and A3(p) =
—A

However, there exists a neighborhoodN (6, p) of p
such that for all values of f in (&, p) , these roots of
Eq.13can be written in general as

A =a(p) +ib(p), 4; = a(p) — ib(p), and A3 =
—A3(p)

Thus, by substitutingAd, = a(f) + ib(f) in (13), it
is obtained that:
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d db
D, (p) 52 = D, (p) 22+ D3 (p) = 0 (14)
.. (14
db d
Di(p )i% D, () ‘;;”+D4(p> =0

Where:
Di(p) = 3|(a(®)” = (b@))| + 24, (P)a(p) +

B, (P)
D,(p) = 6a(p)b(p) + 24,(p)b(p)
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dRee(1,(0)) _ da(®) _ _ D;(»)D4(p)+D1(p)Ds(p)
dp dp [D1 (P)12+[D2 (p)]?
it is easy to verify that:
[dRee(Al(p))]
f= f3

The proof is completed.
Theorem 4. Suppose that  E;(X*,Y*,Z*,W~) is

exist, then it is locally asymptotical stable if:

— 2 2] dAs(p) a’Ty* qEmM; ea
D5 (p) [(a(p)) (b)) ]—dp + max { Tt o, (1+aTX*)2} < ¢, ...(15)
dB,(p) a’Ty” Em bf
alp)—=+7C - gz
) dp 2() | 2+ A+aTx®)? = (m+m,x9)2l 7 (1+fy*)2 +
_ dAs(p) dB;(p)
Dy(p) = 2a(@)b(p) ==+ b(p) == e T - (16)
Thus, by solving the linear system (14) for the Uy > 0,(Z* —X*) .. (17)
unknown w it gets: e > 02 (X7 +27) .. (18)
P Proof.
a’TX*y* qEmM,X* -bfX* ax* N
—GX + (1+aTx)Z | (ma+max®?  (1+fYD2  1+aTX* 0 —oX
eay”* *
JX Y525 W) = s —c,¥ 0 0
—O'ZZ* O —(/,41 + O-2X*) O
0'22* 0 UzX* _‘UZ

If A is an eigenvalue of J(X*,Y*,Z*,W*), from the
Theorem of Gerschgorin, A lies within at least one
of the following Gershgorin discs.

a’Tx*y* qEmM,X* bfx*
A+ X" — - +
2 (1+aTx")?  (my+m,x*)2| = (14fv*)?

ax*
——+ 0 X"
1+aTX*

eay”
AtV | <——s
12+ cY| < (1+aTX*)?

A+ u, + 0,X*| < 0,2"

A+ uy| < 0,7° + 0, X"

Then, under due the given conditions (15-18) in this
theorem, all the eigenvalue has negative real part.
This completes the proof.

Note 3. Because of complexity, we did not
determine the bifurcation parameter for hop
bifurcation aroundE; (X*,Y*, Z*, W*), but in section
seven we will do it numerically.

GLOBAL STABILITY

Global stability means that any trajectories finally
tend to the attractor of the system, regardless of
initial conditions. Therefore, Most of biological
systems,
needed

especially prey predator system, are

to be globally stable. The global

55

asymptotically stable stability GAS for each
E,,E,,and E; of the systeml is established in
Theorem 5, Theorem 6,
respectively.

Theorem 5. E; (O,O,Ml,
1

and Theorem 7,

0) is GAS, if there exist a

small positive number €, such that:

o, qE

b + E <d;+ P ———— .. (19)
Proof. Con3|der the function L,(X,Y,Z,W) =
X+Y+e|lz-T—Zin(20)| +ew

H1 H1 s
It is clear that, L,(X,Y,Z,W) >0, for
(X,Y,Z,W) € R* and L, (0,0,1, 0) = 0.

H1

Further,
dly _ _ _ 2 a(l-e)Xy __gEx
de 1+fY diX — e X 1+aTX  mi+m,X
o XW

2
— — Y2 — - _T
d,Y —c, Yo — e, W — ey (Z p ) +

1

o,e—=X
2 Uy

Accordingly,
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dLq O,

at = (b+6 M1 dl m1+m2X)X_6M1 (Z_
2

T

=)

Thus, % is negative under condition (19), and this

completes the proof.
Theorem 6. If E,(X,0,Z, W) is exist, then it is
GAS if,

X< .. (20)
F, > max {3;2: , ZZZZZ} .. (21)
F, > max {aifz , Z;‘éij} .. (22)
Flzcl—% and F, = 0,X — iy

Proof. Consider the function:
L,(X,Y,ZW)=X—X — Xln( )Y+ (Z -
7)? + 5 Lw —w)?

It is clear that,

L,(X,Y,Z,W) >0, for
Lz()? 0,Z,W) = 0. Further,

(X,Y,Z,W) € Rf and

ay
2= & =X [1+fY —aX -
qE
mirmX 01W]
%% -
%—dZY— Y2 + (Z-2)(m— 7 —
0,X7)

+(W = W) (0.XZ — p, W)
Due to condition (20), it gets:

bfY(X-X)

—c,Y?
1+fY €2

aL, . _1 Y
< SR (X - %)

— R (X = X)? = 0,Z(X = X)(Z — Z) — 3 F,(Z —

7)?

—RX -X)?+ 0 Z(X - X)W - W) -

%MZ(W —W)?

—%FZ(Z D2+ 0,X(Z-2)(W —W) —

%MZ(W - W)z

Thus, <2 < 0, if conditions (21), (22) holds and

This completes the proof.
Theorem 7. If E;(X*,Y*,Z*,W?*) is exist, then it
is GAS if,

3b2f2 30227r2}

F; > max{
3 2kyc; " 2u3 0,

.. (23)

56

2x*2 35272
F, >max{02 ,—= } .. (24
4 H2  2uiFs (24)
Where:
_ _ gEm, _ a*tY? ) _
F3 - kl (Cl my(m;+myX*)  1+aTXx*/)’ F4 -

0,X* — pu; and the positive constants k; and k,
satisfy the equation:
e
ky = 1+aTXx* ks
Proof. Consider the functions:

Ly(X,Y,Z,W) = ky [X = X" = X"In (i)] +
kz[Y Y —v* ln( )]+ Z-Z)+-W -
w*)?

Clearly, L,(X,Y,Z,W) > 0, for (X,Y,Z, W) € R}
and L,(X*,Y*,Z", W*) = 0. Further,

ﬂ_kl(XX) g2 axy
dat 1+fY —d X —cX 1+aTX
qEX .
mitm,X o1 XW — ky (1+fY —di - X -
ay* qE *
1+aTX* my+myX aW )]
. X
Tl (Y —¥7) [liZTX —dy - CZY]
+(Z -2 —wZ — 0,XZ — (m — 1y Z* —
0,X*Z")]

+(W = W) [0, XZ — u, W
< —%Fg(x —X*)? -

—(0X7Z" — up 7))
bf(Y-Y")(X-X")

ky T —
A+fY)A+fY*)

Czkz(y - Y*)Z
— B (X =X —0,Z(X = X)(Z - Z") -

ACEFRE

— B - X+ 0 Z(X = X)W - W) -
(W = W*)?

— B (Z =2V 40X (Z— ZYW — W) —
S (W —W*)?

So, % is negative due to the conditions (23,24),
and this complete the proof.

NUMERICAL SOLUTION

In order to discover the impact of fear, harvesting
and toxicant on system (1),
simulations are performed; all the simulations are
carried out through Runge- kutta method of order

some numerical
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six @, using MATLAB. it is observed that system
(1) approaches E5(1.34,8.77,41.74,58.25), when
system (1) with the parameter values in (25) as
illustrated in Figl. Also Fig.1l illustrates the
analytical finding regarding to stability for Ej,
because the parameter valued in (25) satisfies the
conditions in Theorem 4 and Theorem 7.

these parameter value satisfy stability conditions for
the coexistence equilibrium point, therefore:
b=15f=0.01d, =0.01,¢c, =001«
0.1, T=1

q=0.01LE =0.01,m;, =1,m, =
0.01,e =0.8

d, =0.01,¢c, =0.01,m =1,y = 0.01,0,
0.01, 1, = 0.01

1,0’1 =
. (25)
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Fig. 1: Trajectory of System (1) when parameter values
are as given by (25).

If, we solve system (1) with decreasing the level fear
to (f = 0.001) and fixed other parameter values as
given by (25), then dynamics of system (1) shows
periodic solution near the coexistence equilibrium
point; see Fig. 2.
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Fig. 2: Periodic oscillations of system (1), when f =
0.001 with the rest of parameters are given by (25).

Also if the uptake rate of pollution by organism,
to (o, =0.001) and fixed other
parameter values as given by (25), then system (1)

decreased

57

IRROJI

Academic Scientific Journals

shows larger periodic solution near the coexistence
equilibrium point; see Fig.3.
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Fig. 3: Time series diagram shows large periodic
oscillations around E3, when &, = 0.001with therest
of parameters are given by (25).

But, if the parameter value of catch ability
coefficient of prey and the effort made to harvest
prey individual increased to (g = 0.1) and (E =
0.1) and fixed other parameter values as given by
(25), then trajectories of system (1) show Small
periodic solution near the coexistence equilibrium
point; see Fig.4.

70

60

50

4ol 4

,1’:
30 fii
20 [}

10

0
0

1000

2000 3000 4000 5000

Fig. 4: Small periodic oscillations around E3, whenq =
0.1, E = 0.1 with the rest of parameters are given by
(25).

Not that the above figures show that dynamics of the
model population may induce a transition from the
a stability situation to the state where the
populations oscillate periodically or induce a
transition from oscillate periodically situation to the

stable situation.

DISCUSSION AND CONCLUSIONS

In this paper, it has been proposed an ecological
system consisting of two interacting species (prey
and predator). The reproduction of prey species was
affected by fear from predators and the effect of
harvesting and environmental pollution on prey
population are also considered. The boundedness of
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the model solutions is guaranteed. Two criteria that
make system (1) permanent are determined. All the
criteria for locally as well as globally stability for
the model equilibrium points are found. It is
observed that criteria for both persistence and stable
status, including parameters relative to the fear of
predators in prey, environmental pollution and
harvesting on prey population. Numerical
computation showed that dynamics of the model
population may induce a transition from the a
stability situation to the state where the populations
oscillate periodically or induce a transition from
oscillate periodically situation to the stable situation
if we change the parameter values of level fear,
uptake rate of pollution catch ability coefficient of
prey and the effort made to harvest prey individual.
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