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ABSTRACT  

In this paper, I start by introducing and going over the new M-algebra classes. 

Additionally, I present new classes of soft algebras, which I refer to as soft M-

algebras. I next introduce and explore new ideas in soft M-algebras, like soft M-

subalgberas and soft M-ideals, using our new connotations. I also presented the 

theorem of soft M-ideals and soft M-algebras. 
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INTRODUCTION 

The idea of a soft set was first presented by (1), and 

it is considered a newly developed mathematical 

instrument to manage uncertainty. You can use it 

to resolve challening issus in economics, 

environment and the engineering. Moreover, a pair 

(𝐺, 𝐵) a mapping 𝐺: 𝐵 → 𝑃(𝑈), is referred to as a 

soft set over U. Additionally (2), have provided 

several soft set theory’s new operations. In 1966, 

Imai and Isek proposed two classes of abstract 

algebras (3, 4), called BCK-algebras and BCI-

algebras. “They also discussed the notion of soft 

groups (5) introduced and investigated the notion of 

soft BCK/BCI-algbras(6) discussed the applications 

of soft sets in the ideal theory BCK/BCI-algbras”. 

They introduced the notions of soft BCH-

subalgebra and soft BCH-ideals(7, 8). Many 

operations on soft sets were specified by (9, 10). In 

2009, the auothors (11) introduced let (𝛼, 𝐴) is a soft 

set over 𝑋. Then 𝛼(𝑥) is said to be a soft d-algebra 

over 𝑋 if (𝛼(𝑒),∗, 0) is said to be a d-algebra for all 

𝑥 ∈  𝐴  (12, 8) provided new ideas definition of soft 

sets in BH-algebra and soft BCH-algebra. In (8) for 

any a soft set (𝛾, 𝐶), the set 𝑆𝑢𝑝𝑝(𝛾, 𝐷) = {𝑥 ∈ 𝐷 ∶

𝛾(𝑥) ≠ ∅} is said to be  the support of the soft set 

(𝛾, 𝐷), the soft set (𝛾, 𝐷) is said to be a non-null if 

𝑆𝑢𝑝𝑝(𝛾, 𝐷) ≠ ∅. The authors (8) introduced a soft 

d-subalgebra, let (𝛼, 𝐴)  and (𝛽, 𝐵) are soft d-

algebras over 𝑋.  Then (𝛽, 𝐵)  is said to be a d-

subalgebra of (𝛼, 𝐴) represented by 

(𝛽, 𝐵) <̃𝑠 (𝛼, 𝐴) if it meets the requirements  listed 

below: 

i. 𝐵 ⊆ 𝐴, 

ii. 𝛽(𝑥) is a d-subalgebra of 𝛼(𝑥) for all 𝑥 ∈

 𝑆𝑢𝑝𝑝(𝛽, 𝐵). This is recalled (8, 13). Let (𝐹, 𝐴) is a 

soft BCI-algebra over 𝑋. A soft set (𝐺, 𝐼) over 𝑋 is 

said to be a soft p-ideal of (𝐹, 𝐴), represented by 

(𝐺, 𝐼)  ⊲̃𝑝 (𝐹, 𝐴),if it satisfies: 

i. 𝐼 ⊆ 𝐴, 

ii. (∀𝑥 ∈ 𝐼)(𝐺 (𝑥)  ⊲𝑝  𝐹 (𝑥)). 

In this piece of work, the notion of M-algebra is 

now presented an algebra (𝑊, #,0) of types (2,0) 

is said to be a M-algebra if it satisfies the following 

conditions: 

(𝑀1)(𝑤#𝑤 = 0), (𝑀2)(𝑤#0 = 𝑤), 

(𝑀3)(0#𝑤 = 𝑤), (𝑀4)(𝑤#(𝑥#𝑦) = (𝑤#𝑥)#𝑦), 

∀ 𝑤, 𝑥, 𝑦 ∈ 𝑊. 

After presenting the notion of soft M-algebra 

suppose that (𝛾, 𝐶)  is a soft set over 𝑊 . Then  

(𝛾, 𝐶) is said to be a soft M-algebra over 𝑊 . If  

(𝛾(𝑤), #, 0)  is a M-algebra and ∀ 𝑤 ∈ 𝐶 . I 

extended the concepts of soft M-algebra to the 

context of soft M-subalgebra. Assume that  (𝛾, 𝐶) 

and (𝜆, 𝐷)  are soft M-algebras over 𝑊 . Then  

(𝜆, 𝐷) is said to be a soft M-subalgebra of (𝛾, 𝐶), 

represented by (𝜆, 𝐷) <̃ (𝛾, 𝐶), if it satisfies the 

following conditions:  

i.𝐷 ⊆  𝐶, 

ii.𝜆(𝑤) be a M-subalgebra of 𝛾(𝑤), ∀ 𝑤 ∈

 𝑆𝑢𝑝𝑝(𝜆, 𝐷). 

Moreover, I extend the notion of soft M-ideal, 

suppose that (𝐺, 𝐶) is a soft M-ideal over 𝑊 . A 

soft set  (𝜆, 𝐷) over 𝑊 is said to be a soft M-ideal 

of  (𝐺, 𝐶), represented by (𝜆, 𝐷)  ⊲̃𝑀 (𝐺, 𝐶) , if it 

satiefies: 

i. 𝐷 ⊆ 𝐶, 

ii. (∀ 𝑤 ∈ 𝐷) (𝜆(𝑤)  ⊲𝑀  𝐺(𝑤)). 

The structure of this paper is as follows: Sections 

two and three present definition of M-algebras and  

soft M-algebras, and then gave several theorem, 

proposition, lemma and examples. In the final 

section, I introduce the concept of (soft M-

subalgebras and soft M-ideals) and survey several 

properties. 

PRELIMINARIES 

Firstly, I give the definition, examples and a 

proposition about M-algebras. 

Definition 1 

An algebra  (𝑊, #,0) of  types (2,0) is said to be a 

M-algebra if it satisfies the following conditions: 

(𝑀1)(𝑤#𝑤 = 0),  

(𝑀2)(𝑤#0 = 𝑤), (𝑀3)(0#𝑤 = 𝑤),  

(𝑀4)(𝑤#(𝑥#𝑦) = (𝑤#𝑥)#𝑦),  
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∀ 𝑤, 𝑥, 𝑦 ∈ 𝑊.  

Example 1 

i. Assume that 𝑊 = {0,1,2} with the cayle table as 

follows: 

# 𝟎 𝟏 𝟐 

𝟎 0 1 2 

𝟏 1 0 2 

𝟐 2 1 0 
 

Then 𝑊 = ({0,1,2}, #,0) is a M-algebra. 

ii. Assume that 𝑊 = {0,1,2} with the cayle table as 

follows: 

# 𝟎 𝟏 𝟐 

𝟎 0 0 0 

𝟏 1 0 1 

𝟐 2 1 0 

 

(𝑊 = ({0,1,2}, #,0) is not a M-algebra, since (𝑀3) 

does not hold (0#1 = 0). 

Proposition 1 

If (𝑊, #, 0) is a M-algebra, then for any 𝑤, 𝑥, 𝑦 ∈

𝑊 

1. 𝑤 #𝑤 = 0. 

2. 0 #𝑤 = 𝑤. 

3. 𝑤 #(𝑤#𝑥) = 𝑥. 

4. (𝑤 #(𝑤#𝑥))#𝑥 = 0. 

Proof: (1 and 2) they are clearly. 

3.Suppose  𝑤 #(𝑤#𝑥) = (𝑤#𝑤)#𝑥. 

Then (0#𝑥) = 𝑥 (by Definition 1(𝑀3)). 

4.Suppose (𝑤 #(𝑤#𝑥))#𝑥 = 0. 

Then (𝑤#𝑤)#(𝑥#𝑥) = 0#0 = 0 (by Definition 

1(𝑀1)). 

Lemma 1 

Let (𝑊, #, 0) is a M-algebra. Then for all 𝑤, 𝑦 ∈

𝑊 

1. 0 #(0#𝑤) = 𝑤, 

2. If 0 #𝑤 = 0#𝑦, then 𝑥 = 𝑦, 

3. 𝑤#(0#𝑤)#𝑤 = 𝑤. 

Proof: 1. we have  that 0 #(0#𝑤) = 𝑤, since by 

Definition 1(𝑀3)  implies 0 #𝑤 = 𝑤. 

2. If  0 #𝑤 = 0#𝑦,  since by Definition 1( 𝑀3 )  

implies 𝑤 = 𝑦. 

3. Let 𝑤 #(0#𝑤)#𝑤 = 𝑤, since by Definition 1 

(𝑀1 , 𝑀3). Then  0#𝑤 = 𝑤. 

SOFT M-ALGEBRAS 

In this section, I cover seveeral basic a soft M-

algebra topics, as well as some additional ideas that 

are relevant to our study. 

Definition 2 

Suppose that  (𝛾, 𝐶) is  a  soft  set  over 𝑊. Then 

(𝛾, 𝐶)  is said to be a soft M-algebra over 𝑊. If 

𝛾(𝑤), #, 0 is a M-algebra and ∀ 𝑤 ∈ 𝐶. 

Example 2 

Assume that (𝑊, #, 0) is a M-algebra in Example 2 

(i). Assume that (𝛾, 𝐶) be a soft over 𝑊and 𝐶 = 𝑊 

defined by: 

𝛾(𝑤) =  { 𝑥 ∈ 𝑊: 𝑥 # (𝑥 # 𝑤) ∈ {0,1} }, be a set 

valued function and 𝛾: 𝐶 → 𝑃(𝑊), ∀ 𝑤 ∈ 𝐶. Then, 

(𝛾, 𝐶) is a soft M-algebra over 𝑊 , since 𝛾(0) =

𝛾(1) = 𝛾(2) = {0,1} are M-algebras. 

Example 3 

Assume that (𝑊, #, 0)is a M-algebra in Example 2 

(ii). Assume that (𝐿, 𝐶)is a soft over 𝑊and (𝐶 =

{ 0,1,2}  = 𝑊), with 𝐿 ∶  𝐶 →  𝑃(𝑊)being the set-

valued function and   ∀ 𝑤 ∈ 𝐶, 𝐿(𝑥) = { 𝑥 ∈

𝑊: 𝑥 # (𝑥# 𝑤) ∈ {0,1}. 

Since 𝐿(0) = 𝐿(1) = 𝑊isn't a M-algebra,  𝐿(0) =

{0,1}  and  𝐿(0) = 𝑊 aren't soft M-algebras over 

𝑊. 

Definition 3 

Suppose that 𝑊 be a M-algebra and suppose that 𝑆 

be a subset of 𝑊If 𝑤 # 𝑥 ∈ 𝑊, whenever ∀ 𝑤, 𝑥 ∈

𝑆, then 𝑆 is a subalgebra of  𝑊. 

Proposition 2 

Let {(𝐻𝑗 ,  𝐷𝑗)  ;  𝑗 ∈  𝛾} ≠ ∅  be a soft M-algebras 

over 𝑊. Then the bi-intersection  ⊓̃𝑗 ∈ 𝛾 (𝐻𝑗 ,  𝐷𝑗) is 

a soft M-algebra over 𝑊, if it isn’t null. 

Proof: Let {(𝐻𝑗 ,  𝐷𝑗)  ;  𝑗 ∈  𝛾} ≠ ∅  be a soft M-

algebras over 𝑊. By (See Definition 2 (ii)) (8), we 

may compose (𝐺, 𝐶) =⊓̃𝑗 ∈ 𝛾 (𝐻𝑗 ,  𝐷𝑗),where: 

𝐶 =∩j∈γ 𝐷𝑗, and 𝐺(𝑤) =∩j∈γ 𝐻(𝐷𝑗)for all 𝑤 ∈ 𝐶. 

Let us assume 𝑤 ∈  𝑆𝑢𝑝𝑝 (𝐺, 𝐶).  Consequently, 

we get  𝐻𝑗(𝑤)  ≠ ∅, ∀𝑗 ∈  𝛾, where: 

∩j∈γ 𝐻𝑗(𝑤)  ≠ ∅. Given that: 
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 {(𝐻𝑗 , 𝐷𝑗) ;  𝑗 ∈  𝛾} ≠ ∅ ; be a soft M-algebras over 

𝑊,𝐻𝑗(𝑤)  is a M-Subalgebra of 𝑊 for all 𝑗 ∈ 𝛾 , 

and its intersection is likewise a M-subalgebra of 

𝑊,in other words: 

 𝐺(𝑤) = ∩𝑗∈𝛾 𝐻𝑗(𝑤) ; is a soft M-algebra over 𝑊, 

because ⊓̃𝑗 ∈𝛾 (𝐻𝑗 ,  𝐷𝑗) is a M-subalgebra of 𝑊 

and ∀ 𝑤 ∈ 𝑆𝑢𝑝𝑝 (𝐺, 𝐶). 

Theorem 1 

Assume that { (𝐿𝑗 , 𝐷𝑗) ;  𝑗 ∈  𝛾} ≠ ∅ ; be a soft M-

algebras over 𝑊 . Then the extended intersection 

∩̃𝑗 ∈ 𝛾  (𝐿𝑗 , 𝐷𝑗  ) is a soft M-algebra over 𝑊. 

Proof: Let { (𝐿𝑗 , 𝐷𝑗) ;  𝑗 ∈  𝛾} ≠ ∅  be a soft M-

algebras over 𝑊. By (See Definition 1) (8), we may 

compose  ∩̃𝑗 ∈ 𝛾  (𝐿𝑗 , 𝐷𝑗  )  = (𝐻, 𝐸) , where 𝐸 =

∪̃𝑗 ∈ 𝛾  𝐷𝑗, 

 𝐻(𝑤) =  ∩j∈γ 𝐿𝑗(𝑤)and ∀ 𝑤 ∈  𝐸.  

Let 𝑤𝜖𝑆𝑢𝑝𝑝(𝐻, 𝐸) , then  𝐹𝑗(𝑤) ≠ ∅  for every 

𝑤 ∈  𝛾 since ∩j∈γ 𝐿𝑗(𝑤) ≠ ∅. Because (𝐿𝑗 , 𝐷𝑗) is 

a soft M-algebras over 𝑊 for all 𝑤 ∈  𝛾, thus, we 

conclude that 𝐿𝑗(𝑤) is a M-algebras of 𝑊, for all 

𝑗 ∈ 𝛾,. It follows that 𝐻(𝑤) = ∩𝑗 ∈ 𝛾(𝑤)  𝐿𝑗(𝑤)  is a 

M-subalgebra of W. For any 𝑤 ∈  𝑆𝑢𝑝𝑝(𝐻, 𝐸)  . 

As a result, the extended intersection 

∩̃𝑗 ∈ 𝛾  (𝐿𝑗 , 𝐷𝑗  ) is a soft M-algebra over 𝑊. 

Theorem 2 

Let { (𝐺𝑗 , 𝐶𝑗  ;  𝑗 ∈  𝛾} ≠ ∅  be a soft M-algebras 

over 𝑊𝑗. 

Then the cartesian product ∏̃𝑗 ∈ 𝛾(𝐺𝑗 , 𝐶𝑗)  is a soft 

M-algebra over ∏𝑗 ∈ 𝛾(𝑤𝑗). 

Proof: By (See Definition 2) (8), we may compose 

∏̃𝑗 ∈ 𝛾(𝐺𝑗 , 𝐶𝑗) =  (𝐻, 𝐵), where: 

𝐵 = ∏ 𝐶𝑗𝑗∈𝛾 , 𝐻(𝑤) =  ∏ 𝐺𝑗(𝑤)𝑗∈𝛾 , and: 

 ∀𝑤 = (𝑤𝑗)
 𝑗 ∈ 𝛾

∈ 𝐵.  

Let 𝑤 = 𝑆𝑢𝑝𝑝(𝐻, 𝐵) = (𝑤𝑗)
 𝑗 ∈ 𝛾

  

Then 𝐻(𝑤) =  ∏ 𝐺𝑗(𝑤𝑗)𝑗∈𝛾  ≠ ∅   

Consequentaly, we have 𝐺𝑗(𝑤𝑗) ≠ ∅ for every 𝑗 ∈

 𝛾. Because { (𝐺𝑗 , 𝐶𝑗);  𝑗 ∈  𝛾}is a soft M-algebras 

over 𝑤𝑗  , ∀ 𝑗 ∈ 𝛾. Consequently, 𝐺𝑗(𝑤𝑗)  is a M-

subalgebra of 𝑤𝑗, and as such, ∏ 𝐺𝑗(𝑤𝑗)𝑗∈𝛾  is a M-

subalgebra of ∏ 𝑤𝑗𝑗∈𝛾 for all 𝑤 = (𝑤𝑗)
 𝑗 ∈ 𝛾

∈

𝑆𝑢𝑝𝑝(𝐻, 𝐵) . As a result, the cartesian product 

∏̃𝑗 ∈ 𝛾(𝐺𝑗 , 𝐶𝑗)  is a soft M-algebra over ∏𝑗 ∈ 𝛾(𝑤𝑗). 

Definition 4 

Suppose that a function 𝑔  from set 𝑌  to set 𝑍  is 

mapping of M-algebras and that 𝑌, 𝑍 are two M-

algebras. If (𝐻, 𝐶) and (𝐿, 𝐷) are soft sets over 𝑌 

and 𝑍 respectivily, then (𝑓(𝐻), 𝐶) is a soft set over 

𝑍, whereas 𝑓(𝐻): 𝐶 → 𝑃(𝑍) is characterized with: 

𝑓(𝐻)(𝑦) =  𝑓(𝐻(𝑦)), ∀𝑦 ∈ 𝐶   

and  (𝑓−1(𝐿), 𝐷) is a soft set over 𝑌 , whereas  

𝑓−1(𝐿): 𝐷 → 𝑃(𝑌) characterized with 

𝑓−1(𝐿)(𝑦) =  𝑓−1(𝐿(𝑦)), ∀ 𝑦 ∈ 𝐷. 

Theorem 3 

Suppose that  𝑔 ∶  𝑊 →  𝑌 is an onto 

homomorphism of M-algebras.  

1. If (𝐻, 𝐷) is a soft M-algebra over 𝑊 , then 

(𝑔(𝐻), 𝐷) be a soft M-algebra over 𝑌. 

2. If (𝐿, 𝐶) be a soft M-algebra over 𝑌,

𝑡ℎ𝑒𝑛 (𝑔−1(𝐿), 𝐶) be a soft M-algebra over 𝑊 if it 

is non-null. 

Proof: 1. Assume that (𝐻, 𝐷) is a soft M-algebra 

over 𝑊, It's obvious that (𝑔(𝐻), 𝐷) is a non-null 

soft set over 𝑌.  

 Let∀ 𝑤 ∈ 𝑆𝑢𝑝𝑝 (𝑔(𝐻), 𝐷). We have 𝑔(𝐻)(𝑤) =

 𝑔(𝐻(𝑤)) ≠  ∅. Because 𝐻(𝑤) is a M-subalgebra 

of Y, it’s onto homomorphic image 𝑔(𝐻(𝑤))  is a 

M-subalgebra of 𝑊. As a result, 𝑔(𝐻(𝑤)) is a M-

subalgebra of 𝑌  ∀ 𝑤 ∈ 𝑆𝑢𝑝𝑝(𝑔(𝐻), 𝐷) , that is, 

(𝑔(𝐻), 𝐷) 𝑖𝑠 a soft M-algebra over 𝑌.  

3. It is easily to see that: 

𝑆𝑢𝑝𝑝 (𝑔−1(𝐿), 𝐶) ⊆ 𝑆𝑢𝑝𝑝 (𝐺, 𝐶). Let 𝑦 ∈

 𝑆𝑢𝑝𝑝(𝑔−1(𝐿), 𝐶). Then  𝐿(𝑦)  ≠ ∅ . Since the 

nonempty set 𝐿(𝑦)  is a soft M-algebra of 𝑊 , it 

homomorphic inverse image of 𝑔−1(𝐿(𝑦)) is also a 

M-subalgebra of 𝑊  as it is a M-subalgebra of 𝑌. 

Hence 𝑔−1(𝐿(𝑦)) is a M-subalgebra of 𝑌,  ∀ 𝑦 ∈

 𝑆𝑢𝑝𝑝 (𝑔−1(𝐿), 𝐶). That is, (𝑔−1(𝐿), 𝐶) is a soft M-

algebra over 𝑊. 

Remark 3.10- Let a function 𝑔 from set 𝑌 to set 𝑍 

be an algebraic homomorphism of M-algebras. If  
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(𝛾, 𝐷) be a soft M-algebra over 𝑌, then  (𝑔(𝛾), 𝐷) 

be a soft M-algebra over 𝑍. 

Proof: Straightforward. 

SOFT M-IDEALS 

Now, I define some special soft M-subalgebras, 

soft M-ideals and present some results on them. 

Definition 4 

Assume that (𝛾, 𝐶) and (𝜆, 𝐷) are soft M-algebras 

over 𝑊.  Then (𝜆, 𝐷)  is said to be a soft M-

subalgebra of (𝛾, 𝐶) , represented by  

(𝜆, 𝐷) <̃ (𝛾, 𝐶) ),  if  it satisfies  the following 

conditions:  

i. 𝐷 ⊆  𝐶 

ii. 𝜆(𝑤) be a M-subalgebra of 𝛾(𝑤), ∀ 𝑤 ∈

 𝑆𝑢𝑝𝑝(𝜆, 𝐷). 

Definition 5 

Assume that 𝑆 be a M-subalgebra of 𝑊.  A non-

empty subset 𝐼 of 𝑊is said to be ideal of W  related 

to 𝑊 (brifly, S-ideal of 𝑊), represented by 𝐼 ⊲  𝑆, 

if it is satisfies: 

i. 0 ∈ 𝑆 

ii. (∀ 𝑤 ∈ 𝑆)( ∀𝑦 ∈ 𝐼 )(𝑤#𝑦 ∈ 𝐼 ⇒ 𝑤 ∈ 𝐼) 

Example 4 

Consider (𝑊, #,0)is a M-algebra given in Example 

3. We create a set-valued function 𝛾 ∶  𝐶 → 𝑃(𝑊) 

for 𝐶 = { 0,1,2}  ⊆ 𝑊 . for every 𝑤 ∈  𝐶 

by  𝛾(𝑤) =  { 𝑦 ∈  𝑊: 𝑦 #(𝑦 # 𝑤)  ∈ {0,1} }. 

Then (𝛾 , 𝐶) is a soft M-subalgebra over 𝑋. now let 

(𝜆, 𝐷)be a soft set over 𝑊 . 𝐷 = { 0,1}  ⊆  𝐶 and 

𝜆: 𝐷 →  𝑃(𝑊) is a set-valued function as specified 

by: 

𝜆(𝑤) =  { 𝑦 ∈  𝑊 ∶  𝑦 # (𝑦 # 𝑤) = 0 }  

for all 𝑤 ∈  𝐷. It is clear to understand that (𝜆, 𝐷) 

is a soft M-subalgebra over 𝑊. Then 𝜆(0) = {0}, 

𝛾(0) = {0,1}, 𝜆(1) = {0}, 𝛾(1) = {0,1}. 

Therefore (𝜆, 𝐷)is a soft M-subalgebra of (𝛾 , 𝐶). 

Proposition 3 

Let (𝐹, 𝐶)  is a soft M-algebra over 𝑊 , and 

{ (𝐾𝑗 , 𝐶𝑗); 𝑗 ∈ 𝛾} ≠ ∅ be a soft M-algebras over  

(𝐹, 𝐶). Then the bi-intersection ⊓̃𝑗 ∈ 𝛾 (𝐾𝑗 , 𝐶𝑗) be a 

soft M-subalgebra (𝐹, 𝐶) if it is non-null.  

 Proof: Simliar to Theorem 1 proof . 

Theorem 4 

𝐿𝑒𝑡 (𝐺, 𝐶) be a soft M-algebras of 𝑊 and  

{ (𝐿𝑗 , 𝐶𝑗) ;  𝑗 ∈ 𝛾 } ≠ ∅  be a soft M-subalgebras 

over (𝐺, 𝐶) . Then the extend intersection ∩̃𝑗 ∈ 𝛾 

(𝐿𝑗 , 𝐶𝑗) is a soft M-subalgebra over (𝐺, 𝐶). 

Proof : Simliar to Theorem 2 proof. 

Theorem 5 

Let (𝛾 , 𝐶) and (𝜆, 𝐷) are two soft M-algebra over 

𝑊 and (𝜆, 𝐷) ⊆̃ (𝛾 , 𝐶) . Then (𝜆, 𝐷) <̃𝑠 (𝛾 , 𝐶). 

 Proof: Straightforward. 

Theorem 6 

Assume that (𝐿, 𝐶) is a soft M-algebra over 𝑊 and 

{ (𝐺𝑗 , 𝐶𝑗) ;  𝑗 ∈ 𝛾 } ≠ ∅ be a soft M-subalgebra of 

(𝐿, 𝐶) . Then the Cartesian product of 

∏̃𝑗 ∈ 𝛾(𝐺𝑗 , 𝐶𝑗) be a soft M-subalgebra ∏ (𝐿, 𝐶)𝑗∈𝛾  

Proof:  By (See Definition 2) (8), may compose 

∏̃𝑗 ∈ 𝛾 (𝐺𝑗 , 𝐶𝑗) =  (𝐺, 𝐵), where  𝐵 = ∏ 𝐶𝑗𝑗∈𝛾  and 

G(w)= ∏ 𝐺𝑗𝑗∈𝛾 ∈ 𝐵 ∀ 𝑤 = (𝑤𝑗)𝑗∈𝛾 ∈  𝐵. 

Suppose that 𝑤 = (𝑤𝑗)𝑗∈𝛾  ∈  𝑆𝑢𝑝𝑝(𝐺, 𝐵) . Then 

𝐺(𝑤)  = ∏ 𝐺𝑗(𝑤)𝑗∈𝛾   ≠ ∅ , and so we've got 

𝐺𝑗(𝑤𝑗) ≠ ∅  ∀𝑗 ∈  𝛾 

Because of this { (𝐺𝑗 , 𝐶𝑗) ;  𝑗 ∈ 𝛾 } ≠ ∅ is a soft M-

subalgebras over (𝐿, 𝐶), we've that 𝐺𝑗(𝑥𝑗) is a M-

subalgebra of 𝐺(𝑤𝑗),  from which we obtain that 

∏ 𝐺𝑗(𝑤𝑗)𝑗∈𝛾   be a M-subalgebra of 

∏ 𝐿𝑗(𝑤𝑗)𝑗∈𝛾 , ∀ 𝑤 = (𝑤𝑗)
𝑗∈𝛾

 ∈ 𝑆𝑢𝑝𝑝(𝐺, 𝐵). 

Therefore ∏̃𝑗 ∈ 𝛾  (𝐺𝑗 , 𝐶𝑗)  be a soft M-subalgebra  

∏ (𝐿, 𝐶)𝑗∈𝛾 . 

Proposition 4 

Let 𝑔 ∶  𝑊 →  𝑌 is a homomorphism of M-

algebras and (𝛾, 𝐶) , (𝜆, 𝐷)  are soft M-algebras 

over 𝑊. If (𝜆, 𝐷)  <̃𝑠  (𝛾, 𝐶) , then 

(𝑔(𝜆), 𝐷)  <̃𝑠 (𝑔(𝛾), 𝐶). 

Proof: Let (𝜆, 𝐷)  <̃𝑠  (𝛾, 𝐶).  Let us assume 𝑤 ∈

𝑆𝑢𝑝𝑝(𝜆, 𝐷), then 𝑤 ∈ (𝛾, 𝐶). By Definition 4 (8),  

𝐶 is a subset of 𝐷 and 𝜆(𝑤) is a M-subalgebra of 

𝛾(𝑤) , ∀ 𝑤 ∈  𝑆𝑢𝑝𝑝(𝜆, 𝐷) . since 𝑔 is 

homomorphism and 𝑔(𝜆)(𝑤) =  𝑔(𝜆(𝑤))  is the 

M-subalgebra of 𝑔𝛾(𝑤)) =  𝑔(𝛾)(𝑤) . Hence 

(𝑔(𝜆), 𝐷)  <̃𝑠 (𝑔(𝛾), 𝐶). 
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Proposition 5 

Let 𝑔 ∶  𝑊 → 𝑌 is an onto homomorphism of M-

algebras and  (𝛾, 𝐶) , (𝜆, 𝐷)  are soft M-algebras 

over 𝑊. if (𝜆, 𝐷) <̃𝑠  (𝛾, 𝐶), implies 

(𝑔−1(𝜆), 𝐷) <̃𝑠  (𝑔−1(𝜆), 𝐶),  

Proof: Let (𝜆, 𝐷)  <̃𝑠  (𝛾, 𝐶) 

Let 𝑦 ∈  𝑆𝑢𝑝𝑝(𝑔−1(𝜆), 𝐷). By Definition 4 (8)  𝐷 

is a subset of 𝐶, and for every 𝑦 ∈ D, 𝜆(𝑦) is a M-

subalgebra of 𝛾 (𝑦),  Because of this, 𝑔  is 

homomorphism with 𝑔−1(𝜆 (𝑦) = 𝑔−1(𝛾(𝑦))  is 

the M-subalgebra of 𝑔−1(𝛾(𝑦)) = 𝑔−1(𝛾)(𝑦) for 

any 𝑦 ∈  𝑆𝑢𝑝𝑝(𝑔−1(𝜆), 𝐷). 

Hence (𝑔−1(𝜆), 𝐷)  <̃𝑠  (𝑔−1(𝛾), 𝐶). 

Definition 6 

Assume that 𝑆 be a M-subalgebra of 𝑊.  A subset 

𝐼 ≠ ∅ of 𝑊 is said to be M-ideal of W related to 𝑊 

(brifly, S-M-ideal of 𝑊), represented by 𝐼 ⊲𝑀  𝑆, 

if it is satisfies: 

i. 0 ∈ 𝑆, 

ii. (∀ 𝑤, 𝑥 ∈ 𝑆)( ∀𝑦 ∈ 𝐼 )(𝑤#𝑦)#(𝑥#𝑦) ∈ 𝐼 ⇒

𝑤 ∈ 𝐼). 

Definition 7 

Suppose that  (𝐺, 𝐶) is a soft M-ideal over 𝑊.  A 

soft set  (𝜆, 𝐷) over 𝑊 is said to be a soft M-ideal 

of (𝐺, 𝐶),  represented by  (𝜆, 𝐷)  ⊲̃𝑀  (𝐺, 𝐶), if it 

satiefies: 

iii.𝐷 ⊆ 𝐶, 

iv.( ∀ 𝑤 ∈ 𝐷) (𝜆(𝑤)  ⊲𝑀  𝐺(𝑤)). 

Proposition 6 

Let (𝐿, 𝐷) be a soft M-algebra. There exists some 

soft sets (𝜆1, 𝐸1) and (𝜆2, 𝐸2) over 𝑊, where 𝐸1 ∩

 𝐸2  ≠ ∅, we have (𝜆1, 𝐸1) ⊲̃𝑀 (𝐿, 𝐷), 

(𝜆2, 𝐸2) ⊲̃𝑀 (𝐿, 𝐷) implies (𝜆1, 𝐸1) ∩

 (𝜆2, 𝐸2)  ⊲̃𝑀 (𝐿, 𝐷). 

Proof: By (see Definition 2) (8), we may write 

(𝜆1, 𝐸1) ∩ ̃(𝜆2, 𝐸2) = (𝛽, 𝐶) , where  𝐶 = 𝐸1 ∩ 𝐸2 

and 𝛽(𝑤) = 𝜆1(𝑥) or  𝜆2(𝑥)  or ∀ 𝑤 ∈ 𝐶 , 

obviously 𝐶 ⊆ 𝐷 and 𝛽 ∶  𝐶 → 𝑃(𝑊) is mapping. 

Thus (𝛽 , 𝐶) is a soft set over 𝑊 . Because  

(𝜆1, 𝐸1) ⊲̃𝑀 (𝐿, 𝐷)  and (𝜆2, 𝐸2) ⊲̃𝑀 (𝐿, 𝐷) , we 

know that 𝛽(𝑤) = 𝜆1(𝑤) ⊲𝑀 𝐿(𝑤)  or 𝛽(𝑤) =

𝜆2(𝑤) ⊲𝑀 𝐿(𝑤) ∀𝑤 ∈ 𝐶 

Hence (𝜆1, 𝐸1) ∩̃  (𝜆2, 𝐸2) ⊲̃𝑀 (𝐿, 𝐷). 

Theorem 7 

Assume that the soft M-algebra over 𝑊 is (𝐹, 𝐴). 

If (𝜆1,  𝐸1) and (𝜆2,  𝐸2) are any soft sets and  we 

get (𝜆1,  𝐸1) ⊲̃𝑀  (𝐹, 𝐴) , (𝜆2,  𝐸2) ⊲̃𝑀  (𝐹, 𝐴) over 

𝑊  with 𝑤  in which 𝐸1  and 𝐸2  are disjoint, then 

(𝜆1,  𝐸1) ∪̃ (𝜆2,  𝐸2) ⊲̃𝑀 (𝐹, 𝐴). 

Proof: Let us assume that (𝜆1,  𝐸1) ⊲̃𝑀 (𝐹, 𝐴), and 

(𝜆2,  𝐸2) ⊲̃𝑀 (𝐹, 𝐴). By (See Definition 3) (11), we 

may write(𝜆1,  𝐸1) ∩ (𝜆2,  𝐸2)=(G,D), where 𝐷 =

𝐸1  ∩  𝐸2 and for every 𝑤 ∈ 𝐷,  

 

Because 𝐸1 ∩ 𝐸2 = ∅ , either 𝑤 ∈ 𝐸1 \ 𝐸2 or 𝑤 ∈

𝐸2 \ 𝐸1 . If 𝑤 ∈  𝐸1 \𝐸2 , then 𝐺(𝑤) =  𝜆1(𝑤)  ⊲

 𝐹(𝑤) since (𝜆1,  𝐸1)  ⊲̃𝑀  (𝐹 , 𝐴). if 𝑤 ∈  𝐸2 \

 𝐸1, then 𝐺(𝑤) =  𝜆2(𝑤) ⊲ 𝐹(𝑤).    because 

(𝜆2,  𝐸2)  ⊲̃𝑀  (𝐹 , 𝐴). For every 𝑥  in 𝐷,  𝐺(𝑤)  ⊲

 𝐹(𝑤) , and so (𝜆1,  𝐸1) ∪̃ (𝜆2,  𝐸2) = (𝐺, 𝐷) ⊲̃𝑀 

(𝐹, 𝐴). 

CONCLUSIONS  

A new mathematical technique for overcoming 

uncertainly is the use of soft sets. I studied an 

algebraic structure known as M-algberas using the 

soft sets theory. I presented the notions of soft M-

algebras,soft M-subalgebras and  soft M-ideal. 

Many related properties were surveyed. 
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