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Finite Difference Schemes for the Unsteady State 

Schrödinger Equation in Three Dimensions with 

Complex Variables 

 

 

 

 

Abstract: 

In this paper we introduce three finite difference schemes to solve the three 

dimensions unsteady Schrödinger equation. The finite difference scheme developed 

for this purpose are based on the (1, 7) fully explicit scheme, the (7, 7) Crank-

Nicolson technique and fourth order compact scheme. The computational accuracy 

is demonstrated by comparing the results of these schemes. The results show that 

the compact fourth order finite difference scheme is more accurate than the other 

schemes. 

Keyword: compact finite difference, three dimension Schrödinger equation, fourth 

order, time dependent. 
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1. INTRODUCTION 

    The Schrödinger equation is one of the fundamental equations in mathematical 

physics. It occurs in a broad range of applications as quantum dynamics 

calculations [2, 5] and has received considerable attention because of its usefulness 

as a model that describes several important physical and chemical phenomena [3] . 

The three dimensions unsteady Schrödinger equation with the potentialv(x, y, z) is 

written by 

 

           

       Numerical solution of Schrödinger equation has been considered by a few 

authors. Dia [4] solve the one dimension Schrödinger equation with variable 

coefficients by using three level explicit difference scheme. Subasi in [3] presents 

three different finite difference schemes to solve the two dimension Schrödinger 

equation using three schemes, all these schemes are of second order for space. 

Recently, Shatha A. Mahdi [1] presents a fourth order accurate finite difference 

scheme for solving the 2D Schrödinger equation. 
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The aim of this paper is to get the fourth order accuracy in space and second order 

in time for 3D Schrödinger equation. The organization of the paper is as follows. In 

the sections 2.1, 2.2 and 2.3 we introduce the explicit, Crank-Nicolson and fourth 

order finite difference schemes respectively. In section 3 we detailed comparisons 

of our schemes. In section 4 we discuss the conclusions. 

2. The numerical techniques 

Let us consider a cubic domain = [0,1]×[0,1]×[0,1]. We discretize 2 with uniform 

mesh sizes Ax Ay and Az respectively in the x, y and z coordinate directions. 

Define Nx =1/Ax, Ny =1/Ay and Nz =1/Az the numbers of uniform subintervals 

along the x, y and z coordinate directions, respectively. The mesh points are (x,y,z) 

where x = i Ax у₁ = j Ду, Zk = k Az, 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny, 0 ≤ k ≤ Nz. In the 

sequel, we may also use the index (i,j,k) to represent the mesh point (x,y,z). In this 

paper we take_∆x = ∆y = ∆z = h, and Nx = Ny =Nz = N. Also, we discretize the 

time interval with uniform mesh sizes∆t. 

      The standard second order central difference operators defined at grid point (i, j, 

k) can be written as 
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The derivatives in Eq.(1) can be approximated to second order accuracy as 

 

2.1 The (1, 7) Explicit finite difference method 

In this section, we describe explicit second order finite difference formula. This 

formula resulting by substituting the finite difference approximations (4) in 

equation (1): 
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where s = 
∆𝑡

h2
 

Since this formula involves one grid point at the new time level and 7 at the old 

level, this procedure is referred to as the (1, 7) method. 

2.2 Crank-Nicolson method. 

      In this method, we replace all spatial derivatives with average of their 

values at the n and n+1 time level and then substitute centered-difference for 

all derivatives: 

 

Substituting these forms in the three-dimensional Schrödinger equation give (7, 

7) implicit finite difference formula as follows: 

 

2.3 Fourth order compact scheme 

 

 



Finite Difference Schemes for the Unsteady............. Akil J. Harfash 

32 

Journal of Missan Researches, Vol(4), No(8),2008 

Using the finite difference operators in (4) and (5), Eq.(1) can be discretized at a 

given grid point (x, y, z) as 

 

     We have include both O(h²) and O(At) term in Eq.(10) as we wish to 

approximate all of them in order to construct an O(h) and O(At²) scheme. 

     To obtain compact approximation to the O(h²) and O(At) terms in Eq.(10), we 

simply take the appropriate derivatives of Eq.(1), 
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Note that all term on the right hand side of Eq.(12) have compact O(h², ∆t, 

Ath²) approximations at noted ijk, and the approximation of these terms has the 

following forms: 
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     We can easily get an O(h¹, At²) method by substituting difference 

expressions for the O(h², At, Ath²) term in Eq.(12) and including these in the 

finite difference approximation (9). The resulting higher-order scheme follows 

from 
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Equation (14) is called a high order compact difference scheme of order 4 

(HOC-4). Equations (6), (8) and (14) can be separated to two equations real 

and imaginary. The linear systems generating is solved iteratively by using 

Gauss-Seidel iterative method. 

3. Numerical Results 

Now we consider two test problems to compare the accuracy for the schemes 

which used in this paper. 

Test problem 1: The exact solution of this test problem 

(x, y, z,t) = x²y²ze". The initial and boundary conditions are directly taken from 

this solution. The potential v(x, y, z) =1 --2 2 2 x² y² 22 2 z 

The results obtained for at T =1.0, computed for k h=0.1 and s = 0.01 using the 

(1, 7) explicit method, the Crack-Nicholson (7, 7) implicit method and fourth 

order compact finite difference scheme are listed in Table I, according to real 

and imaginary parts of (x, y, z, t). When the same problem is solved with 

values h = 0.1 s = 0.007, s = 0.005, s = 0.001 given in Table II, Table III and 

Table IV respectively. We note that the explicit scheme has very large error 

when s = 0.01, s = 0.007 and its 
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accuracy increases with the value of s. Also, we observe the following: 

1- In this example the accuracy of the Crank-Nicholson scheme and fourth 

order scheme do not change with decrease the value of s. 

2- The Crank-Nicholson scheme has accuracy of order O(h², At²) and fourth 

order scheme has accuracy of order O(h, Ar²) but we notes that the error of 

Crank- 

Nicholson is small less the fourth order. 

This is accruing because the value of the function is very small such that the 

error already becomes very small. The high computation of fourth order 

scheme "compare with the Crank-Nicholson" must be generated some expected 

errors in evaluation process. 

4. Conclusions 

In this paper, we introduce three finite difference scheme the (1, 7) fully 

explicit scheme, the Crank-Nicholson scheme and the fourth order compact 

finite difference schemes to solve the three dimensions unsteady Schrödinger 

equation subject to initial and boundary conditions. We used two problems to 

test the accuracy of this with others. We note that the accuracy of the fourth 

order scheme is very high compare with the other schemes. The linear system 

resulted from these scheme is solved iteratively by using the Gauss-Seidel 

iterative method. 
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 أساليب الفروقات المحددة لحل معادلة شرودنكر ثلاثية البعد غير 

 المستقرة مع الزمن ذات المتغيرات العقدية

 

 

 

 : الخلاصة

غير المستقرة مع الزمن  في هذا البحث استخدمنا ثلاث أسليب للفروقات المحددة لحل معادلة شرودنكر
بصيغتها النهائية بصيغتها الثلاثية البعد عددياً ، الأسلوب الأول المستخدم للحل هو اسلوب الفروقات 

( ) كرانك نيكولسون ( ، وفي الاسلوب 77( والاسلوب الثاني هو الضمني )1،7المحددة الصريح )
رتبة الرابعة مع طريقة كرانك نيكولسون الثالث تمكنا من تطبيق الفروقات المحددة المضغوطة من ال

للحصول على دقة من الرتبة الرابعة بالنسبة للحيز وثنائية بالنسبة للزمن ، أما النظام الخطي الناتج من 
صيغة الفروقات المحددة فقمنا بحله باستخدام طريقة كاوس سايدل التكرارية ، وقد قمنا بتطبيق هذه 

فوجدنات ان دقة الاسلوب الثالث عالية جدا مقارنة  لقياس الدقة ،الأساليب على مثالين اختباريين 
 .  بالاسلوب الآخرين
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