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Abstract:

In this paper we introduce three finite difference schemes to solve the three
dimensions unsteady Schrodinger equation. The finite difference scheme developed
for this purpose are based on the (1, 7) fully explicit scheme, the (7, 7) Crank-
Nicolson technique and fourth order compact scheme. The computational accuracy
Is demonstrated by comparing the results of these schemes. The results show that

the compact fourth order finite difference scheme is more accurate than the other
schemes.
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1. INTRODUCTION

The Schrodinger equation is one of the fundamental equations in mathematical
physics. It occurs in a broad range of applications as quantum dynamics
calculations [2, 5] and has received considerable attention because of its usefulness
as a model that describes several important physical and chemical phenomena [3] .

The three dimensions unsteady Schrodinger equation with the potentialv(x, y, z) is
written by

g v o (&
A1)
" Ii_
where § =4/ -1
The initial conditions are

Lix, v, z,0) =00 (x, v.2)

A2)
The boundary condition

La0, v, 2,00 =0 (v, 2,0), Ll x.0,z,0) =L (x,2,1),
LY, v, z,0) =1 (v, 2.0, Ll =00 =L (x, z.0),
Cie, v, 0,00 =01 (x, 100), e, v L) =L (x, 0,0)
e}

Numerical solution of Schrodinger equation has been considered by a few
authors. Dia [4] solve the one dimension Schrodinger equation with variable
coefficients by using three level explicit difference scheme. Subasi in [3] presents
three different finite difference schemes to solve the two dimension Schrédinger
equation using three schemes, all these schemes are of second order for space.
Recently, Shatha A. Mahdi [1] presents a fourth order accurate finite difference
scheme for solving the 2D Schrddinger equation.
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The aim of this paper is to get the fourth order accuracy in space and second order
in time for 3D Schrddinger equation. The organization of the paper is as follows. In
the sections 2.1, 2.2 and 2.3 we introduce the explicit, Crank-Nicolson and fourth
order finite difference schemes respectively. In section 3 we detailed comparisons
of our schemes. In section 4 we discuss the conclusions.

2. The numerical techniques

Let us consider a cubic domain = [0,1]x[0,1]%[0,1]. We discretize 2 with uniform
mesh sizes Ax Ay and Az respectively in the x, y and z coordinate directions.
Define Nx =1/Ax, Ny =1/Ay and Nz =1/Az the numbers of uniform subintervals
along the x, y and z coordinate directions, respectively. The mesh points are (X,y,z)
where x =1 Axy; =) [y, ZK=K Az, 0 <i<Nx,0<j <Ny, 0<Kk<Nz. Inthe
sequel, we may also use the index (i,j,k) to represent the mesh point (x,y,z). In this
paper we take Ax = Ay = Az = h, and Nx = Ny =Nz = N. Also, we discretize the
time interval with uniform mesh sizesAt.

The standard second order central difference operators defined at grid point (i, J,
K) can be written as
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The derivatives in Eqg.(1) can be approximated to second order accuracy as
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2.1 The (1, 7) Explicit finite difference method

In this section, we describe explicit second order finite difference formula. This
formula resulting by substituting the finite difference approximations (4) in
equation (1):
%H:'fgﬁf%k_mgk%ﬂ@”fﬁfmk%ﬂ)

H'ﬁ’%ﬂ_j% ﬁH]Hm%
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At
where s = —
h2

Since this formula involves one grid point at the new time level and 7 at the old
level, this procedure is referred to as the (1, 7) method.

2.2 Crank-Nicolson method.

In this method, we replace all spatial derivatives with average of their
values at the n and n+1 time level and then substitute centered-difference for

all derivatives:

o R e TR TRV O = a0
B‘D.L 1
o

&I:L_ ]
% o
and

a1 .~
&- =ﬁr[D:J; _Eu[n-'r}

o G~ )+ (DL,J, -4+,

N T Q. -3, 40

(7

Substituting these forms in the three-dimensional Schrédinger equation give (7,
7) implicit finite difference formula as follows:

@ +6is=ilNv 0 ~isCok, ¥000) ~isCo, +00) —isCy, +050) =
(j-—&'j +Eﬂ‘ kﬂ +j'iD'l k .'-D!-I-}NH@ s lk}+!‘@}- ﬂ-ﬂ
(%)

2.3 Fourth order compact scheme
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Using the finite difference operators in (4) and (5), Eqg.(1) can be discretized at a
given grid point (X, y, z) as

iCT), +C0, +C0, +01, +v, [, 0] =0 (9)
where the truncation error 1s

_Cva0 80 # 80 K 800
b = EE& 12a¢ 12:3 12&*5 o)
~..(10)

We have include both O(h?) and O(At) term in Eqg.(10) as we wish to
approximate all of them in order to construct an O(h) and O(At?) scheme.

To obtain compact approximation to the O(h?) and O(At) terms in Eq.(10), we
simply take the appropriate derivatives of Eq.(1),

HDdDd‘D&DdDd:Id

& wa ay e N A >
o0__00_o0 a0 a0 04 _
3 ga o e ¥ dad ar
00__o0_90 80 o0 v _ph
&' Fa aa’ dzci F:lz: dad &
20__90_o0 a0 _ a0

& ax’ ad’ ax’ a

(1)
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Note that all term on the right hand side of Eq.(12) have compact O(h?, At,
Ath?) approximations at noted ijk, and the approximation of these terms has the
following forms:

BD —DD D;IJ: DJLII’ +O{h!]
s "
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We can easily get an O(h!, At?) method by substituting difference
expressions for the O(h?, At, Ath?) term in Eqg.(12) and including these in the
finite difference approximation (9). The resulting higher-order scheme follows
from
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Equation (14) is called a high order compact difference scheme of order 4
(HOC-4). Equations (6), (8) and (14) can be separated to two equations real
and imaginary. The linear systems generating is solved iteratively by using
Gauss-Seidel iterative method.

3. Numerical Results

Now we consider two test problems to compare the accuracy for the schemes
which used in this paper.

Test problem 1: The exact solution of this test problem

(X, Y, z,t) = x2y2ze". The initial and boundary conditions are directly taken from
this solution. The potential v(X,y, z) =1 --222x2y222 22

The results obtained for at T =1.0, computed for k h=0.1 and s = 0.01 using the
(1, 7) explicit method, the Crack-Nicholson (7, 7) implicit method and fourth
order compact finite difference scheme are listed in Table I, according to real
and imaginary parts of (X, y, z, t). When the same problem is solved with
values h = 0.1 s = 0.007, s = 0.005, s = 0.001 given in Table Il, Table Il and
Table IV respectively. We note that the explicit scheme has very large error
when s =0.01, s = 0.007 and its
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accuracy increases with the value of s. Also, we observe the following:

1- In this example the accuracy of the Crank-Nicholson scheme and fourth
order scheme do not change with decrease the value of s.

2- The Crank-Nicholson scheme has accuracy of order O(h?, At?) and fourth
order scheme has accuracy of order O(h, Ar?) but we notes that the error of
Crank-

Nicholson is small less the fourth order.

This is accruing because the value of the function is very small such that the
error already becomes very small. The high computation of fourth order
scheme "compare with the Crank-Nicholson™ must be generated some expected
errors in evaluation process.

4. Conclusions

In this paper, we introduce three finite difference scheme the (1, 7) fully
explicit scheme, the Crank-Nicholson scheme and the fourth order compact
finite difference schemes to solve the three dimensions unsteady Schrddinger
equation subject to initial and boundary conditions. We used two problems to
test the accuracy of this with others. We note that the accuracy of the fourth
order scheme is very high compare with the other schemes. The linear system
resulted from these scheme is solved iteratively by using the Gauss-Seidel
iterative method.
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