

Pure Sciences International Journal of Kerbala

On skew C₁C₂-Symmetric operators

Shireen O. Dakheel

Department of Mathematics, College of Science for women, University of Baghdad, Baghdad, Iraq

PAPER INFO

Received: 6 June 2025 Accepted: 29 June 2025 Published: 30 June 2025

Keywords:

Conjugation operators, C-symmetric operators, C₁C₂-symmertic operators, skew complex symmetric operators, skew C₁C₂-symmetric operators.

ABSTRACT

Let C_1 and C_2 be conjugation operators, both of which are antilinear, isometric, and involution mappings, defined on a separable complex Hilbert space \mathcal{H} . This paper introduces the concept of skew C_1C_2 -symmetric operators ($skew\ C_1C_2$ -S.O). A bounded linear operator A on \mathcal{H} is classified as a $skew\ C_1C_2$ -S.O. if it satisfies the condition ($C_1A = -A^*\ C_2$), or equivalently, ($A = -C_1\ A^*\ C_2$). We examine and analyze several fundamental properties of such operators and provide a concrete example to illustrate this notion.

1. INTRODUCTION

An algebra to all bounded linear operator specified on a separable complex Hilbert space \mathcal{H} is represented by the notation $B(\mathcal{H})$. A conjugation operation on \mathcal{H} is antilinear operator $C: \mathcal{H} \to \mathcal{H}$ that fulfills for any $x, y \in \mathcal{H}$ and property of involution $(C^2 = 1)$, and $\langle Cx, Cy \rangle = \langle x, y \rangle$. The research of complex symmetric operation was started in 2005 by [1]. According to their definition, an operator $A \in B(\mathcal{H})$ is considered C-symmetric if $CA = A^*C(A = CA^*C)$; it is complex symmetric; it is C-symmetric with regard to some C [1,2].

The idea of symmetric matrices in linear algebra are generalized by complex symmetric operation. Since for $x,y\in\mathcal{H}$, the matrix of C-symmetric operator A with regard to $\{e_n\}$ is symmetric. This because if C is a conjugation on \mathcal{H} , then there is an orthonormal basis $\{e_n\}$ of \mathcal{H} in order to $Ce_n=e_n$ to all n [1]. The opposite is also true. In other words, A is complex symmetric if there is an orthonormal basis such that A has a symmetric matrix representation [1]. If there is a conjugation C on \mathcal{H} in order to $CA=-A^*C(A=-CA^*C)$, then an operator $A\in B(\mathcal{H})$ is skew complex symmetric.

M. putinar, and W.Wogen, in different combinations, conducted a general investigation of such operators in [1-12]. The idea of a complex symmetric operation was expanded by Dakheel and Ahmed [13] in 2022. They defined a C_1C_2 -S.O. as one in which an operator $A \in$

 $B(\mathcal{H})$ has certain conjugations C_1 and C_2 on \mathcal{H} such that $C_1A = A^*C_2(A = C_1A^*C_2)$.

The definition of skew complex symmetric operation is expanded in this work to be as follows: if $C_1A = -A^*C_2(A = -C_1A^*C_2)$, then a bounded linear operator. We look at basic characteristics of these operators and arrive at the following conclusion: there are two orthonormal basis of \mathcal{H} relative to that's A acknowledges a symmetric matrix illustration if A is a skew C_1C_2 -S.O. Additionally, we examine the matrix of skew C_1C_2 -S.O. and demonstrate a few of its uses. Additionally, we looked at the skew C_1C_2 -S.O. tensor product, direct sum, and tensor sum.

2. Main Results

This part deals with to introduce the concept of skew $\mathcal{C}_1\mathcal{C}_2$ -S.O. , which serve as a generalization of skew complex symmetric operation. Furthermore, we examine fundamental properties of this concept and investigate its theoretical implications.

Definition 2.1 : put \mathcal{H} be separable, complex Hilbert space and let C_1 and C_2 be conjugate linear operators acting on \mathcal{H} ($C_1 \neq C_2$) that are both involution ($C_1^2 = C_2^2 = I$) and isometric ($< C_1 x$, $C_1 y > = < y$, x > and $< C_2 s$, $C_2 k > = < k$, s > to *all* x, y, s and k in \mathcal{H}). A B.L.O. A on \mathcal{H} is

^{*}Corresponding Author Institutional Email: shireeno math@csw.uobaghdad.edu.iq (Shireen O. Dakheel)

claimed to be C_1C_2 -S.O. if met the condition $C_1A = -A^*$ C_2 equivalently expressed as $(A = -C_1 A^*C_2)$.

Example 2.2: Let $\mathcal{C}_1 = \begin{bmatrix} C_1 & 0 \\ 0 & C_2 \end{bmatrix}$ and $\mathcal{C}_2 = \begin{bmatrix} C_1 & 0 \\ 0 & -C_2 \end{bmatrix}$ are conjugations on $\mathcal{H} \oplus \mathcal{H}$ such that C_1 , C_2 are conjugations operator on \mathcal{H} and let \mathcal{S} be skew complex symmetric operator such that $C_1\mathcal{S} = -\mathcal{S}^*C_1$. Then $A = \begin{bmatrix} \mathcal{S} & 0 \\ 0 & 0 \end{bmatrix}$ is skew C_1C_2 -S.O.

Remarks 2.3: For Conjugations C_1 and C_2 , the following statements are holds:

- 1. Every skew complex symmetric operator is skew C_1C_2 -S.O..
- 2. Put A is skew C_1C_2 -S.O., then $A = -C_2A^*C_1$.
- 3. Put A is skew C_1C_2 -S.O., then so is A*.
- 4. Put A is skew C_1C_2 -S.O., then so is A⁻¹.
- 5. The set of skew C_1C_2 -S.O. is a subspace of B(\mathcal{H}) for the same conjugations C_1 and C_2 .

Proof

- 1. Let A be a skew C_1C_2 -S.O. such that C_1 A = -A*C₂. Assume that C_1 = C₂, hence A is skew complex symmetric operator.
- 2. Assume that A is skew C_1C_2 -S.O. satisfying the condition $A = -C_1 A^*C_2$ equivalently expressed as $(-C_1 A C_2 = A^*)$, to demonstrate that $A = -C_2 A^*C_1$ we have: $<-C_2 A^*C_1w$, $z > = <C_2z$, $-C_2 C_2 A^*C_1 w > = <-A C_2z$, $-C_1 A C_2 z > = < w$, $-A C_2 z > = < A C_2 z$, for all $-A C_2 z > = < A C_2 z$.
 - 3. Suppose that A skew C_1C_2 -S.O. , such that C_1 A = A*C₂ (A* = - C_1 AC₂).

To show that $C_1A^* = -AC_2$: $< C_1A^* w, z > = < C_1 z, C_1 C_1 A^* w > = < C_1 z, A^*$ $w > = < C_1 z, -C_1 A C_2 w > = < -C_1 (C_1 A C_2 w), C_1$ $C_1 z > = < -AC_2 w, z >$, for all $w, z \in \mathcal{H}$.

4. Let $A = -C_1 A^* C_2$, to show that $A^{-1} = -C_1 (A^{-1})^* C_2$: $< -C_1 (A^{-1})^* C_2 w$, $p > = < C_1 p$, $-C_1 C_1 (A^{-1})^* C_2 w$ $w > = < C_1 p$, $-(A^{-1})^* C_2 w > = < -A^{-1} C_1 p$, $C_2 w$ $> = < C_2 C_2 w$, $-C_2 A^{-1} C_1 p > = < w$, $-(C_1 A C_2)^{-1}$

$$p > = < w$$
, $(A^*)^{-1} p > = < w$, $(-A^{-1})^* p > = < A^{-1} w$, $p >$, for all w , $p \in \mathcal{H}$.

- 5. The proof requires two steps:
- i. if A_1 , A_2 are skew C_1C_2 -S.O., then so is A_1+A_2 .
- ii. if A skew C_1C_2 -symmetric and $\mathscr{E} \in \mathbb{C}$, then \mathscr{E} A is skew C_1C_2 -symmetric.

For the first portion, observe that:

Since A_1 , A_2 are skew C_1C_2 -symmetric, it follows that C_1 $A_1 = -A_1^*C_2$ and C_1 $A_2 = -A_2^*C_2$.

To prove that A_1+A_2 is skew C_1C_2 -S.O., $C_1(A_1+A_2) = C_1 A_1 + C_1 A_2 = -A_1^*C_2 - A_2^*C_2 = -(A_1+A_2)^*C_2$. Thus (1) holds. For ii, since A skew C_1C_2 -symmetric, it follows that $C_1 A = -A^*C_2$ and $\mathscr{E} \in \mathbb{C}$.

To show that \mathscr{E} A skew C_1 C_2 -symmetric for the same conjugations C_1 , C_2 , C_1 (\mathscr{E} A) = $\overline{\mathscr{E}}$ C_1 A = - $\overline{\mathscr{E}}$ A*C₂ =- $(\mathscr{E}$ A)* C₂.

The following proposition gives useful characterizations of skew C_1C_2 -S.O. .

Proposition 2.4: take A in $B(\mathcal{H})$ then an operator A in $B(\mathcal{H})$ is skew C_1C_2 -S.O. iff there are two orthonormal bases of \mathcal{H} with that's A has symmetric matrix illustration.

Proof: Let A be skew C_1C_2 -S.O. such that C_1 A= - A*C₂ and let $\{u_n\}$ and $\{v_n\}$ are two orthonormal bases such that $C_1u_n = u_n$ and $C_2v_m = v_m$ for all $n, m \in \mathbb{N}$. The matrix of skew C_1C_2 -S.O. A with respect to $\{u_n\}$ and $\{v_n\}$ is skew symmetric, to show that:

$$\begin{split} [A]_{ij} &= \langle A v_j, u_i \rangle \\ &= \langle -C_1 A^* C_2 v_j, u_i \rangle \\ &= \langle -C_1 A^* v_j, u_i \rangle \\ &= -\langle C_1 u_i, C_1 C_1 A^* v_j \rangle \\ &= -\langle C_1 u_i, A^* v_j \rangle \\ &= -\langle u_i, A^* v_j \rangle \\ &= -\langle A u_i, v_j \rangle \\ &= -[A]_{ji}, \text{ for } 1 \leq i \leq n, 1 \leq j \leq m. \end{split}$$

Conversely, let $\{u_n\}$ and $\{v_m\}$ be two orthonormal bases such that $C_1u_n = u_n$ and $C_2 \sigma_m = \sigma_m$ for all $n, m \in \mathbb{N}$. Define the conjugations C_1 and C_2 by $C_1(\sum_n a_n u_n) = \sum_n \overline{a_n} u_n$, $C_2(\sum_m c_m \sigma_m) = \sum_m \overline{c_m} \sigma_m$.

By hypothesis, the matrix ensures that $< Au_n$, $\sigma_m > = - < A\sigma_m$, $u_n >$ for all $n, m \in \mathbb{N}$, to show that A is skew C_1C_2 -S.O. in order to $- C_1A^* C_2 = A$. $< - C_1A^*C_2\sigma_m$, $u_n > = < - C_1A^*\sigma_m$, $u_n > = < C_1u_n$, $- C_1C_1A^*\sigma_m > = < C_1u_n$, $- A^*\sigma_m > = < u_n$, $- A^*\sigma_m > = < -Au_n$, $\sigma_m > = < Au_n$, $\sigma_m > = Au_n$

Proposition 2.5: If $\{A_n\}$ be a sequence of skew C_1C_2 -S.O. with the same conjugations C_1 and C_2 in order to $\lim_{n\to\infty} ||A_n - A|| = 0$, then A is also skew C_1C_2 -S.O..

= < \land σ_m , $u_n>$.

Proof: Let $\{A_n\}$ be a sequence of skew C_1C_2 -S.O. operator such that $C_1A_n = -A_n^* C_2$ ($A_n = -C_1A_n^* C_2$) for the same conjugations C_1 and C_2 with $\lim_{n\to\infty} ||A_n|$

A|| = 0, we must prove that $A = -C_1A^*C_2$:

$$\begin{split} \| -A - C_1 A^* \ C_2 \| &\leq \| -A - C_1 A_n^* \ C_2 \| + \| \ C_1 A_n^* \ C_2 - C_1 A^* \\ C_2 \ \| &\leq \| -A + A_n \ \| + \| C_1 \| \ \| \ A_n^* - A^* \| \ \| C_2 \| \\ Since \ \| C_1 \| &= \| C_2 \| = 1 \text{, then} \\ &\leq \| \ A_n - A \| + \| \ A_n^* - A^* \ \| \\ &\leq \| \ A_n - A \| + \| \ A_n - A \| \\ &\leq 2 \ \| \ A_n - A \| \end{split}$$

Which tends to zero as $n \rightarrow \infty$. Hence skew C_1C_2 -S.O..

The proper notion of equivalence for skew C_1C_2 -S.O. is unitary equivalence as the following shows:

Proposition 2.6: If $A_1 \in B(\mathcal{H}_1)$ is skew C_1C_2 -S.O. and $U: \mathcal{H}_1 \to \mathcal{H}_2$ is unitary operator, then there exists $A_2 \in B(\mathcal{H}_2)$ is skew C_3C_4 -S.O. such that $A_2 = UA_1 U^*$, $C_3 = UC_1U^*$, $C_4 = UC_2U^*$.

Proof:

Since A_1 is skew C_1C_2 -S.O. such that $C_1A = -A^*C_2$, then we have:

$$\begin{split} C_3 A_2 &= (U C_1 U^*) (U A_1 U^*) \\ &= (U - A_1^* U^*) (U C_2 U^*) \\ &= - (U A_1 U^*)^* C_4 \\ &= - A_2^* C_4. \end{split}$$

Proposition 2.7: assume that the Cartesian decomposion of $A = \mathcal{X} + i\mathcal{Y}$ if and only if both X and Y are skew C_1C_2 -S.O. with regard to identical conjugations C_1 and C_2 , then A is skew C_1C_2 -S.O.

Proof: Let A be skew C_1C_2 -S.O. such that $C_1A = -A^*C_2$ with $A = \mathcal{X} + i\mathcal{Y}$ and $\mathcal{X} = \frac{1}{2}(A + A^*)$ and $\mathcal{Y} = \frac{1}{2i}(A - A^*)$.

To show that X and Y are skew C_1C_2 -S.O. with the same conjugation C_1 , C_2 , then we have:

$$C_{1} \mathcal{X} = C_{1} \left(\frac{1}{2} (A + A^{*})\right)$$

$$= \frac{1}{2} (C_{1}A + C_{1}A^{*})$$

$$= \frac{1}{2} (-A^{*}C_{2} - AC_{2})$$

$$= -\frac{1}{2} (A^{*} + A) C_{2}$$

$$= -\mathcal{X}^{*} C_{2}.$$

Similarly, we deduse that \mathcal{Y} is also skew C_1C_2 -S.O.. Conversely, since \mathcal{X} and \mathcal{Y} are skew C_1C_2 -S.O. operators with respect to the same conjugations C_1 and C_2 , then we obtain directly $C_1A = -A^*C_2$.

3.Tensor product and direct sum of skew C_1C_2 -S.O.

This part deals with the necessary condition for the one rank operator on \mathcal{H} to be skew complex C_1C_2 -symmetric. Moreover, we discuss the tensor product and direct sum of skew complex $\mathcal{C}_1\mathcal{C}_2$ -S.O..

This part starts by the subsequent lemma [14]:

Lemma 3.1: Let C_1 and C_2 be a conjugations on \mathcal{H} and $x, y \in \mathcal{H}$. Then $C_1(x \otimes y)C_2 = C_1x \otimes C_2y$ on \mathcal{H} .

The next proposition shows that when the finite rank operator becomes skew C_1C_2 -S.O..

Proposition 3.2: If A is constant multiple of $-C_1x \otimes -C_2y$, then A is skew C_1C_2 -S.O..

Proof

By previous lemma, we have $C_1(x \otimes y)C_2 = C_1x \otimes C_2y$ for conjugations operators C_1 and C_2 on \mathcal{H} . Then we have:

 $C_1AC_2 = C_1(-C_1x \otimes -C_2y)C_2 = -(y \otimes x) = -A^*$. Hence, A is skew C_1C_2 -S.O..

Proposition 3.3: If A_1 is complex skew C_1C_2 -S.O. on \mathcal{H}_1 and A_2 is skew C_3C_4 -S.O. on \mathcal{H}_2 for some conjugations C_1 , C_2 , C_3 and C_4 , then $A_1 \otimes A_2$ is skew $(C_1 \otimes C_3)(C_2 \otimes C_4)$ -symmetric on $\mathcal{H}_1 \otimes \mathcal{H}_2$

Proof: Since A_1 is skew C_1C_2 -S.O. on \mathcal{H}_1 and A_2 is skew C_3C_4 -S.O. on \mathcal{H}_2 , then $C_1A_1 = -A_1^*C_2$ and $C_3A_2 = -A_2^*C_4$.

Now, to show that $A_1 \otimes A_2$ is skew $(C_1 \otimes C_3)(C_2 \otimes C_4)$ -symmetric operator:

$$\begin{split} &(C_1 \otimes C_3) \; (A_1 \otimes A_2) = C_1 A_1 \otimes C_3 A_2 \\ &= \text{-} \; A_1^* C_2 \otimes \text{-} A_2^* C_4 \\ &= \text{-} \; (A_1^* \otimes A_2^*) \; (C_2 \otimes C_4) \\ &= \text{-} \; (A_1 \otimes A_2)^* \; (C_2 \otimes C_4). \end{split}$$

Hence, we get what we want.

Proposition 3.4: If \mathcal{M} is skew C_1C_2 -S.O. on \mathcal{H}_1 and \mathcal{B} is skew C_3C_4 -S.O. on \mathcal{H}_2 for some conjugations C_1, C_2, C_3 and C_4 , then $\mathcal{M} \oplus \mathcal{B}$ is skew $(C_1 \oplus C_3)(C_2 \oplus C_4)$ -symmetric on $\mathcal{H}_1 \oplus \mathcal{H}_2$.

Proof:

Let \mathcal{M} be a skew C_1C_2 -S.O. on \mathcal{H}_1 and \mathcal{B} be a skew C_3C_4 -S.O. on \mathcal{H}_2 . $(C_1 \oplus C_3) (\mathcal{M} \oplus \mathcal{B}) = C_1 \mathcal{M} \oplus C_3 \mathcal{B}$ $= -\mathcal{M}^*C_2 \oplus -\mathcal{B}^*C_4$ $= -(\mathcal{M}^* \oplus \mathcal{B}^*) (C_2 \oplus C_4)$ $= -(\mathcal{M} \oplus \mathcal{M})^* (C_2 \oplus C_4).$

Proposition 3.5: If \mathcal{M} , \mathcal{P} are a skew $\mathcal{C}_1\mathcal{C}_2$ -S.O. on \mathcal{H} and \mathcal{E}_1 , \mathcal{E}_2 are skew $\mathcal{C}_3\mathcal{C}_4$ -S.O. on \mathcal{H} , then $(\mathcal{M} \oplus \mathcal{P}) \otimes (\mathcal{E}_1 \oplus \mathcal{E}_2)$ is skew $(C_1 \otimes C_3)(C_2 \otimes C_4)$ -symmetric operator on $\mathcal{H} \otimes \mathcal{H}$.

Proof:

```
 \begin{split} &(C_1 \otimes C_3) \ [(\mathcal{M} \oplus \mathcal{P}) \otimes (\mathcal{E}_1 \oplus \mathcal{E}_2)] = (C_1 \otimes C_3) \ [\mathcal{M} \otimes \mathcal{E}_1 + \mathcal{P} \otimes \mathcal{E}_1 + \mathcal{M} \otimes \mathcal{E}_2 + \mathcal{P} \otimes \mathcal{E}_2] \\ &= (C_1 \otimes C_3) (\mathcal{M} \otimes \mathcal{E}_1) + (C_1 \otimes C_3) (\mathcal{P} \otimes \mathcal{E}_1) + (C_1 \otimes C_3) (\mathcal{M} \otimes \mathcal{E}_2) \\ &= (C_1 \mathcal{M} \otimes C_3 \mathcal{E}_1) + (C_1 \mathcal{P} \otimes C_3 \mathcal{E}_1) + (C_1 \mathcal{M} \otimes C_3 \mathcal{E}_2) \\ &= (C_1 \mathcal{M} \otimes C_3 \mathcal{E}_1) + (C_1 \mathcal{P} \otimes C_3 \mathcal{E}_1) + (C_1 \mathcal{M} \otimes C_3 \mathcal{E}_2) \\ &= (-\mathcal{M}^* C_2 \otimes \mathcal{E}_1^* C_4) + (-\mathcal{P}^* C_2 \otimes - \mathcal{E}_1^* C_4) + (-\mathcal{M}^* C_2 \otimes \mathcal{E}_2^* C_4) \\ &= (-(\mathcal{M}^* \otimes \mathcal{E}_1^*) (C_2 \otimes C_4)) + (-(\mathcal{P}^* \otimes \mathcal{E}_1^*) (C_2 \otimes C_4)) + (-(\mathcal{P}^* \otimes \mathcal{E}_2^*) (C_2 \otimes C_4)) \\ &= (-(\mathcal{P}^* \otimes \mathcal{E}_2^*) (C_2 \otimes C_4)) \end{split}
```

REFERENCES

- [1] Garcia S. R., Putinar M., "Complex Symmetric Operators and Applications", *Trans Amer Math Soc*, Vol. 358, (2005),1285-1315. DOI:10.1090/S0002-9947-05-03742-6.
- [2] Garcia S. R., Putinar M., "Complex Symmetric Operators and Applications II", *Trans Amer Math Soc*, Vol. 359, (2007), 3913-3931. DOI:10.1090/S0002-9947-07-04213-4.
- [3] Garcia S. R., Putinar M., "Some new classes of complex symmetric operators", *Trans Amer Math Soc*, Vol. 362, no. 11, (2010), 6065-6077. DOI:10.1090/S0002-9947-2010-05068-8.
- [4] Garcia S. R., Putinar M., "Complex symmetric partial isometries", *Journal of Functional Analysis*. Vol. 257, no.4, (2009), 1251-1260. DOI: 10.1016/j.jfa.2009.04.005.
- [5] Garcia S. R., "Means of unitaries, conjugations, and the Friedrichs operator", *Journal of Functional Analysis*, Vol. 335, no.2, (2007), 941-947. DOI:10.1016/j.jmaa.2007.01.094.
- [6] X.Wang, Z. Gao, "A note on Aluthge transforms of complex symmetric operators and applications",

```
\begin{split} &= \textbf{-} \left( \left( \mathcal{M}^* \otimes \boldsymbol{\epsilon}_1^{\ *} \right) + \left( \mathcal{P}^* \otimes \boldsymbol{\epsilon}_1^{\ *} \right) + \left( \ \mathcal{M}^{\ *} \otimes \boldsymbol{\epsilon}_2^{\ *} \right) + \\ &\left( \mathcal{P}^* \otimes \boldsymbol{\epsilon}_2^{\ *} \right) \right) \left( C_2 \otimes C_4 \right) \\ &= \textbf{-} \left( \left( \mathcal{M}^* \oplus \mathcal{P}^* \right) \otimes \left( \boldsymbol{\epsilon}_1^{\ *} \oplus \boldsymbol{\epsilon}_2^{\ *} \right) \right) \left( C_2 \otimes C_4 \right) \\ &= \textbf{-} \left( \left( \mathcal{M} \oplus \mathcal{P} \right) \otimes \left( \boldsymbol{\epsilon}_1 \oplus \boldsymbol{\epsilon}_2 \right) \right)^* (C_2 \otimes C_4). \end{split}
```

S.O. on \mathcal{H} with $C_1 \otimes C_2 = C_2 \otimes C_1$, then $\mathcal{M}_2 \boxplus \mathcal{M}_2$ is a skew $(C_1 \otimes C_2)$ $(C_2 \otimes C_2)$ -symmetric operator on $\mathcal{H} \otimes \mathcal{H}$. **Proof:** $(C_1 \otimes C_2) \ (\mathcal{M}_1 \boxplus \mathcal{M}_2)^* \ (C_2 \otimes C_2) = (C_1 \otimes C_2) \ (\mathcal{M}_1^* \otimes I + I \otimes \mathcal{M}_2^*) \ (C_2 \otimes C_2)$ $= [(C_1 \otimes C_2) \ (\mathcal{M}_1^* \otimes I) + (C_1 \otimes C_2) \ (I \otimes \mathcal{M}_2^*)] \ (C_2 \otimes C_2)$ $= ((C_1 \otimes C_2) \ (\mathcal{M}_1^* \otimes I) + (C_2 \otimes C_1) \ (I \otimes \mathcal{M}_2^*)] \ (C_2 \otimes C_2)$ $= ((C_1 \mathcal{M}_1^* \otimes C_2) \ (\mathcal{M}_1^* \otimes I) + (C_2 \otimes C_1) \ (I \otimes \mathcal{M}_2^*)) \ (C_2 \otimes C_2)$ $= (C_1 \mathcal{M}_1^* \otimes C_2 + C_2 \otimes C_1 \mathcal{M}_2^*) \ (C_2 \otimes C_2)$ $= (C_1 \mathcal{M}_1^* \otimes C_2) \ (C_2 \otimes C_2) + (C_2 \otimes C_1 \mathcal{M}_2^*) \ (C_2 \otimes C_2)$ $= C_1 \mathcal{M}_1^* C_2 \otimes I + I \otimes C_1 \mathcal{M}_2^* C_2$ $= -\mathcal{M}_1 \otimes I + I \otimes -\mathcal{M}_2$ $= -(\mathcal{M}_2 \boxplus \mathcal{M}_2).$

Proposition 3.6: If \mathcal{M}_1 and \mathcal{M}_2 are skew C_1C_2 -

- *Integral Equations Operator Theory*, Vol. 65, (2009), 573-580. DOI:<u>10.1007/s00020-008-1564-y</u>.
- [7] Zhu S., Li C. G., Ji Y. Q., "The class of complex symmetric operators is not norm closed", *Proc. Amer. Math. Soc.* Vol. 140, no.5,(2012), 1705-1708. DOI:10.1090/S0002-9939-2011-11345-5.
- [8] Chalendar I., Fricain E., Timotin D., "On an extremal problem of Garcia and Ross", *Oper. Matrices*, Vol. 3, no. 4, (2009), 541-546. DOI:10.7153/oam-03-31.
- [9] Cima J. A., Ross W. T., Wogen W. R., "Truncated Toeplitz operators on finite: dimensional spaces", *Oper. Matrices* Vol. 2, no. 3, (2008), 357-369. DOI:10.7153/oam-02-21.
- [10] Cima J. A., Garcia S. R., Ross W. T., Wogen W. R., "Truncated Toeplitz operators: spatial isomorphisim", unitary equivalence, and similarity, *Indiana Univ. Math. J.* Vol. 59, no. 2, (2010), 595-620. DOI:10.1512/jumj.2010.59.4549.
- [11] Garcia S. R., Ross W. T., "A non-linear extremal problem on the Hardy space", *Comput. Methods Funct. Theory*, Vol. 9 , no.2, (2009), 485-524. DOI:10.1007/BF03321742.

- [12] Sedlock N. A., Properties of Truncated Toeplitz Operators, ProQuest LLC. Ann Arbor, MI, Ph. D. thesis, Washington University in St. Louis ,2010.
- [13] Dakheel S.O., Ahmed B.A., "On C₁C₂-symmetric Operators", *Journal of Interdisciplinary Mathematics*, Vol. 24, no.7, (2021). DOI:10.1080/09720502.2021.1966953.

Arabic Abstract

Anable Abstract C_1C_2 هنا الموثر المتناظر من النمط C_1 و C_2 مؤثرات مترافقة معرفة على فضاء هلبرت العقدي القابل للفصل C_1 هنا البحث، قدمنا مفهوم المؤثر المتناظر من النمط C_1 على المؤثر المقود الخطي المُعرف على فضاء هلبرت العقدي القابل للفصل أذا تحقق C_1 C_1 C_2 C_3 أيضاً، تمت دراسة و مناقشة العديد من المؤثرات.