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The widespread adoption of 5G technology has exacerbated electromagnetic pollution due to the extensive deployment of 

high-frequency, energy-intensive electronic devices. This has, in turn, heightened the demand for the development of high-

performance electromagnetic shielding materials. MXenes, a novel class of two-dimensional materials, exhibit exceptional 
electrical conductivity (>10,000 S/m) and tunable surface chemistry, making them ideal candidates for shielding 

applications. This article systematically reviews MXene synthesis methods, analyzes their advantages and limitations, and 

elucidates their electromagnetic shielding mechanisms dominated by interfacial polarization and conductive network 
formation. We critically evaluate global advancements in MXene-based architectures, including porous foams and hybrid 

composites with graphene/CNTs. Finally, we identify key challenges in balancing electrical conductivity with dispersion 

stability during scalable manufacturing and propose strategies to improve environmental durability through surface 
passivation and atomic-layer-deposited encapsulation. 
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1. Introduction  

With the rapid evolution of wireless communication technologies, particularly the global deployment of 5G networks (6G research is already 

underway), the operating frequency of electronic devices has escalated into the GHz range. While these devices greatly enhance convenience, 

their electromagnetic radiation poses a risk of electromagnetic interference (EMI)  [1-3]. This interference not only accelerates the degradation 

of electronic components but also threatens human health, both physically and mentally [4 5]. Conventional metal-based shields face 

fundamental limitations in next-generation applications. Their high mass density conflicts with lightweighting requirements in aerospace and 

portable electronics, while galvanic corrosion in humid environments compromises durability. In addition, poor mechanical flexibility limits 

conformal coating on curved surfaces, and eddy current losses at high frequencies (>10 GHz) significantly degrade shielding efficiency (SE) 

by 40-60%  [6]. These intrinsic shortcomings have led to intensive research into advanced materials that combine ultralight architectures, 

corrosion resistance and tunable electromagnetic properties [7]. 

MXenes, a unique class of two-dimensional materials primarily composed of transition metal carbides, nitrides, or carbonitrides, have emerged 

as promising candidates for efficient EMI shielding. First discovered by Yury Gogotsi in 2011, MXenes possess the key properties required for 

effective shielding [8-10]. The typical chemical formula of MXenes is Mn+1XnTn, where M stands for early transition metals, X represents 

carbon and/or nitrogen, and Tx refers to surface termination groups such as -OH, -O-, or -F [11-13] . To date, over 30 distinct MXenes materials 

have been extensively investigated and documented in the literature. Moreover, theoretical calculations have identified more than 130 potential 

MXene compositions, highlighting the vast compositional diversity within this class of materials [14] . 

This review provides an overview of the preparation methods of MXenes and their respective advantages and disadvantages, as well as their 

electromagnetic shielding mechanisms. It also highlights significant research progress in the electromagnetic shielding application of Ti3C2Tx 

MXene, particularly from a structural perspective. Critically, the future development of MXene-based EMI shielding materials requires dual 

breakthroughs in performance optimization and safety compliance: (1) Manufacturing process standardization must establish industrial-scale 

protocols aligned with WHO EMF exposure thresholds (<10 W/m² @2-300 GHz)[15] and EPA material attenuation criteria (ANSI C63.19-

2019)[16]; (2) Material design should integrate environmental safety factors, such as passing biodegradability tests specified in IEC 62305-

4:2021[17], to mitigate ecosystem risks throughout the life cycle; (3) Development of adaptive dynamic shielding mechanisms capable of 

maintaining compliance with ICNIRP 2020 public health protection guidelines[5] under extreme EMI conditions (>40 dB, per IEEE Std 299.1-

2023[18]). 
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Nomenclature & Symbols 

EMI Electromagnetic Interference HF Hydrofluoric Acid 

HCl Hydrochloric Acid  LiF Lithium Fluoride 

DMSO Dimethylsulfoxide NH4HF2 Ammonium Hydrogen Fluoride 

SE Shielding Effectiveness  T Transmission Coefficient 

R Reflection Coefficient A Absorption Coefficient 

SET Total Shielding Effectiveness MOF MXene/Metal-Organic Framework 

2. Preparation of MXenes 

MXenes are layered materials where the M (transition metal) and X (carbon/nitrogen) atoms are alternately arranged, obtained by selectively 

etching the A (typically aluminum) atomic layers from the MAX. The most common methods for preparing MXene nanosheets are the 

hydrofluoric acid (HF) etching method and the etching method using a mixture of hydrochloric acid (HCl) and fluoride salts. These preparation 

methods can significantly influence the types and content of surface functional groups, the layered structure, and the overall properties of the 

MXene nanosheets. 

2.1. HF etching 

In 2011, Naguib [8] et al. obtained Ti3C2Tx MXene by etching off the Al layer in Ti3AlC2 by HF, and the etching principle is shown in Fig.1. 

However, since the MXenes lamellae prepared by this method often contain certain holes, which will adversely affect its application, and the 

HF solution is more toxic and corrosive, the preparation process is prone to hazards and environmental issues. Additionally, the experimental 

parameters, such as temperature, HF mass concentration, and reaction time, are not easily controllable, so there is a need to find a versatile and 

relatively mild alternative. Therefore, it is necessary to find a universal, relatively mild, and environmentally friendly material to replace HF 

for the preparation of MXenes. 

 

Fig. 1. Schematic illustration of the exfoliation process for Ti₃AlC₂, (a) The crystalline structure of pristine Ti₃AlC₂, (b) Substitution of Al 

atoms by hydroxyl groups via selective etching with HF, (c) Separation of MXene nanosheets through ultrasonic cleavage of hydrogen bonds 

in methanol medium [8], Copyright 2011, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

2.2. Hydrochloric acid (HCl) and fluoride in-situ etching 

Etching MAX by in-situ generated hydrofluoric acid yields MXenes with a more uniformly dispersed layer structure. Ghidiu [19] et al. in 2014 

used a mixed solution of lithium fluoride (LiF) and HCl instead of HF as etchant.This method avoided the relatively dangerous HF in favor of 

the milder LiF and HCl. The introduction of LiF resulted in spontaneous intercalation of Li+ in MXenes, which significantly reduced the 

interlayer interaction force of the Ti3C2Tx MXene, and after exfoliation, it is easy to obtain single or few layers of Ti3C2Tx MXene. This 

preparation method is milder, with lower experimental risk, and the prepared MXene has a better delamination effect, large lateral size and 

better overall performance, which is a more common approach for the preparation of MXenes at present. 

2.3. Molten fluoride salt etching 

In addition to aqueous solution etching, molten fluorine salts can also be used for etching to prepare MXenes. The reaction principle is essentially 

the same as the solution method, where F reacts with the atoms of the A-layer in the fluorine-containing molten salts. Under high temperature 

and high concentration conditions, few-layer or monolayer MXenes nanosheets can be obtained. However, the molten salt method also has 

some obvious drawbacks: impurities will be generated in the experiment, these impurities are difficult to remove, and the purity and crystallinity 

of the product cannot be well guaranteed, which will affect its performance and application [20].  

2.4. Other methods 

There are many other ways to prepare MXenes, such as etching with sodium hydroxide and sulfuric acid [21, 22]. In 2013, Mashtalir et al [23] 

first used dimethylsulfoxide (DMSO) as an intercalating agent inserted into f- Ti3C2, and then ultrasonicated in water to strip f- Ti3C2 to form a 

stable colloidal solution, and MXenes were obtained by filtration. Given the high surface activity of MXenes, they exhibit significant adsorption 

properties, and the use of the solution etching method introduces trace amounts of water, which is unfavorable for applications in water-sensitive 

areas. Natu [24] used polar organic solvents instead of aqueous fluorine-containing solutions for the etching effect. Ammonium hydrogen 
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fluoride (NH4HF2) dissolved in the organic solvent decomposed into HF and NH4F, which could etch the A layer to form terminal fluorinated 

MXenes. Meanwhile, the Ti3C2Tx MXene obtained by this method has a better performance in sodium ion storage compared with Ti3C2Tx 

MXene prepared by the conventional aqueous phase etching method. The etching effect is shown in Fig.2. 

 

Fig. 2. (a) Selective chemical etching via polar aprotic solvents and ammonium hydrogen fluoride (NH4HF2) under water-free conditions, (b) 

Colloidal dispersion and stable suspension preparation through ultrasonic-assisted processing in polar solvents, (c) Integration of electrode 

components as high-capacity anode materials in sodium-ion batteries [24], Copyright 2020, Elsevier Inc. 

3. Electromagnetic Shielding Mechanism 

Electromagnetic shielding is a technical approach that utilizes shielding materials to obstruct electromagnetic wave transmission, with its 

fundamental principle being the creation of protective barriers to prevent electromagnetic radiation from penetrating designated spaces. This 

technology also serves as a crucial engineering solution for controlling electromagnetic interference phenomena. Usually, the shielding material 

works through reflection, absorption, multiple reflections, and other effects to attenuate incident wave energy [25]. The shielding mechanism 

is shown in Fig. 3. The shielding effectiveness (SE) is quantified by three key coefficients: transmission coefficient (T), reflection coefficient 

(R), and absorption coefficient (A), with the relationship A + R + T = 1. The total shielding effectiveness (SET) is expressed as the sum of three 

components [26-28]: 

SET= SER + SEA +SEM                                                                                                                                                              (1) 

SEA= – 10 log
T

(1–R)
                                                                                                                                                                                                (2) 

SER= – 10 log (1–R)                                                                                                                                                                                          (3)  

Here, SET, SER, SEA, and SEM stand for the total EMI shielding effectiveness, reflection loss, absorption loss, and multiple reflection loss 

respectively. In the process of EMI shielding, reflection loss occurs at the surface of the material, while absorption loss and multiple reflection 

loss are associated with interactions between interfaces within the material. Shielding materials typically contain a large number of positive and 

negative charge carriers, whose distribution is significantly influenced by the electromagnetic field. This interaction manifests as polarization, 

magnetization, and electrical effects. Absorption loss results from the interaction between dipoles in the material and the electromagnetic field, 

converting electromagnetic wave energy into thermal energy through dissipation. Absorption loss occurs within the material and depends on 

the frequency, electrical conductivity and magnetic permeability of the shielding material, independent of the type of electromagnetic wave. 

Higher values of these parameters generally lead to greater absorption loss. Reflection loss, on the other hand, arises from the mutual inductance 

between the magnetic and electrical conductors in the shielding material and the incident electromagnetic wave. When the impedance of the 

shielding material does not match that of the surrounding medium, it results in electromagnetic wave reflection[29, 30]. 

 

Fig. 3. The shielding mechanism of shielding materials  
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4. MXene-Based Electromagnetic Protection Materials 

4.1. Ti3C2Tx MXene-based randomly dispersed structural materials 

By simply mixing MXenes with a polymer matrix, a randomly dispersed structure can be obtained. Randomly dispersed MXenes structures are 

easily composited with carbon nanotubes, metal-organic frameworks, conductive polymers and other materials to form multifunctional 

composites. This composite structure not only enhances the electromagnetic shielding effect but also improves the material's mechanical 

properties and environmental stability[31, 32]. 

Cai et al [33] synthesized MXene/porous graphene (MX/HG) composite films using vacuum-assisted filtration. Through controlling the size of 

MXenes flakes and the content of HG, the L-MX/ HG films exhibit 9800 S·m⁻¹ conductivity, with 56.15 dB EMI shielding effectiveness (SE), 

and a thickness of just 5 μm. The mechanical strength of the MX/HG film is significantly enhanced, with tensile stress reaching 120 MPa, 

owing to the formation of hydrogen bonds between the MXene sheets and HG. Jang et al [34] prepared a gradient-structured MXene/metal-

organic framework (MOF)/carbon nanotubes (CNTs) composite film. Excellent electromagnetic shielding performance (40 dB) and 

electromagnetic wave absorption efficiency (42%) were achieved by reversing the concentration ratio of MXene/MOF/CNTs in the film 

thickness direction (Fig. 4a-d). Zhang et al [35] synthesized Ti3C2Tx MXene/co-doped polyaniline (Ti3C2Tx/c-PANI) EMI shielding 

composite films. Layer-by-layer (LbL) self-assembly enabled precise thickness control (40 μm ±1.2 μm) through electrostatic adsorption, 

overcoming limitations of solution casting methods." And DFT calculations confirmed that a 7:1 mass ratio maximizes hydrogen bond density 

between MXene edge -NH2 groups and c-PANI quinoid structures, achieving peak carrier mobility; the integration of MXene's two-dimensional 

conductive network with c-PANI's chain-like aggregation has been demonstrated to enhance EMI SE and tensile strength. The conductivity is 

24.4 S·cm⁻¹, EMI SE is 36 dB, and tensile strength is 19.9 MPa; they are 81, 2.3, and 7.7 times higher than those in the pure c-PANI film (Fig. 

4e-g). 

 

Fig, 4. (a) Schematic diagram of the synthesis of MXene/ZIF, (b) Gradient-structured MXene/MOF/CNF for absorption-enhanced 

electromagnetic interference shielding, (c, d) EMI shielding effectiveness of MZC-Zn and MZC-ZnCo measured from the (c) top and (d) 

bottom [34], Copyright 2024, Elsevier Inc. (e) Fabrication of the Ti3C2Tx /c-PANI films, (f) Electrical conductivity, (g) SET of pure c-PANI 

film and Ti3C2Tx /c-PANI films[35], Copyright 2019, Elsevier Ltd. 

4.2. Ti3C2Tx MXene-based thin film materials 

The exceptional electromagnetic interference shielding performance of MXene-based composite films is attributed to their high conductivity 

and the unique layered structure formed by the arrangement of two-dimensional sheets. Since the impedance mismatch at heterogeneous 

interfaces generates reflection losses and absorption losses inside MXene-based composites, constructing MXene-based composite films with 

complex internal structures is an effective method to prolong the transmission path of electromagnetic waves within the material, thus enhancing 

EMI shielding effectiveness. 

Jahanger et al [36] prepared composite films with different Ti3C2Tx MXene contents by solution casting method and systematically investigated 

their microstructures, mechanical properties and EMI shielding performance. The findings demonstrate that incorporating MXenes significantly 

enhances both conductivity and shielding effectiveness. When the Ti₃C₂Tx MXene content reached 80 wt%, the EMI shielding effectiveness 

peaked at 34.80 dB. Bai et al [37]prepared a nanosheet-AgNW-based composite transparent conductive film (TCF) using PU as a substrate. 

The films were exposed to accelerated aging tests under conditions of relative humidity (RH) of 85% ± 5%. The films exhibited distinct humidity 

sensitivity, with the spacing between the MXene (002) planes increasing from 9.8 Å to 12.3 Å when the RH was greater than 60%. This 

expansion disrupts the conductive networks within the films. Furthermore, the incorporation of an Al2O3 encapsulation layer, achieved via 

atomic layer deposition (ALD), led to an enhancement of the critical failure humidity to 90% RH. This alteration, in turn, ensured the 

maintenance of a stable EMI SE of 27.8 dB, with a fluctuation margin of ±0.5 dB, across the 8-13 GHz range. Given the poor structural stability 

of MXene films in a humid environment[38], Huang et al [39] developed a higher-performance composite film by vacuum-assisted filtration, 

combining cellulose nanocrystals (CNC) with 2D MXenes doped with polyaniline (PANI). The conductivity was improved by optimizing the 

ratio of the conductive components, while the material exhibited excellent mechanical strength (158 MPa) and electromagnetic shielding 
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effectiveness (57.1 dB) due to the strong hydrogen bonding between CNC and MXenes. Ultra-thin broadband MXene/rGO composite films 

(MGFs) prepared by Li et al [40]. The maximum reflection loss value of the 5-layer MGF is 57.7 dB, and the thickness is 0.148 mm; meanwhile, 

the effective bandwidth covers the entire measurement frequency range from 0.37 to 2.0 THz. Even more impressive is its excellent shielding 

performance, which reaches 54.2 dB. The measured results revealed outstanding performance in three key parameters: a peak reflection loss of 

389.9 dB·mm⁻¹, a maximum electromagnetic shielding effectiveness of 366.2 dB·mm⁻¹, and an effective absorption bandwidth reaching 11.1 

THz·mm⁻¹. Chang [41] et al. prepared Ti3C2Tx thin films (Fig. 5) through a multi-interface engineering strategy. Graphene oxide (GO) and 

CNTs bridged adjacent and interlayer MXenes sheet layers through multiple physical and chemical interactions, respectively, resulting in 

lamination, and the resulting films exhibited enhanced interfacial bonding and connected conductive networks. The presence of multiple 

interfaces enhanced the ability of Ti₃C₂Tx films to attenuate electromagnetic waves, resulting in an EMI SE of 36.19 dB and a shielding 

efficiency of 99.97%, meeting military requirements. 

 

Fig. 5. (a) Schematic diagram of the fabrication of MCG film, (b) Digital photographs of the original MCG film and the MCG film after 

bending, folding, and rolling, the (c) cross-section, (d) bent, and (e) surface SEM images of the MCG film, (f) EMI shielding performance of 

the films at different frequencies, (g) SEA, SER and SET values of the films, (h) SEA/SET ratios of the films[41], Copyright 2023, Elsevier Inc. 

4.3. Ti3C2Tx MXene-based porous materials  

The design of the porous structure helps prevent the agglomeration of the Ti₃C₂Tx MXene sheets and enhances the scattering and refraction of 

electromagnetic waves within the material, thereby improving its electromagnetic shielding performance[42, 43] 

Through the controlled directional freezing technique, Wang et al. [44] synthesized Ti3C2Tx MXene/Sodium Alginate (SA)/CNTs three-

dimensional materials, constructed directionally ordered porous structures, and realized multiple reflections and scattering of incident 

electromagnetic waves in the phase change materials. In addition, SA has abundant hydrogen bonding, which enhances the interlayer interaction 

between MXene and CNTs. Under electromagnetic wave incidence perpendicular to the pore-aligned direction, the material exhibited an 

exceptional EMI SE of 48.0 dB in the X-band. Yang et al. [45] prepared Ti3C2Tx MXene/polyvinyl alcohol (PVA) hydrogel-like materials 

using an ice-template freezing and salting-out method, which exhibit high conductivity, mechanical strength, and ultra-flexibility. In addition, 

they feature a honeycomb-like porous structure. The thin hydrogel shows excellent electromagnetic shielding of 57 dB due to the synergistic 

interaction between MXene, PVA, water and the bionic porous structure. Zeng [46] et al. successfully developed a lightweight and ultra-flexible 

crosslinked transition metal carbide (Ti3C2Tx MXene)-coated polyimide (PI) porous composite material (C-MXene@PI) through a chemical 

cross-linking method. This advanced material not only combines hydrophobicity, oxidation resistance, and extreme temperature stability, but 

also fully exploits MXene's intrinsic electrical conductivity. Through interfacial polarization effects between the PI matrix and the MXenes, 

combined with synergistic effects from the micrometer-scale porous structure of the composite foam, the material achieves integrated 

optimization of multifunctional characteristics. As a result, the composites exhibit excellent X-band EMI shielding (22.5 to 62.5 dB) (Fig. 6a-

c). Wang et al. [14] successfully prepared a highly ordered porous composite material (PCM) by introducing magnetic Co-C@MWCNTs into 

the MXene matrix using directional freezing. This material demonstrates significant performance enhancement in the field of advanced EMI 

shielding. The Co-C@MWCNTs in the material, along with the MXene nanosheets, form a three-dimensional conductive network, which 

facilitates electron migration and interfacial hopping. Combined with magnetic loss mechanisms, this significantly improves electromagnetic 

wave absorption. The composite material exhibits excellent conductivity of 849 S·m-1 and achieves a high EMI shielding effectiveness of 41.7 

dB. 
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Fig. 6. Preparation method of C-MXene@PI composite foams: schematic of (a) MXene flakes and (b) C-MXene@PI composite foams, (c) 

EMI shielding performance (SET, SEA, and SER) and SSE of C-MXene@PI composite foams as a function of sample density [46], 

Copyright 2022, The Author(s), (d) Schematic of Ti3C2Tx MXene nanosheets preparation, (e) Co−C@MWCNTs, and (f) 

MXene/SA/Co−C@MWCNTPCM preparation process, (g) Electrical conductivity of the prepared samples, (h) EMI SE of MXene, MS, and 

MSCZ PCMs for parallel electromagnetic waves [14], Copyright 2024, American Chemical Society 

5. Conclusion 

This review highlights the preparation techniques for MXene nanosheets, compares the advantages and limitations of various methods, and 

explores their application in electromagnetic interference (EMI) shielding. The article also examines current trends in MXene research and the 

structural characteristics of MXene-based materials. Since the initial synthesis of MXenes, significant advancements have been made in both 

fabrication methods and the understanding of their structural properties. However, challenges remain in the application of MXene composites 

for EMI shielding, including high production costs, susceptibility to oxidative degradation, and lamellar self-stacking. Addressing these issues 

requires efforts to reduce production costs, develop stable antioxidants for MXenes, and design suitable structural configurations. 

As a novel class of 2D transition metal carbides/nitrides, MXenes possess considerable promise for EMI shielding due to their metallic 

conductivity and tunable surface chemistry. With proper design and optimization, MXene-based materials are poised to make substantial 

contributions to various sectors, including electronics, communications, aerospace, and construction. As research progresses and technologies 

evolve, MXene-based EMI shielding materials are expected to have a broader range of applications and greater development potential. 
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