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1. Introduction 

Pineapple (Ananas comosus) is a tropical fruit highly sought 

after for its sweet taste [1]. Pineapple waste could be used for 

things such as fibres in composite materials and biogas [2], [3]. 

The market value of world pineapple production stood at USD 

27.08 billion in 2022. The largest producers in the world are 

Indonesia (3.20 Mt), followed by the Philippines (2.91 Mt) and 

Costa Rica (2.90 Mt) [4]. Malaysia is the 25th largest producer 

with a total production of 287,799 tonnes. Although some 

mechanization and automation systems exist, pineapples are 

primarily planted manually worldwide [5]. This is also true in 

Malaysia [6].  

The Malaysian government's National Agrofood Policy 2.0 

aims to modernize the agricultural sector, encouraging the 

adoption of smart farming techniques and data-driven decision-

making [7]. To align with these goals, the Malaysian 

Agricultural Research and Development Institute (MARDI) is 

developing a smart MD2 pineapple production system. 

Central to developing smart agricultural practices is the ability 

to make informed management decisions based on data [8], [9]. 

Traditional agricultural data analysis mainly utilizes structured 

data, such as sensor outputs or manually recorded metrics, 

presented in tabular form [10]. However, much valuable 

information is often found in unstructured formats, like 

cultivation manuals, field notes, and reports. These data types 

are challenging to process using conventional data analysis 

techniques, usually falling short when dealing with natural 

language inputs [11]. 

Recent advances in artificial intelligence, particularly in 

generative models such as large language models (LLMs), have 

shown promise in processing unstructured data [12]. LLMs 

such as GPT-4 by OpenAI and LLAMA2 by Meta use the deep 

learning neural network algorithm to predict word sequences 

based on given input contexts. These words form coherent 

sentences and paragraphs [13], [14]. These capabilities make 

LLMs suitable for various applications, including natural 

language processing, question-answering tasks, and complex 

information synthesis.  

1.1 Literature Review 

LLMs have shown exceptional performance in answering 

questions about subjects that they have been trained in, 
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including philosophy, mathematics, computer coding, and 

agriculture [15]. 

An interesting use case would be if LLMs can be trained on 

proprietary datasets such as confidential company documents 

or scientific experiments. Then, one can prompt questions about 

the data. However, in order to do this, whole documents would 

have to be fed in as part of the prompt. For large documents and 

datasets, this could be a challenge. 

An LLM's business model usually charges a certain amount of 

money for a prompt or query based on the number of characters 

or words being fed to the LLM. A group of words or characters 

is called a token. The more tokens are passed in a query or 

prompt, the more expensive it would be. Feeding a document 

such as the MD2 crop production protocol with over 20,000 

words equals roughly 27,000 tokens. Prompting a query with 

this amount of tokens to the GPT-4 model, for example, would 

cost USD 0.90 each for each prompt. This would get very 

expensive as the number of prompts increases.  

The use of LLMs in agriculture is relatively new, but there has 

been growing interest in their potential applications. For 

instance, [11] provides a comprehensive survey on LLMs, 

noting their adaptability across multiple fields, including 

agriculture. Despite prior attempts, difficulties arise when 

LLMs need to process structured datasets such as tables or 

databases when no substantial preprocessing occurs; this is 

demonstrated in [16]. Hybrid methods that combine structured 

and unstructured data to address this shortcoming are already 

being researched. One example is the HybridQA dataset, which 

incorporates multi-hop question answering of both these data 

types.[17]. 

Retrieval Augmented Generation (RAG) is another promising 

approach to enhancing overall LLM processing and accuracy 

when using mixed types of data [18]. RAG data processing 

improves the efficiency of LLMs processing long files by 

breaking the files down into smaller units/sections of readable 

data. Subsequently, it uses embeddings to find the most suitable 

information about a prompt for LLMs to process. 

Once the file is segmented, the contents of that segment are 

coded numerically, in a group of vectors called embeddings, 

and stored in a vector store. During the query, the prompt itself 

is also coded numerically and compared against the stored 

embeddings. The model selects a group of embeddings most 

similar to the original query "embedding" and feeds both the 

original prompt and the Group of embeddings to the model(s). 

Then the model(s) only process the feed prompting.  

The advantage of RAG comes primarily from the 

methodology's potential to reduce the number of tokens 

required to prompt LLMs, which, in turn, reduces the cost of 

usage, saves computation power, and still maintains the overall 

response accuracy. Additional support for the processing 

efficiency, illusion of costs, and accuracy of RAG-supported 

models comes from reducing Kolmogorov complexity. 

Kolmogorov complexity suggests that by simplifying the total 

amount of input type data requested, LLMs and human 

cognitive efficiencies occur during the response processing 

[19]–[21]. Fig. 1 shows the overall workflow of RAG. 

 

 
Figure 1. Overview of retrieval augmented generation. 

 

The adoption of Retrieval-augmented generation (RAG) could 

assist the crop production of MD2 pineapples by querying data 

collected from the field and juxtaposing it against a crop 

production guide, a document, through the prompt generated by 

the RAG technique and populating that prompt into a large 

language model (LLM). 

1.2 Objectives and Contributions 

This paper expands upon the findings in the literature review 

while exploring the performance of LLMs when querying both 

structured and unstructured data about MD2 pineapple 

production. It provides a side-by-side comparison of GPT-4 and 

LLAMA2. 

In summary, this study focuses on the feasibility and efficacy 

of the RAG approach when querying data considering the 

production of MD2 pineapples. The data sources included a 60-

page crop production protocol (unstructured data) and field data 

collected over a 14-month, which included 5,500 data points 

across 40 variables (structured data). This approach evaluates 

the ability of LLMs to handle complex queries that span diverse 

data types, identifies the challenges of integrating structured 

and unstructured information, and explores potential solutions. 
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1. Demonstrating the potential of RAG to simplify data 

inputs on a structured and/or unstructured data source(s) 

for the query. 

2. Assessing the performance of GPT-4 and LLAMA2 with 

structured, unstructured and combination querying data. 

3. Analyzing the computational and financial implications of 

the model, with a goal of practical application in 

agriculture. 

1.3 Structure of the Paper 

The remainder of this paper is organized as follows: Section 2 

outlines the methodology used, including data processing 

techniques and evaluation criteria. Section 3 presents the results 

and discusses the findings in detail. Section 4 provides 

conclusions and future work recommendations, focusing on 

enhancing the model’s diagnostic capabilities in agricultural 

settings. 

 

2. Materials and Methods 

2.1 Software Platform 

The Python 3.11.3 programming language was used to prompt 

two large language models (LLMs) through their application 

programming interface (API). The two LLMs chosen were 

GPT-4 and LLAMA2 due to their state-of-the-art capabilities in 

generative artificial intelligence [13], [14]. Both of these 

models were selected to compare performance with structured 

and unstructured recovery augmented generation (RAG) 

agricultural data. 

2.2 MD2 Pineapple Cultivation Data Input Sources 

Data for the study was sourced from two primary inputs: 

1. Unstructured Data: The MD2 pineapple crop production 

protocol, a 60-page document, guided cultivation practices, 

including land preparation, planting procedures, crop 

maintenance, and harvesting techniques [22]. This 

document was treated as unstructured data due to its natural 

language format. 

2. Structured Data: Field data was collected over 14 months 

during the 2023–2024 planting season. This data comprised 

5,500 data points across 40 parameters, covering production 

metrics (e.g., plot size, yield), crop characteristics (e.g., leaf 

length, fruit size), environmental conditions (e.g., 

temperature, humidity), and work logs (e.g., task details, 

equipment usage). Table 1 shows the complete data fields 

that were collected. 

These parameters were structured in a tabular format, 

representing the' conventional data collection approach of 

agricultural studies. The integration of these data sources aimed 

to evaluate LLMs' ability to answer queries requiring 

information from diverse data types, highlighting the 

challenges of processing structured versus unstructured data in 

a unified framework. 

2.3 Retrieval Augmented Generation 

The RAG technique was implemented to improve the querying 

process by reducing the data complexity and optimizing the 

amount of information fed into the LLMs. The methodology 

consisted of several key stages: 

1. Document Loading: The crop production protocol was 

converted into a digital format and processed as a series of 

text segments. The structured field data was imported in a 

tabular format. Both data sources were split into smaller 

units, with the protocol segmented into 198 splits and the 

structured data divided into 5,500 splits. 

Table 1. Data parameters were collected throughout the 

planting season. Four data types were collected. They are: 

production, crop, environmental, and work log data.  

Data type Parameter 

Production plot name, plot size, planting date, harvesting 

date, plant count, induction date, seedling 

size, seedling origin, yield, total input use 

Crop  plant height, leaf length, leaf width, leaf 

colour, leaf count, fruit size, and crown size  

Environment temperature, relative humidity, pressure, 

solar radiation, wind speed, precipitation, soil 

PH, soil EC, soil salinity, soil nutrient level  

Work log task name, task date, task location, task time, 

task report, operator name, equipment uses, 

input use, task image 

 

2. Data Splitting and Vector Embedding: The text segments 

and tabular data entries were numerically encoded as 

vectors, known as embeddings, using an embedding 

model compatible with the LLMs. These embeddings 

were stored in a vector database to facilitate efficient 

retrieval during the query process. 

3. Retrieval Methods: Five retrieval strategies were 

evaluated: Similarity Search (SS), Maximum Marginal 

Relevance (MMR), Self-Query (SQ), Compression 

(Comp), and a combined MMR+Comp approach. Each 

method was designed to optimize the retrieval of relevant 

data segments for the LLMs. 

4. Query Generation and Processing: Fifty query-answer 

pairs were manually generated to serve as a control for 

evaluating retrieval performance. For each query, the 

relevant splits were compared to the manually generated 

answer to assess their similarity in terms of context. A 

score of 1 was given if the split was relevant to the query 

context. A score of 0 was given if the split was irrelevant 

to the context. The score was aggregated and divided by 

the total number of queries. This indicated how well the 

retrieval method performed. The method with the highest 

score was chosen as the retriever. 

The most relevant data splits, identified through the retrieval 

methods, were combined with the original query and submitted 

to the LLMs for processing. The LLM's response was then 

compared to the control answers. 

2.4 Evaluation of Model Performance 

 Model performance was evaluated based on the accuracy of the 

responses generated by GPT-4 and LLAMA2. In evaluating the 
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LLMs (Language Learning Models) with RAG (Retrieval 

Augmented Generation), the predicted answers produced by the 

model were compared directly against a control set of answers 

produced manually. Points were accumulated for the number of 

correct answers to each query and divided by the total number 

of answers generated by queries. This was the LLM score. The 

evaluation procedure examined the percentage of correct 

answers for three categories of queries: 

1. Unstructured Data Queries: Questions requiring 

information from the Crop Production Protocol. 

2. Structured Data Queries: Questions that were based on the 

collection of field data. 

3. Combined Data Queries: Questions requiring information 

synthesis of unstructured and structured data. 

This categorization was functional to assess the model's 

capabilities relative to the specific data types and to gain 

insights into the challenges associated with retrieving structured 

and unstructured data. The retrieval component of the RAG 

framework is essential for completing the task.  

 

3. Results and Discussion 

3.1 Vector Store Retrieval 

The retrieval component of the RAG framework is essential for 

completing the task. Table 2 presents performance differences 

of the various retrieval strategies: Similarity Search (SS), 

Maximum Marginal Relevance (MMR), Self-Query (SQ), 

Compression (Comp), and MMR+Comp. 

Table 2. Performance of different retriever variations. They 

are similarity search (SS), maximum marginal relevance 

(MMR), self-query (SQ), compression (Comp), and a 

combination of MMR and Comp (MMR+Comp).  

Variation GPT-4 LLAMA 2 

SS 0.72 0.63 

MMR 0.85 0.79 

SQ 0.83 0.80 

Comp 0.73 0.66 

MMR+Comp 0.91 0.85 

 

The combination of MMR+Comp demonstrated the best 

retrieval performance across GPT-4 and LLAMA2. This 

combination leverages MMR, prioritizing the most relevant 

responses and removing unwanted information to achieve 

balance with respect to relevance/diversity. The SS method 

yielded the lowest performance, as this method may seek 

responses that are clustered together as similar but not 

necessarily diverse or contextually relevant. Using a hybrid 

retrieval method, MMR+Comp worked exceptionally well for 

queries that involved synthesizing more complex information. 

From the 40 assessed parameters, crop physical characteristics 

(fruit size, leaf length, etc.) and environmental characteristics 

(soil EC, temperature, etc.) demonstrated a high relevance score 

in the retrieval process. Inquiring about attributes like leaf 

length, fruit size, temperature, and precipitation yielded a score 

of no less than 0.85 for GPT-4 and LLAMA2, thus indicating 

these parameters are significant to answering crop questions. 

This result implies that prioritizing particular features could 

improve the relevance of the results returned, potentially 

improving the RAG system's overall accuracy. 

3.2. Model Performance 

The models' accuracy was measured by comparing the 

predicted answers to a set of manually generated correct 

answers across three query categories: unstructured data, 

structured data, and a combination of both. The results are 

presented in Table 3. 

Table 3. Model performance for queries on structured data 

(St), unstructured data (Un), and structured+unstructured data 

(St+Un) 

Data type GPT-4 LLAMA 2 

Un 0.87 0.78 

St 0.79 0.75 

St+Un 0.68 0.61 

 

GPT-4 outperformed LLAMA2 in all categories, with the most 

notable difference observed in the combined data queries. The 

higher accuracy for unstructured data (87% for GPT-4 and 78% 

for LLAMA2) can be attributed to the model's training on 

diverse natural language datasets, which aligns well with the 

nature of unstructured input. 

Structured data presented a greater challenge, reflected in the 

lower accuracy rates (79% for GPT-4 and 75% for LLAMA2), 

due to LLMs' limitations in interpreting tabular data and 

inferring relationships from isolated data points. The combined 

data type showed the lowest accuracy (68% for GPT-4 and 61% 

for LLAMA2), emphasizing the difficulty of synthesizing 

structured and unstructured information.  

This challenge arises from differences in data representation: 

structured data is typically organized in tabular form with 

explicit relationships, while unstructured data consists of free-

text descriptions with implicit context. LLMs' limitations in 

correctly synthesizing these data types would necessitate an 

advanced hybrid approach to eventually convert structured data 

into a more flexible format for processing by an LLM (e.g., 

embedding-based representations, semi-structured prompts, 

etc.).  

Results indicated that GPT-4 considerably outperforms 

LLAMA2 in all queries and that the most significant difference 

is observed in the combined data query. This is likely due to 

GPT-4 having a larger pre-training history on unfocused 

datasets; this experience helps it interpret/make sense of 

complex information. Moreover, the benefits of LLAMA2 

being an open-source system come with limitations with respect 

to processing mixed data dimensions with similar levels of 

sophistication as GPT-4. 

3.3. Cost Implications and Strategies for Mitigation 

The research compared the computational duration and 

monetary expenditure needed for GPT-4 and LLAMA2 

processing a standard query, about 27,000 tokens. For the 
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typical query, GPT-4 had an average processing time of 8.2 

seconds and cost of USD 0.90, while the cost-free and open-

source LLAMA2 required 11.4 seconds. The increased 

processing time for LLAMA2 can be attributed to its 

architecture being designed for affordability rather than speed. 

Regarding practical usage in agriculture, LLAMA2 can be a 

more economical alternative if the desired application, such as 

a real-time decision support tool for large-scale deployment, 

does not require immediate results. 

The cost of processing queries is proportional to the cost of 

several prompts and tokens. We recommend working in 

practical settings to reduce cost with methods such as pre-

filtering the data using RAG, batching the prompts, and using 

weight models for data-filtering methods before using LLMs 

such as GPT-4. These methods and others can reduce the cost 

to consumers of implementing LLMs while maintaining high 

accuracy in actual agricultural fields. 

The results of our work also indicated that there is potential to 

use LLMs to query public proprietary data. This could be 

proprietary data from scientific experiments and confidential 

organizational documents. Furthermore, there is potential to use 

LLMs to diagnose crop conditions during production and 

understand why crops are in the condition they are in by 

comparing field data to known protocols. 

4. Conclusion 

In this work, we established the principles of a Retrieval 

Augmented Generation (RAG)-based method to query data that 

has been collected from MD2 pineapple crop production. The 

method married structured and unstructured data sources 

consisting of a crop production protocol document and 

empirically collected field data, for over 14 months, to test the 

performance of LLMs, GPT-4 and LLAMA2 at synthesizing 

both data types. Our data showed that both LLMs performed 

accurately and independently using a data type, but both LLMs 

decreased in performance when synthesizing both types of 

information. This illustrates the challenge of combining 

disparate data formats and the need for methodological 

development. 

The significant issues with integrating structured and 

unstructured data stem from their individual properties. While 

structured data has natural relationships between data points 

due to its tabular nature, unstructured data has context primarily 

coded implicitly in natural language form. The problem of 

merging these two types of formats, with the subsequent 

reduced accuracy of the whole model when making combined 

queries, should lead to future experiments with preprocessing 

models like converting structured data to a semi-structured 

format to improve accuracy. 

Regarding computational efficiency, GPT-4 shows that it has 

overall better accuracy than LLAMA2 in terms of workloads 

that were constructed with the robustness of handling data 

queries with datasets of structured and unstructured forms. That 

said, this comes with a higher financial cost - approximately 

USD 0.90 per typical query for all processing that includes 

27,000 tokens worth of data. While LLAMA2 has a lower 

operational cost to run an average query, it also performs with 

a little less accuracy, particularly with mixed datasets, it 

presents the structure of cost efficiency versus accuracy in 

operational labor. Approaches to control most of these costs to 

be more efficient in operational situations with agricultural 

datasets may be by batching prompts or utilizing real-time 

agriculture specialty/knowledge context and static modeling to 

pre-filter using RAG or RAG-like approaches, or using 

lightweight models to consider as initial contextual operation 

models to improve accuracy once real data process model may 

have time constraints in query processing time. 

Future work with the model as an assessment instrument will 

emphasize developing agricultural datasets that will include 

more dynamic input data to facilitate and support better 

diagnostics in supporting evidence in crop issues, e.g., dynamic 

real-time disease reporting systems and/or real-time high-

resolution imagery.  
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