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1. Introduction 

DOA "Direction of arrival" is a metric in single processing to 

determine the angle from which a signal or wave originates. 

This leads to its use in satellite communication systems, such as 

radars, wireless communications, military domains, etc [1], [2]. 

This usage requires an accurate DOA, hence planar antenna 

arrays will be used, as they allow the DOA to give the foremost 

measures. Planar antenna arrays (i.e., uniform rectangular 

arrays (URA)) have been widely used in many communication 

fields, such as mobile networks, sonar, navigation, and radar. 

[3]-[5] is an important technique in estimating the observed 

signal's Two-dimensional direction of arrival (2D-DOA). 

Planar antenna arrays perform better than a single sensor in 

signal reception and parameter estimation. Consequently, many 

methods have recently been used to estimate the DOA based on 

the planar array. Multiple signal classification( MUSIC) 

methods were the first high-resolution to correctly exploit the 

underlying data model of narrowband signals in additive noise 

[6], the maximum likelihood method [7], the parallel factor 

(PARAFAC) method [8], the matrix pencil method [9], the 

estimation of signal parameters via exploits sensor array 

rotational invariance. Techniques (ESPRIT) algorithm [10] and 

so on. Even so, those methods are approached with the problem 

of high computational complexity in the planar array resolution. 

The number of sensors in a planar array is an important factor 

that impacts the performance of DOA estimation methods. 

More sensors mainly lead to high accuracy in estimating the 

signal parameters. Although increased hardware costs. 

Moreover, processing data complexity. Thus, finding the best 

number of sensors for a specific application seeks to assess 

factors like desired performance, cost constraints, and 

computational limitations [11]. However, the determined 

number of antenna arrays is a highly nonlinear optimization 

problem. As the complexity of antenna arrays increases, 

traditional methodologies have arisen as valuable tools for 

achieving optimal design solutions [12]. Whereas various 

optimization approaches have different levels of complexity 

and speed, the outcome in array design depends on their ability 

to find the best solution [13]. This project used a genetic 

algorithm (GA), which is like an innovative evolutionary 

optimization algorithm that explores a wide range of 

possibilities and has the potential to produce strong and 

adaptable designs [14]-[16]. This paper investigates the use of 

planar antenna arrays in radar systems for estimating the DOA 

of the observed signals, targeting both azimuth and elevation 

angles. While using algorithms such as ESPRIT to estimate 
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DOA, previous works usually do not consider the complicated 

tradeoff between accuracy, computational efficiency, and cost. 

In this paper, the Algorithm used is ESPRIT; however, a new 

optimization technique based on GAs was proposed to find the 

most appropriate number of antenna elements in a planar array, 

which is a factor that influences the accuracy and efficiency of 

the radar directly. Unlike the conventional methods, which 

require fixed or heuristic configurations, the proposed 

optimization driven by GA can offer a flexible and adaptive 

solution for enhancing DOA estimation with potentially 

reduced system complexity and cost. This is considered 

algorithmic innovation combined with practical efficiency, 

setting this approach apart from earlier studies. 

The paper is organized as follows: Section 2 discusses the 

research background and previous related works. Section 3 

presents a detailed description of the proposed method. Section 

4 presents the simulation and results; Section 5 presents the 

conclusions drawn from this study and recommends possible 

future research directions. 

 

2. Background and Related Work 

2.1 Direction of Arrival Concepts 

The DOA estimation aims to determine the direction of arrivals 

using an antenna array system by processing the received signal 

that radiates a desired signal while suppressing undesired ones. 

It determines the angle between the direction of a radio wave's 

arrival and an array system's axis. This estimate is based on the 

phase differences measured between multiple arrivals of the 

received signal at multiple array elements, resulting from 

differences in travel path. The direction of incoming signals can 

be inferred by accurately estimating phase differences.  

As illustrated in Fig. 1 [17], where the time delay is given 

according to (1): 

𝜏 =
𝑑 𝑠𝑖𝑛 𝜃

c
                                    (1) 

Where 𝑑 is the distance between two elements, 𝑐 is the velocity 

of light, and 𝜃 is the angle of the incoming signal. 

2.2 Planar Array and Data Model 

As shown in Fig.2 and Fig.3, we consider a uniform rectangular 

array with 𝑀 rows and 𝑁 columns, where 𝑀 and 𝑁 represent 

the number of sensors along the x and y axes, respectively. The 

distance between adjacent elements is 𝑑. In the far field, we 

assume that they are 𝐾 uncorrelated sources. The 𝑘𝑡ℎ source is 

characterized by its elevation angle (𝜃𝑘) and azimuth angle 

(𝜑𝑘). 

 

Figure 1. Direction of Arrival Estimation 

The principle of the product of array coefficients is used to find 

the plane antenna array's coefficient. As a result, the 

quantitative matrix coefficient is given according to (2), (3), and 

(4) [17]: 

А𝐹(𝜃, 𝜑) = А𝐹𝑥 . А𝐹𝑦 = [
sin (

𝑀
2 

)𝛹𝑥

𝑠𝑖𝑛
𝛹𝑥

2

] ∙ [
sin (

𝑁
2 

)𝛹𝑦

𝑠𝑖𝑛
𝛹𝑦

2

]         (2) 

𝛹𝑥 = 𝐾𝑑𝑥𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑                                     (3) 

𝛹𝑦 = 𝐾𝑑𝑦𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑                                     (4)         

Equation (2) is derived using the principle of the product of 

array coefficients for a rectangular planar antenna array. The 

total array factor 𝑨𝑭(𝜽,𝝋)) is expressed as the product of the 

array factors along the x- and y-axes, denoted by 𝑨𝑭𝒙 and   𝑨𝑭𝒚, 

respectively. These array factors are derived by summing the 

contributions of all antenna elements, each contributing a phase 

shift based on its position relative to the origin and the direction 

of the incident signal. 

The phase differences 𝛹𝑥𝑎𝑛𝑑𝛹𝑦   for the 𝑥 𝑎𝑛𝑑 𝑦  directions are 

given by (3) and (4), respectively, where 𝐾 = 2𝜋\𝜆    is the 

wave number, 𝑑𝑥  𝑎𝑛𝑑 𝑑𝑦  are the spacing between elements 

along each axis, 𝜃  is the elevation angle, and 𝜑 is the azimuth 

angle. These terms ensure that the array's geometry and the 

signal direction are accurately represented in the array factor.  

The numerator in (2) accounts for the constructive and 

destructive interference of the signals from multiple elements. 

At the same time, the denominator normalizes the pattern based 

on the number of elements (𝑀 𝑎𝑛𝑑 𝑁) and their spacing. 

Considering the received signal has azimuth and elevation 

angles, with directions of arrival, the (𝑁 × 𝑀) planar array 

collected 𝐷 signals, and the received signal could be written as 

shown in (5) and (6) [18]:  
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𝑥 = [𝑎(𝜃1, 𝜑1)𝑎(𝜃2, 𝜑2)… 𝑎(𝜃𝑑, 𝜑𝑑)]

[
 
 
 
 
𝑆1(𝑡)

𝑆2(𝑡)

.

.
𝑆𝑑(𝑡)]

 
 
 
 

+ 𝑛(𝑡)         (5) 

𝑥 = 𝐴𝑆(𝑡) + 𝑛(𝑡)                                                                    (6) 

  

Where 𝐴 is the array steering vector corresponding to the 

direction of arrival, 𝑠(𝑡) is the desired signal beam, and 𝑛(𝑡) is 

the added noise beam. 

 

DOA estimation and adaptive beam forming algorithms rely on 

the covariance matrix in array signal processing. For the 

complex signal received by the array, if considering (4), the 

covariance matrix is given by (7) [19]: 

𝑅𝑥 = 𝐸[𝑋. 𝑋𝐻]                                                                      (7) 

𝐸 is the mathematical expectation, and 𝐻 is the complex 

conjugate transpose. 

Considering that the signal and noise are uncorrelated and that 

the noise is white Gaussian noise, substitute the value of 𝑥(𝑡) 

from (8) [20]: 

𝑅𝑥 = 𝐸 [(𝐴𝑆 + 𝑛)(𝐴𝑆 + 𝑛)𝐻] 

𝑅𝑥 = 𝐴𝐸[𝑆𝑆𝐻]𝐴𝐻 + 𝐸[𝑛𝑛𝐻] 

𝑅𝑥 = 𝐴𝑅𝑠𝑠𝐴
𝐻 + 𝑅𝑛                                                                  (8) 

𝑅𝑥 = 𝐴𝑅𝑠𝑠𝐴
𝐻 + 𝜎𝑛

2𝐼 

 

𝑅𝑠𝑠 is the signal correlation, 𝑅𝑛 is the noise correlation, 𝜎 is the 

noise variance, and 𝐼 is the identity matrix. 

 

(a) Uniform planar array geometry [21]. 

 

 

(b) Uniform planar array geometry with increasing and 

decreasing d [21]. 

Figure 2. Comparison of Uniform Planar Array Geometries 

2.3 The 2D- ESPRIT Algorithm: 

The Estimation of Signal Parameters via Rotational Invariance 

Techniques (ESPRIT) algorithm [22] inherits the displacement 

invariance property of sensor arrays to acquire significant 

computational benefits corresponding to traditional methods 

such as MUSIC (Multiple Signal Classification). Displacement 

invariance points out that the array impact stays unchanged 

under spatial rotations as long as the relative positions of the 

sensors are kept. This property permits ESPRIT to employ the 

array's configuration to reduce computational complexity [23]. 

Esprit algorithm decomposes the covariance matrix into several 

matrices each of which is the outer product of an eigenvector of 

the covariance matrix, the number of eigenvectors is equal to 

the array dimensions therefore by using the (6)-(8), estimated 

directions are calculated from the imaginary part or the real part 

using (9), and (10): 

Ѳ~𝑘 = 𝑠𝑖𝑛 − 1 [
𝜆 < 𝜑

2𝜋|∆1|
]                                              (9) 

 

𝛾~𝑘 = 𝑠𝑖𝑛 − 1 [
𝜆 < 𝜑

2𝜋|∆2|𝑐𝑜𝑠Ѳ𝑘
]                                   (10) 

   

Where 𝑘 ~  is the azimuth angle estimate and 𝛾~𝑘 is the 

elevation angle estimate.  is the wavelength in meters, 1 is 

the distance separation between the sub arrays in the azimuth 

plane, 2 is the distance separation between the sub arrays in 

the elevation plane, and (𝑘 = 1,2,3… . 𝐾), where 𝐾 is the total 

number of sources. These steps are repeated for each assumed 

source for different cases, changing the number of snapshots, 

the correlation factor, the signal-to-noise ratio, and other 

factors. Then the Root Mean Square error RMS in degrees, 

obtained from both the Azimuth and the Elevation angles, is 

calculated as shown in (11) [24]: 
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𝑅𝑀𝑆 − 𝑒𝑟𝑟𝑜𝑟

= √(
(Ѳ1 − Ѳ1̃)

2
+ (Ѳ2 − Ѳ2̃)

2
+ ⋯(Ѳ𝑘 − Ѳ�̃�)

2

(𝐾 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑡𝑟𝑖𝑎𝑙𝑠)
)    (11) 

2.4 Genetic Algorithms (GA)  

Genetic Algorithm [25] is an evolutionary optimization 

technique inspired by natural selection and Mendel's laws of 

inheritance. It operates by mimicking the natural evolution 

process, encoding the solutions as chromosomes, and 

improving them iteratively through a selection, crossover, and 

mutation operation. This strategy particularly effectively finds 

near-optimal solutions in complex, large-scale problem spaces. 

The GAs can be computational because of the number of 

parameters involved in encoding and processing [26]. The 

Algorithm typically begins by randomly generating an initial 

population of solutions, evaluating their fitness, and iteratively 

producing new generations through genetic operators to 

improve solution quality.  

As shown in Fig.3, the genetic Algorithm proceeds with the 

mutation function, which introduces variations by replacing the 

least fit solution in the population with a newly generated one. 

This step aims to promote diversity and prevent premature 

convergence. The process then repeats itself in evaluating 

solutions, applying crossover and mutation, and updating the 

population. These steps are repeated until a predefined stopping 

criterion is met, ensuring that the Algorithm converges towards 

an optimal or near-optimal solution, as outlined. 

 

Figure 3. Pseudocode of the Genetic Algorithm 

 

3. Planar Array Antenna Element Optimization  

This study adopts the ESPIRIT algorithm to improve signal 

orientation and attendance estimation [27], [28]. An algorithm 

was used to determine two angles, azimuth and elevation, using 

a planar sensor array. The advantage of this system is that it can 

simultaneously cover two layers, one specified for azimuth and 

the other for elevation. This improvement is significant over 

linear sensor arrays[29], [30] that select only one plane on the 

internal axis. Simulations were performed using Python, 

allowing the researchers to streamline the experiments and 

analyze the results. This approach aims to provide more 

accurate and efficient simulation results to reduce the 

performance of the ESPIRIT technology by using a planar 

sensor array. Research shows that this improvement in matrix 

design contributes to angle estimation accuracy, and signal 

reception generally improves[31]-[35]. 

Even though ESPRIT offers a solid and effective method for 

estimating angles, other optimization approaches, such as GA, 

might be explored. GA is considered a strong search that can 

explore a large set of potential solutions that could lead to the 

optimal or quasi-optimal solutions of a given complex problem. 

In signal processing applications, GAs can be used to find 

solutions for optimizing either the parameters of the sensor 

array or signal processing algorithms. However, in most cases, 

GAs are more computationally expensive than ESPRIT. 

 

To further enhance ESPRIT's performance in an adverse 

environment subject to noise and interference, a suggested 

exploration would be to combine ESPRIT with GA into a 

hybrid scheme. This scheme could also use GA to pre-process 

the signal or optimize its parameters for the ESPRIT algorithm. 

This scheme ideally might achieve more accuracy and 

robustness compared to pure ESPRIT. However, this hybrid 

scheme yields additional complexity from the implementation 

and computational load points of view. Hence, the possible 

performance advantages are compromised against the natural 

costs [36]. 

This method systematically describes the steps for providing 

advanced signal-to-result direction estimation using the 

ESPRIT system: 

• Building the Equally Spaced Array 

A Gaussian distribution is used to construct 2D models to 

generate a covariance matrix. The dimensions of the matrix 
(M1xM2) are determined based on the number of images (N). 

• ESPIRIT Calculation: 

The ESPIRIT algorithm estimates the angle of the received 

signals. This process is repeated (nr) times to obtain the error 

matrix. 

• Angle Estimation 

The face of each signal is computed based on the uniform 

structure of the matrix. 

• Fitness Function 

The performance of parameter sets (K,  N,M1,M2, and nr) is 

evaluated using the ESPIRIT algorithm to estimate azimuth and 

elevation angles. The genetic Algorithm computes the RMS 

error between the estimated and model angles and minimizes it 

to determine the optimal parameter set. 

• Genetic Algorithm Integration 

Using a genetic algorithm, the parameters 
(K,  N,M1,M2, and nr) have been optimized to reduce the RMS 

errors obtained from the ESPIRIT algorithm. The process 

requires starting with several chromosomes with random 

parameter values in a particular range, using the ESPIRIT 

algorithm to search each chromosome to calculate the mean 

RMS error, selecting to create a new population, making 

crossovers and mutations repeat for generations. 

• Parameter Optimization Function 

This function sets parameter ranges and genetic algorithm 

parameters, invokes the function, and prints the best parameters 
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found. The objective of the genetic Algorithm is to find the best 

values for 𝐾,  N, M1, and M2 that result in the most accurate 

forward estimation using the ESPIRIT algorithm. Fig.4 shows 

the genetic Algorithm combined with ESPIRIT. 

 

Figure 4. Improving ESPRIT algorithm through GA. 

 

4. Experiment and Results  

4.1 Parameters Settings of the Proposed Method 

In an effort to improve the accuracy of estimating the direction 

and arrival of signals, the research comes up with an innovative 

technique that combines the ESPIRIT algorithm with genetic 

optimization. Combining these two powerful methods allows 

ESPIRIT to enhance its performance by optimizing the key 

parameters of the Algorithm. In this context, we will review 

some of the key applications of this state-of-the-art technology, 

which contribute to understanding the dynamic interaction 

between genetic design and ESPIRIT and how to improve its 

accuracy breed. Table 1 presents the parameters used for the 

genetic optimizer algorithm to optimize the ESPIRIT. 

 

Table1. Parameters GA For optimization ESPIRIT 
 

Parameter Value 

Number of generations 50 

Number of solutions to be selected 

as parents in the mating pool 

10 

Mutation Probability  0.1 

Crossover Probability  0.7 

Type of parent selection Singles -point 

The results of the combination of the genetic algorithm and the 

ESPIRIT algorithm show a significant improvement in the 

algorithm's performance. In the 50th experiment, the best 

solution was found with a Best Fitness value of about 63.81. 

This means that combining genetic aspects with the ESPIRIT 

algorithm led to a solution that significantly improves the 

estimation of the direction and arrival of signals.  Based on the 

results obtained after the fitting process between the genetic 

Algorithm and ESPIRIT, the best values of the algorithm 

parameters were found. These values are shown in Table 2, 

which displays the best values for the parameters that gave the 

least error. 

 

Table 2. Best value of the planar array. 

Attributes Value 

Number of target (K) 2 

Number of time snapshots (N) 85 

Number of time snapshots (N) 85 

Number of rows of sensors 

(M1) 

8 

Number of columns sensors 

(M2) 

3 

Number of repetitions (𝒏𝒓) 10,20,30 

 

These values are considered best based on the Best Fitness 

value relating to the solution with the specified characteristics 

(Best Solution) [𝐾, 𝑁,𝑀1,𝑀2, 𝑛𝑟]. These values are shown to 

be effective for improving the accuracy of estimating the 

direction and arrival of signals using the combination technique 

between the genetic Algorithm and ESPIRIT. 

4.2 Simulation and Discussion Results  

For illustration, we employed 2-D DOA estimation based on the 

proposed approach. We set 𝑀1 =  8 and 𝑀2 =  3 from the 

genetic Algorithm, leading to an array configuration antenna. In 

addition, 𝑘2 is assumed. 𝑘 far-field sources with identical 

power are assumed to be on the elevation-azimuth plane 
(𝜃𝐾 , 𝜑𝑘), where 𝜃𝐾 ∈ [0𝑜, 90𝑜] and 𝜑𝐾 ∈ [−90𝑜, 90𝑜], for 

𝑘 =  1,· · ·, 𝐾.  

We first examine the estimation accuracy in Figs.5, 6, and 7. 

The average root mean square error (RMSE) of the estimated 

azimuth and elevation angles with different SNR (10,20,30), 

respectively, expressed as (12) and (13): 

𝑅𝑀𝑆𝐸𝜃 = √
1

𝐼𝐾
∑ ∑(�̂�𝑘(𝑖) − 𝜃𝑘)

2
𝐾

𝑘=1

𝐼

𝑖=1

                      (12) 

 

𝑅𝑀𝑆𝐸𝜑 = √
1

𝐼𝐾
∑ ∑(�̂�𝑘(𝑖) − 𝜑𝑘)

2

𝐾

𝑘=1

𝐼

𝑖=1

                      (13) 

Those parameters are used as the performance metric, where 

�̂�𝑘(𝑖) and �̂�𝑘(𝑖) are the estimates of 𝜃𝐾  and 𝜑𝐾  for the 𝑖𝑡ℎ 

Monte Carlo trial, 𝑖 =  1, . . . , 𝐼. 

The results show that increasing the number of sensors (𝑴,𝑵) 

significantly improves accuracy up to a threshold, (𝒆. 𝒈. ,𝑴 =
𝟏𝟎), beyond which the accuracy gain diminishes while 
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computational complexity rises sharply. Similarly, increasing 

the number of snapshots enhances accuracy under low SNR 

conditions but exhibits diminishing returns above 100 

snapshots. For practical implementations, the configuration 

𝑴 = 𝟖,𝑵 = 𝟑 with 85 snapshots offers an optimal tradeoff, 

achieving a low RMSE of 0.2 degrees while maintaining 

reduced computational costs. These findings demonstrate the 

suitability of the proposed method for embedded or resource-

constrained radar systems. 

Fig. 5 presents the Root Mean Square Error (RMSE) of the 

estimated elevation and azimuth angles for an SNR of 10 dB. 

Two subplots show how the number of snapshots used affects 

the estimation accuracy. Fig.5 (a) shows the RMSE of the 

elevation angle versus several snapshots; in Fig.5 (b), the 

RMSE of the azimuth angle versus several snapshots is shown. 

We observe from the figure that estimation accuracy increases 

significantly with an increase in the number of snapshots, that 

is, RMSE decreases substantially when we increase the number 

of snapshots vastly from 1 to about 80, but after approximately 

80 snapshots, the improvement starts stabilizing, indicating a 

tradeoff between performance and computational cost. Another 

observation made in this context is that the elevation angle 

estimation shown in Fig.5 (a) experiences a smoother 

decreasing trend of RMSE, while the azimuth angle estimation 

in Fig.5 (b) becomes highly sensitive to noise and, thus, requires 

a greater number of snapshots to achieve stability. The 

importance of Fig. 5 resides in confirming an optimal number 

of snapshots for improved accuracy with reasonable 

computational complexity, thus corroborating the configuration 

selected herein (M = 8, N = 3, 85 snapshots) as a good 

compromise between accuracy and cost. In addition, it further 

reveals that GA-ESPRIT outperforms conventional methods 

based on MUSIC and PARAFAC, especially in low SNR 

scenarios. This affirms that the improved estimation accuracy 

resulting from using GA-ESPRIT with an optimal number of 

snapshots makes it very useful for practical applications in 

embedded radar systems. 

Research has shown that the performance of 2D-DOA 

estimation improves with an increase in the number of antennas,  

denoted as 𝑀, as seen in studies [33], [7], and [34]. Several 

algorithms have been used to enhance DOA estimation, and it 

was observed that higher 𝑀 values contribute to greater 

efficiency. However, an increased 𝑀 significantly raises 

computational complexity. It is hence important to strike a 

balance between accuracy and complexity. Our approach 

leverages GAs to find the optimal 𝑀 value, thus achieving 

comparable performance improvements without unnecessarily 

increasing M. Below is Table 3 with a summary of the 

performance comparison of our method against the existing 

approaches. 

Table 3 shows that the proposed method achieves comparable 

or better performance in terms of RMSE, particularly at lower 

SNR levels, compared to state-of-the-art methods such as 

MUSIC and PARAFAC. The GA-optimized ESPRIT algorithm 

requires fewer sensors, reducing hardware complexity and cost. 

While MUSIC offers high resolution, its computational 

demands increase exponentially with the number of sensors, 

making it less suitable for real-time applications. Similarly, 

PARAFAC, while computationally simpler, struggles with 

accuracy under low SNR conditions or when the number of 

snapshots is limited. 

Our approach effectively balances this tradeoff, achieving 

significant reductions in computational cost while maintaining 

high accuracy. This makes it highly suitable for embedded 

systems or portable radar solutions where both performance and 

resource constraints are critical considerations. 

 

Table 3. Performance comparisons with 85 snapshots 

Methods M1 * M2 RMS (10 SNR) RMS (20 SNR) Computational Complexity Real-Time Feasibility 

Proposed Method 8 * 3 0.2 0.2 𝑂(𝑛2) High 

[33] 10 * 10 1 0.7 𝑂(𝑛3) Low 

[7] 8 * 10 0.5 0.1 𝑂(𝑛2) Medium 

[34] 9 * 9 1 0.5 𝑂(𝑛 log 𝑛) Medium 

4.3 Discussion: Computational Feasibility and Future 

Directions 

In this work, the optimal size of the antenna array, defined as 

the best number of sensors, was determined using Genetic 

Algorithms (GAs). This approach balances accuracy in 

Direction of Arrival (DOA) estimation with resource 

efficiency. However, the iterative computations inherent in 

GAs can pose significant challenges, particularly for real-time 

radar systems with critical latency and computational 

efficiency. 

To address these computational demands, hardware 

accelerators such as Field Programmable Gate Arrays (FPGAs) 

and Graphics Processing Units (GPUs) offer promising 

solutions. These platforms are designed for high-performance 

parallel processing, enabling them to efficiently execute 

computationally intensive tasks such as GA operations and 

matrix calculations required by algorithms like ESPRIT. By 

leveraging these accelerators, the execution time of the 

optimization process can be significantly reduced, enhancing 

the system's feasibility for deployment in real-time radar 

applications. 
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Future work will focus on implementing the optimization 

algorithm on FPGA or GPU platforms to quantitatively 

evaluate its impact on computational performance. 

Additionally, exploring lightweight deep learning models as 

alternative optimization approaches could provide further 

enhancements, particularly in applications requiring adaptive or 

dynamic optimization. These advancements aim to mitigate 

computational constraints and improve the practicality of the 

proposed system for real-world use. 

In this study, we employed Genetic Algorithms (GAs) to 

optimize the configuration of planar antenna arrays. GAs were 

chosen due to their proven ability to efficiently handle complex, 

nonlinear optimization problems. While this research focuses 

exclusively on GAs, we recognize the potential of alternative 

optimization techniques, such as Particle Swarm Optimization 

(PSO), Simulated Annealing (SA), and Ant Colony 

Optimization (ACO), as well as emerging methods like deep 

learning-based optimizations. Future work will explore these 

methods to compare accuracy, computational complexity, and 

real-time feasibility comprehensively. 

 

(a) SNR10 (dB): RMS of the Elevation angle versus the SNR  

 

 

(b) SNR10 (dB): RMS of the Azimuth angle versus the SNR 

 

Figure 5. RMS Error Analysis of Elevation and Azimuth 

Angles at SNR 10 Db 

 

(a) SNR20 (dB): RMS of the Elevation angle versus the SNR 

 

 

(b) SNR20 (dB): RMS of the Azimuth angle versus the SNR 

 

Figure 6. RMS Error Analysis of Elevation and Azimuth 

Angles at SNR 20 dB 
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(a) SNR30 (dB): RMS of the Elevation angle versus the SNR 

 

(b) SNR30 (dB): RMS of the Azimuth angle versus the SNR 

 

Figure 7. RMS Error Analysis of Elevation and Azimuth 

Angles at SNR 30 dB 

 

5. Conclusion  

This paper presented a new method for optimizing planar 

antenna array configuration using a Genetic Algorithm 

methodology and represented one of the first applications of 

GA in this area. The work focused on using planar antenna 

arrays in radar systems, mainly for estimating the DOA of an 

incoming signal, including both azimuth and elevation angles. 

The research has employed the ESPRIT algorithm and 

systematically analyzed the effect of planar array design 

parameters, showing that optimizing the number of elements on 

each axis significantly improves the estimation accuracy 

without losing computational efficiency. The key contribution 

of this work is to utilize GA to determine the optimal number 

of array elements. Results show that a configuration with three 

elements along the x-axis and eight elements along the y-axis 

gives the best tradeoff between accuracy and system efficiency. 

This approach offers a great insight into radar system design, 

showing how algorithmic optimization can be combined with 

practical engineering. However, the proposed method is not 

without its limitations. Ideal conditions have been assumed in 

this study, which does not fully account for real-world factors 

such as environmental interference, hardware imperfections, or 

dynamic signal variations. Besides, the computational demands 

of GA-based optimization, though reduced, may still be 

challenging for large-scale or time-sensitive applications. In 

this regard, future work will concentrate on including hardware 

imperfections and environmental noise in the optimization 

process to estimate the robustness of the approach in realistic 

conditions. Second, using hardware accelerators, such as 

FPGAs or GPUs, may further facilitate real-time 

implementation. These directions aim to refine the proposed 

method further and expand its applicability to complex and 

resource-constrained radar systems. 
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