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Anmar M. K. Al-Maamori, Rasha Kadhim Mahdi
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Abstract

The vitamin_D_receptor (VDR) has great role in the regulates of expression of gene in several organs, responsive
to vitamin D, after activation by physiologically active vit.D. There is strong evidence that vit.D is work in several
physiological pathways, since vit.D-activating receptors and enzymes have been found in cell types that are unrelated
to mineral and bone homeostasis. Many processes are affected by the so-called non-classic effects of VDR activation.
These involve cell death, growth and reproduction of cells, and immune cell activity among many others. Moreover,
immunity cells such as activated “CD4+ and CD8+ T cells, B cells, neutrophils, and antigen-presenting cells (APC) like
dendritic cells and macrophages”, were found to have vitamin D receptors. Resting “T and B” lymphocytes express very
little VDR, whereas dendritic cells and monocytes express it intracellularly. On the other side, VDR expression in T cells
rises fivefold with lymphocyte activation. Variants in the VDR gene may have effect on susceptibility to endocrine auto-
immune diseases. Among the most prevalent VDR polymorphisms, “Taql, Bsml, Apal, and FokIl” have been investigated.
The risk of autoimmune thyroid sickness (ATS) is highly correlated with the BsmI and Taql polymorphism and the risk of
systemic lupus erythematosus (SLE) is correlated with the BsmlI and FokI polymorphism. The diabetic nephropathy may
be affected by some VDR polymorphisms, such as Fokl, while the risk of rheumatoid arthritis (RA) has been detected
in the polymorphism of Apal, Bsml, and Tagql. Vitamin D seems to be essential for immunological homeostasis, and
research referred to the impact of this vitamin on the prevalence of autoimmune diseases.
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1. Introduction

1.1. Receptor of vitamin D (VDR)

Receptor of vitamin D, the transcriptional regula-
tor and a one of the nuclear_receptor super-family
was found to be essential to calcitriol signaling.
Both hereditary and environmental variables influ-
ence VDR and the Vitamin D supplement efficacy
may be affected by VDR gene variations [1].

Essential to the signaling mechanism of “calcitriol,
or l-alfa,25-dihidroxicolecalciferol (l«,25(0OH)2D)”,
is the superfamily of nuclear receptor transcrip-
tional regulators, which includes VDR. The RXR and

1a,25(0OH)2D create a hetero-dimer, which leads to
the binding and activation of the (VDR). While deliv-
ering the “1¢,25(OH)2D-VDR-RXR” complex to the
nucleus, gene transcription regulates vitamin D ef-
fects. Some of the processes that are affected by these
impacts include the control of the innate and adaptive
immune systems, cell proliferation, and metabolism
of phosphorus and calcium [1-3]. The VDR gene,
which has over 900 documented allelic variations,
is located in the VDR locus on chromosome 12
(12q13.11). The majority of research has been on VDR
family polymorphisms affecting the Apal, Bsml, Taq]l,
and Fokl genes (rs7975232, rs1544410). Messenger
RNA stability is enhanced by three villainous genetic

Received 2 January 2025; accepted 19 March 2025.
Available online 4 July 2025

* Corresponding author.

E-mail addresses: sci.zahraa.mohammed@uobabylon.edu.iq (Z. M. AL-Taee), sci.noor.mahmood@uobabylon.edu.iq (N. M. Naji),
sci.zeena.hadi@uobabylon.edu.iq (Z. H. O. Alwan), sci.anmar.mahdi@uobabylon.edu.iq (A. M. K. Al-Maamori), rashakadhim87@yahoo.com (R. K. Mahdi).

https://doi.org/10.62445/2958-4515.1054

2958-4515/© 2025, The Author. Published by Hilla University College. This is an open access article under the CC BY 4.0 Licence

(https://creativecommons.org/licenses/by/4.0/).


mailto:sci.zahraa.mohammed@uobabylon.edu.iq
mailto:sci.noor.mahmood@uobabylon.edu.iq
mailto:sci.zeena.hadi@uobabylon.edu.iq
mailto:sci.anmar.mahdi@uobabylon.edu.iq
mailto:rashakadhim87@yahoo.com
https://doi.org/10.62445/2958-4515.1054
https://creativecommons.org/licenses/by/4.0/

32 HILLA UNIV COLL J MED SCI 2025;3:31-37

variants: Apal, Taql, and Bsml. The protein is three
amino acids shorter due to the FokI polymorphism,
which is located on exon 2 [4-6]. Studies have linked
these genetic variations to a wide range of long-term
health problems, including T2DM, cancer, autoim-
mune diseases, cardiovascular changes, rheumatic
arthritis, metabolic bone diseases, and autoimmune
illnesses (7-10). Both genetic and environmental vari-
ables impact VDR control [11].

Some of the main environmental variables that have
been linked to VDR regulation are diet, pollution,
illness, and sun exposure [12-15]. Various environ-
mental variables may influence vitamin D levels,
which in turn control the receptor, according to cer-
tain theories. Despite the fact that researchers have
postulated the involvement of epigenetic processes
[16]. Vitamin D precursor consumption, ligand pro-
duction, and activity are other variables that control
VDRs. Environmental stimuli and genetic variables
both have a moderating influence on the regulation
of VDRs [11]. The effect of vitamin D supplementa-
tion on different people may fluctuate greatly due to
individual genetic variations; one theory is that varia-
tions in the gene of VDR play a major role in this. Vit.
D therapy responses could vary [4-6, 17] because of
variations in VDR activity caused by polymorphisms
in the gene of VDR. Numerous genetic association
studies have looked at the correlation between vi-
tamin D supplementation response and VDR gene
mutations, but their results have been inconsistent
[18-21].

A total of fourteen exons make up the VDR-gene,
which may be found on chromosome 12q13.11. Six
different variants (a—f) of exon 1, which is situated in
the promoter region, are essential for alternative splic-
ing, while exons two to nine are within the coding
region [22]. So far, research has only identified three
isoforms in human cells. With a molecular weight
of forty-eight kilodalton, the VDR-A isoform is com-
prised of four hundred twenty-seven amino acids
and starts at the second exon. Moreover, the VDR-
Bl isoform (four hundred seventy-seven-amino-acid)
has a molecular weight of 54 kilodalton and start-
site at exon 1d. A single nucleotide polymorphism
(SNP) in Fokl, that generates a translation of the start
codon, gives a shorter isoform but with effective tran-
scriptional activity: 424 amino acids and 47 kDa [23].
It is believed that some of the approximately 900
allelic variants in the VDR gene are interfere with
vit.D action [24]. In previous research, three adjoin-
ing SNPs have been widely studied in related with
various disorders within intron eight/exon nine, at
the 3" end of the VDR-gene, which involve: rs1544410,
and rs731236. These SNPs identified initially by the
means of the restriction fragment length polymor-

phism (RFLP) method based on the presence of the
restriction-sites Bsml, Apal [25]. As mentioned earlier,
another notable SNP was also identified in exon 2 is
rs2228570. Base substitution (T to C) leads to decrease
the protein length from four hundred twenty-seven
amino acids to four hundred twenty-four amino acids
due to the elimination of the first ATG translation start
codon. However, this smaller size of protein is charac-
terized by enhanced transcriptional activity [23, 26].

2. Role of VDR in immunity disorders
2.1. Multiple sclerosis (MS)

Multiple sclerosis (MS) and other negative health
outcomes are associated with vitamin D insufficiency
[27-30]. Research on its immunomodulatory capa-
bilities and its role in controlling calcium levels is
ongoing. The synthesis of interleukin in antigen-
presenting cells, the modulation of the Th17 immune
response (which is critical in autoimmune illnesses),
and the immunological regulation of mesenchymal
stem cells are all impacted by vit. D, among other
things [31-33]. The majority of vit.D’s physiological
effects are attributed to the vitamin D receptor (VDR),
a nuclear receptor that has been well-preserved and
functions as a flexible transcription factor [34]. But
how the VDR gene contributes to multiple sclerosis
is still unclear. Multiple sclerosis (MS) risk factors
include environmental variables, genetics, and epige-
netic pathways. An important epigenetic mechanism
that regulates gene-expression and the structure of the
chromatin is DNA methylation at CpG sites (CpGs).
At gene promoters, for instance, methylation of CpG
islands often suppresses gene production, while at
active gene promoters, demethylation of CpG is-
lands is common. Researchers are placing a greater
emphasis on DNA methylation in the study of au-
toimmune and neurological diseases. Recent studies
on multiple sclerosis have shown that DNA methyla-
tion controls several disease processes. As shown by
hypomethylation of the promoter regions of FOXP3
and IL-17A, it is possible that untreated MS patients
have an excess of circulating Tregs and Th17 cells
[35, 36]. The fact that MS patients had 25% less PAD-
2 promoter methylation than controls suggests that
epigenetic mechanisms may govern demyelinizating
processes. T lymphocytes identify myelin basic pro-
tein (MBP) as an antigen after PAD-2 destabilizes it
[37]. In contrast to healthy persons, CD8+ and CD4+
T lymphocytes in RRMS exhibit distinct patterns in
genome-wide DNA methylation profiles, according to
recent research [38]. One potential marker for mul-
tiple sclerosis is the methylation patterns of cell-free
plasma DNA [39]. Ayuso et al. studied the levels of
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DNA methylation in two regulatory components of
the VDR gene on T cells in RRMS patients and con-
trols, controlling for age and gender. An alternate
promoter located in exon 1c of the VDR gene showed
a significant increase in DNA methylation levels, ac-
cording to their findings [40].

3. Systemic lupus erythematosus (SLE)

Lupus Lupus Systematus The chronic autoimmune
illness known as erythematosus may cause damage
to more than one organ, like “skin, kidney, blood,
and central nervous system” [41]. Although the ex-
act mechanisms that cause SLE have not been fully
understood, research has shown that environmen-
tal h factors, genetic predisposition, and epigenetics
all play a role in the disease’s progression [42].
Prior studies on SLE mostly examined alterations
at the genomic, transcriptomic, and proteomic lev-
els. Metabolomics’ function in autoimmune illnesses,
however, has just come to the fore. New informa-
tion on the causes of SLE has been uncovered by
metabolomics research [43]. For example, it has been
shown that SLE patients and lupus-prone animals
had greater levels of “CD4+ T cells” for both gly-
colysis and mitochondrial oxidative metabolism. By
targeting these metabolic pathways, T cells may be
normalized and potentially used as disease indica-
tors [44]. The patho-physiology of SLE is heavily
influenced by metabolism of the lipid. CD4+ T cells
from SLE patients have altered glycosphingolipid
profiles associated with lipid rafts, which are re-
lated with T cell receptor activation [45]. If these
glycosphingolipids are not synthesized, active B cells
will not produce as much anti-dsDNA antibody [46].
“CD4+ T-cells” derived from SLE infected peoples
and lupus-prone animals have an abnormal activa-
tion of mTOR, leading to changes in glycolysis, lipid
and fatty acid production, messenger RNA trans-
lation, sense amino acids, and growth factors [47,
48]. The pathophysiology of SLE has been associ-
ated with vit. D, a famous immunological modulator.
In doing so, it controls how antigen-presenting cells
(APCs) differentiate and function. Vitamin D inhibits
the production of proinflammatory cytokines and the
expression of tolllike receptors on monocytes. Inhibit-
ing lymphocyte proliferation and regulating T cell
development are two of vitamin D’s functions. Ac-
tive B and plasma cells also undergo apoptosis as
a result [49]. Low vitamin D levels were associated
with a more severe case of systemic lupus erythe-
matosus (SLE) compared to healthy controls. Renal
dysfunction and increased proteinuria were associ-
ated with low vitamin D levels. Lupus nephritis (LN)
patients with systemic lupus erythematosus (SLE)

had sig. lower vit. D levels than SLE infected peo-
ple without LN or with inactive SLE [50, 51]. The
VDR is a potential target for vit. D, which may af-
fect the methylation of immune cells. Genes regulated
by VDRs govern energy metabolism and the degra-
dation of lipophilic intracellular molecules. Immune
cells “(T cells, B cells, monocytes/macrophages, den-
dritic cells, etc.)” get their energy from glycolysis
and oxidative phosphorylation, which it regulates. By
affecting cellactivation,differentiation,and cytokine
production, metabolic changes may influence immu-
nity response in autoimmunity diseases [52, 53]. Vit.
D impacts lipid metabolism by acting on nuclear hor-
mone receptors including PPARy and LXR, according
to research. Among these impacts is a change in the
cellular phospholipid profile. Taking vitamin D sup-
plements has reduced oxidative stress and improved
metabolic markers in MS patients and others. The
precise effect of vit.D levels in the blood on these
responses is unclear, although [54].

4. Type 1 diabetes (T1D)

Over the past two decades, research has focused on
how autoimmune processes affect type 1 diabetes via
genetic elements regulation that affect cytokine syn-
thesis and immune response activation [55]. TIDM
is a chronic multi-factorial illness that results from
particular autoimmune damages of pancreatic beta
cells. Global prevalence of TIDM has increased by
nearly twofold in the last 40 years, with a rate of in-
cidence of 9.5 per 1,000 individuals [56, 57]. Vitamin
D is a significance contributor to the development of
T1DM [58]. Many articles have looked at how VDR
gene polymorphisms affect the risk of TD and vit.
D levels among various groups of people. Study by
Habibian and his group which found a link between
polymorphic variants in the VDR gene, specifically
Bsml and Fokl, and a higher probability of TIDM
[59]. Newly diagnosed type 1 diabetes patients with
an adequate amount of “25(OH)D” in their serum
(=30 ng/mL) and specific SNP genotypes (Bsml and
Taql) in the VDR gene can preserve the function of
residual g-pancreatic cells [60]. Other studies found
that SNPs in genes essential for the creation, ac-
tion, and transportation of vitamin D could affect
the possibility of developing T1D [61, 62]. As the
global prevalence of diabetes mellitus rises and au-
toimmune diseases are still unclear, research into their
immunoregulatory mechanisms is crucial. Based on
multiple research projects, immune-mediated mech-
anisms have a major role in the TIDM development,
which are subsequently established through different
inducible elements, eventually causing aberrant im-
mune regulation across thelocal and systemic degrees
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with the emergence of the autoimmune defense path-
ways [63]. This disease is polygenic in nature, with
multiple alleles that impact positively or passively
when communicated with each other. For example, a
meta-analysis research on VDR polymorphisms and
T1D involving 23 papers concluded that: none of te”
Bsml, Apal, Taql, or FokI SNPs” were found to be as-
sociated with T1D threat when examined separately.
Whereas, the “Bsml-Apal-Taql b-A-T (T-A-T)” haplo-
type, was found to protect against T1D [64]. Study in
the South Indian found that VDD is a major risk fac-
tor for T1D development. Furthermore, the FokI-FF
genotype, as well as the “BsmI-B and Apal-A alleles”,
were linked to TIDM. whereas, “the FokI-Ff genotype
and the Bsml-b/Apal-a/Taql-T” haplotype had an
adverse relationship with T1D [65].

5. Celiac disease (CD)

A person’s risk of developing autoimmune celiac
disease (CD) increases if the disorder runs in their
family. The most important genetic factor is the
HLA-DQ2-HLA-DQS8 allele. In Celiac disease (CD),
the body’s immune system attacks certain gluten
components and intestinal tissue, causing structural
changes. The intestines aren’t the only possible site of
symptom perception [66]. Vit.D levels were lower and
“1,25-(OH)2D3” levels were higher in CD infected
people compared to HC individuals [67]. A compi-
lation of data from four studies that looked at VDR
SNPs in CD was published in a recent review [68].
The studies comprised 176 CD and 402 HC. While
the Apal, Bsml, and Taql SNPs did not show any
connection with CD incidence, the FokI T variant was
associated with an elevated risk [69].

6. Rheumatoid arthritis (RA)

RA is a prevalent auto-immune disorder that in-
volves the development of auto-antibodies, chronic
synovial inflammatory processes, along with grad-
ual deformation and damaging of joints [70]. In
response to sunshine, the skin generates vitamin D, a
pleiotropic hormone. To regulate bone turnover and
keep calcium levels stable, it is necessary to start the
growth of osteoblastic and osteoclastic cells [71]. Be-
cause it stimulates the production of cytokines, the
maturation or activation of lymphocytes that pos-
sess the (VDR) [72], and the expansion of immune
cells, calcitriol, the active form of vitamin D, is an
effective immunoregulator. When it isn’t working
properly, it can’t do its job of inhibiting Thl and
Th17 lymphocytes, which leads to the production
of inflammatory cytokines [73]. A large body of re-
search suggests that autoimmune illnesses are more

common in those with low blood vitamin D levels
[74]. Vitamin D insufficiency, for instance, is associ-
ated with an increased prevalence and severity of
rheumatoid arthritis (RA) [75]. So, whether it’s a
hereditary trait or something more environmental,
low vit.D levels could contribute to the development
and worsening of autoimmune diseases. On chromo-
some 12, you'll find the VDR gene, which is essential
for vitamin D’s physiological effects [76]. Extensive
research has shown that variations in the VDR gene
affect its expression and function [77]. A number
of autoimmune disorders have been linked to spe-
cific variations in the VDR gene, which include (RA),
(MS), (SLE), (JTA), and (TD2) [78-82]. Patients with
autoimmune illnesses frequently wind up taking vi-
tamin D supplements because of the high frequency
of vit.D insufficiency. According to research, calcitriol
and a monoclonal_antibody targeting tumor necro-
sis factor-o together have a synergistic impact in RA.
Combining vitamin D with TNF-« inhibitors may im-
prove treatment outcomes for RA patients [83]. As
consequently, VDR polymorphesms with fundamen-
tal roles may be correlated with clinical response and
recovery in patients having TNF« therapy. Cusato
et al. discovered that individuals with inflamma-
tory bowel disease (IBD) who possessed the VDR
rs1544410 SNP had reached clinical improvement af-
ter twelve weeks of TNF-« therapy [84]. Patients with
axialspondyloarthritis introduce varying improve-
ments in CRP and disease progression results after
three and six months of TNF-« therapy, among the
rs2228570, rs731236, and rs7975232 genotype of the
VDR patients. Nevertheless, no studies have tested
the potential role of rs11568820 SNP in TNF-« reaction
to therapy. This particular variant is found in the pro-
moter sequences and appears to be associated with
modifying the VDR gene’s transcription. Research by
Arai and his group found the different allele of this
SNP may enhance the expression of mRNA [4, 5].
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