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 There are many research papers that deal with different types of generalized closed sets. 

Levine [4] introduced generalized closed (briefly, 𝑔-closed) sets and studied their basic 

properties and Veera Kumar [5] introduced 𝑔∗-closed sets in topological spaces. The 

purpose of this present paper is to define a new class of generalized idea closed sets called 

𝑔∗
∗ − 𝐼-closed sets by using 𝑔∗-open set .In this paper, we introduce the 𝑔

∗
∗ − ℐ-closed sets, 

characterizations and properties of 𝑔
∗
∗ − ℐ-closed sets and its complement and other related 

sets. We prove that the class of 𝑔
∗
∗ − ℐ− closed sets lies between the class of ℐ𝑔-closed sets 

and the class of        𝑔 ∗-closed sets. Also, we find some relations between 𝑔
∗
∗ − ℐ-closed 

sets and already existing closed sets. 𝑔
𝑖
∗ − ℐ-open neighborhood is introduced and their 

properties are investigated. 
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1. Introduction 

      The subject of ideals in topological spaces has been studied by Kuratowski [1] and Vaidyanatha swamy [2]. In 1990, 

Jankovic and Hamlett [3] once again investigated applications of topological ideals. The concept of generalized closed sets 

plays a significant role in topology. There are many research papers that deal with different types of generalized closed 

sets. Levine [4] introduced generalized closed (briefly, 𝑔-closed) sets and studied their basic properties and Veera Kumar 

[5] introduced 𝑔∗-closed sets in topological spaces. The purpose of this present paper is to define a new class of generalized 

idea closed sets called 𝑔∗
∗ − 𝐼-closed sets by using 𝑔∗-open set (which is a complement of 𝑔∗-closed set) and also we obtain 

the basic properties of called 𝑔∗
∗ − 𝐼-closed set in ideal topological spaces. 
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2. Preliminaries 

    An ideal 𝐼 on a non-empty set 𝑋 is a collection of subsets of 𝑋 which satisfies the following properties [1], [2]. 

(i) 𝐴 ∈ 𝐼, 𝐵 ∈ 𝐼 ⇒ 𝐴 ∪ 𝐵 ∈ 𝐼 

(ii) 𝐴 ∈ 𝐼, 𝐵 ⊂ 𝐴 ⇒ 𝐵 ∈ 𝐼 

     A topological space (𝑋, 𝜏) with an ideal 𝐼 on 𝑋 is called an ideal topological space and is denoted by (𝑋, 𝜏, 𝐼). 

Let 𝑌 be a subset of 𝑋. 𝐼𝑌 = {𝐼 ∩ 𝑌/𝐼 ∈ 𝐼} is an ideal on 𝑌 and by (𝑌, 𝜏/𝑌, 𝐼𝑌) we denote the ideal topological subspace. 

Let 𝑃(𝑋) be the power set of 𝑋, then a set operator ( )∗: 𝑃(𝑋) → 𝑃(𝑋) called the local function [1] of A with respect to 𝜏 

and 𝐼 is defined as follows: 

For 𝐴 ⊂ 𝑋, 𝐴∗(𝐼, 𝜏) = {𝑥 ∈ 𝑋/𝑈 ∩ 𝐴 ∉ 𝐼 for every open set 𝑈 containing 𝑥}. 

We write 𝐴∗ instead of 𝐴∗(𝐼, 𝜏) in case there is no confusion. A Kuratowski closure operator 𝑐𝑙∗( ) for a topology 𝜏∗(𝐼, 𝜏), 

called the 𝜏∗ - topology is defined by 𝑐𝑙∗(𝐴) = 𝐴 ∪ 𝐴∗ [6] 

      A subset A of a space (𝑋, 𝜏) is said to be semi-open [7] if 𝐴 ⊂ 𝑐𝑙(int (𝐴)). 

A set operator () ∗𝑆: 𝑃(𝑋) → 𝑃(𝑋) called a semi-local function and 𝑐𝑙∗𝑠() [7] of 𝐴 with respect to 𝜏 and 𝐼 are defined as 

follows: 

For 𝐴 ⊂ 𝑋,  𝐴∗𝑆(𝐼, 𝜏) = {𝑥 ∈ 𝑋/𝑈 ∩ 𝐴 ∉ 𝐼  for   every   semi   open   set  𝑈  containing 𝑥}.   and 𝐶𝑙∗𝑆(𝐴) = 𝐴 ∪ 𝐴∗𝑆. 

Note: 𝐴∗𝑆 defined in [7] and 𝐴∗ defined in [8] are the same. For a subset 𝐴 of 𝑋, cl (𝐴)(resp scl (𝐴)) denotes the closure 

(resp semi closure) of 𝐴 in (𝑋, 𝜏). Similarly 𝑐𝑙∗(𝐴) and int  ∗(𝐴) denote the closure of 𝐴 and interior of 𝐴 in (𝑋, 𝜏∗). 

      A subset 𝐴 of 𝑋 is called * closed (resp.* 𝑆 - closed) if 𝐴∗ ⊆ 𝐴 (resp 𝐴∗𝑆 ⊆ A) [3]. 𝐴 is called * - dense  in itself (resp 

.*S-dense) [3]. If 𝐴 ⊂ 𝐴∗ (resp ⊂ 𝐴∗𝑆 ) 𝐴 is called * - perfect  (resp .*s - perfect). If 𝐴 = 𝐴∗ (resp 𝐴 = 𝐴∗𝑆 ) [3]. A subset𝐴 

of a topological space (𝑋, 𝜏) is said to be generalized closed (briefly g-closed) if 𝑐𝑙(𝐴) ⊂ 𝑈 whenever 𝐴 ⊂ 𝑈 and 𝑈 is 

open in (𝑋, 𝜏)  [3]. The complement of 𝑔-closed set is said to be 𝑔 − 𝑜𝑝𝑒𝑛. 

Definition 2.1. A subset 𝐴 of a topological space (𝑋, 𝜏) is said to be 𝑔∗-closed set if 𝐶𝑙(𝐴) ⊆ 𝑈 whenever 𝐴 ⊆ 𝑈 and 𝑈 is 

𝑔-open in (𝑋, 𝜏) [5]. 

Definition 2.2. A subset 𝐴 of a space (𝑋, 𝜏, 𝐼) is said to be 

(i) 𝑔ℐ  – closed [9] if 𝐴∗𝑆 ⊆ 𝑈 wherever 𝐴 ⊆ 𝑈 and 𝑈 is open in 𝑋. 

(ii) ℐ𝑔 − closed [10]  if 𝐴∗ ⊆ 𝑈 wherever 𝐴 ⊆ 𝑈 and 𝑈 is open in 𝑋. 

Definition 2.3. A space (𝑋, 𝜏, 𝐼) is said to be a 𝑇𝐼-space if every 𝐼-generalized closed subset of 𝑋 is 𝜏∗-closed [10] [14]. 

Definition 2.4. A subset 𝐴 of an ideal topological space (𝑋, 𝜏, 𝐼) is said to be 𝐼- compact if for every 𝜏-open cover 

{𝜔𝛼: 𝛼 ∈ Δ} of 𝐴, there exists a finite subset Δ0 of Δ such that (𝑋 −∪ {𝜔𝛼: 𝛼 ∈ Δ0}) ∈ 𝐼 [11], [12].  

 

 Lemma 2.5. [13] Let (𝑋, 𝜏, ℐ) be an ideal space and 𝑊 ⊆ 𝑋. If 𝑊 ⊆ 𝑊∗, then 𝑊∗ = 𝐶𝑙(𝑊∗) = 𝐶𝑙(𝑊) = 𝐶𝑙∗(𝑊).  

 

Theorem 2.6. Let (𝑋, 𝜏, ℐ) be an ideal space. If 𝑊 is an ℐ𝑔-closed subset of 𝑋, then 𝑊 is ℐ-compact [14], Theorem 2.17].  

 

Note: In general the intersection of 𝑔-closed sets need not be 𝑔-closed. 

Definition 2.7. [7] A topological space (𝑋, 𝜏) is said to be a 𝑔-multiplicative space if the arbitrary intersection of 𝑔-closed 

sets in 𝑋 is 𝑔-closed. 
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Remark 2.8. [7]  

1. In 𝑔-multiplicative spaces, 𝑔𝐶𝑙(𝑊) which is the intersection of all 𝑔-closed sets in 𝑋 containing 𝑊 is also 𝑔-closed. 

2. Any indiscrete topological space (𝑋, 𝜏) is 𝑔-multiplicative. 

3. If 𝑋 = {𝑥, 𝑦, 𝑧} and 𝜏 = {𝑋, ∅, {𝑥}} then {𝑥, 𝑧} and {𝑥, 𝑦} are 𝑔-closed but {𝑥} is not 𝑔-closed and hence (𝑋, 𝜏) is not 

𝑔-multiplicative.   

 

Theorem 2.9. [10] (Theorem 3.20). Let (𝑋, 𝜏, ℐ) be an ideal space and 𝑊 ⊂ 𝑌 ⊂ 𝑋 where 𝑌 is 𝛼-open in 𝑋. Then 

𝑊∗(ℐ𝑌, 𝜏𝑌) = 𝑊∗(ℐ, 𝜏) ∩ 𝑌.  

 

Lemma 2.11. [3] Let (𝑋, 𝜏) be a space, 𝐼 and 𝐽 be ideals on 𝑋, and let 𝐴 and 𝐵 be subsets of 𝑋. Then 

(1) 𝐴 ⊆ 𝐵 ⇒ 𝐴∗ ⊆ 𝐵∗. 

(2) If 𝐼 ⊆ 𝐽, then 𝐴∗(𝐼) ⊇ 𝐴∗(𝐽). 

(3) 𝐴∗(𝐼) = 𝐶𝑙(𝐴∗) ⊆ 𝐶𝑙(𝐴) (i.e, 𝐴∗ is a closed subset of (𝐴) ). 

(4) If 𝐴 ⊆ 𝐴∗, then 𝐴∗ = 𝐶𝑙(𝐴∗) = 𝐶𝑙(𝐴) = 𝐶𝑙∗(𝐴). 

(5) (𝐴∗)∗ ⊆ 𝐴∗. 

(6) (𝐴 ∪ 𝐵)∗ = 𝐴∗ ∪ 𝐵∗. 

(7) If 𝑈 ∈ 𝜏, then 𝑈 ∩ 𝐴∗ = 𝑈𝑥(𝑈𝑥 ∩ 𝐴)∗ ⊆ (𝑈 ∩ 𝐴)∗. 

(8) If 𝐴 ∈ 𝐼, then 𝐴∗ = ∅. 

 

Lemma 2.12. [3] For any two sets 𝐴 and 𝐵  of an ideal topological space (𝑋, 𝜏, ℐ), 𝐶𝑙∗(𝐴 ∪ 𝐵) = 𝐶𝑙∗(𝐴) ∪ 𝐶𝑙∗(𝐵). 

3. Methodology 

 

Definition 3.1: A subset 𝑊 of an ideal space (𝑋, 𝜏, ℐ) is said to be 

1. 𝑔∗
∗ − ℐ-closed, if 𝐶𝑙∗(𝑊) ⊂ 𝑈 whenever 𝑊 ⊂ 𝑈 and 𝑈 is 𝑔∗-open in 𝑋. 

2. 𝑔∗
∗ − ℐ-open, if its complement is 𝑔∗

∗ − ℐ-closed set. 

The collection of all 𝑔∗
∗ − ℐ-closed sets (resp 𝑔∗

∗ − ℐ-open sets) is denoted by (𝑔∗
∗𝐶(𝑋) ( resp 𝑔∗

∗𝑂(𝑋)). 

Remark 3.2: In any ideal topological space (𝑋, 𝜏, ℐ), 

1. Every 𝑔∗
∗ − ℐ-closed set is ℐ𝑔-closed set. 

2. Every ℐ𝑔-closed set is 𝑔ℐ-closed set. 

3. Every 𝑔∗
∗ − ℐ-closed set is 𝑔ℐ-closed set. 

4. The converse of part (3) is not true in general, see the following example. 

Example 3.3. Let 𝑋 = {𝑎, 𝑏, 𝑐}, 𝜏 = {∅, 𝑋, {𝑎}, {𝑏}, {𝑎, 𝑏}}, and ℐ = {∅, {𝑐}}. 

Put 𝐴 = {𝑏} and the only open sets containing 𝐴 are {𝑎, 𝑏} and 𝑋, then 𝐴∗ = {𝑏} ⊆ {𝑎, 𝑏}, 

whenever {𝑎, 𝑏} is open and {𝑏} ⊆ {𝑎, 𝑏}. So 𝐴 is 𝑔ℐ-closed set. But, since 𝐴∗ = {𝑏}∗ = {𝑏, 𝑐}, so 𝐶𝑙∗({𝑏}) = {𝑏, 𝑐} ⊈
{𝑎, 𝑏}, whenever {𝑏} ⊆ {𝑎, 𝑏} and {𝑎, 𝑏} is also 𝑔∗-open. 

Theorem 3.4. Every ∗-closed set is 𝑔∗
∗ − ℐ-closed but not conversely. 

Proof. Let 𝑊 be a ∗-closed, then 𝑊∗ ⊆ 𝑊. Let 𝑊 ⊆ 𝑈 where 𝑈 is 𝑔∗-open. Hence 𝐶𝑙∗(𝑊) ⊆ 𝑈 whenever 𝑊 ⊆ 𝑈 and 𝑈 

is 𝑔∗-open. Therefore 𝑊 is 𝑔∗
∗ − ℐ-closed. 

Example 3.5. Let 𝑋 = {𝑥, 𝑦, 𝑧} with a topology 𝜏 = {∅, 𝑋, {𝑥}, {𝑦, 𝑧}} and an ideal ℐ = {∅, {𝑧}}. Then 𝑔∗
∗ − ℐ-closed sets 

are the power set of 𝑋 and ∗-closed sets are ∅, 𝑋, {𝑥}, {𝑧}, {𝑥, 𝑧}, {𝑦, 𝑧}. It is clear that {𝑦} is 𝑔∗
∗ − ℐ-closed set but it is not 

∗-closed. 
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Theorem 3.6. If (𝑋, 𝜏, ℐ) is an ideal topological space and 𝑊 ⊂ 𝑋. Then the following are equivalent. 

1. 𝑊 is 𝑔∗
∗ − ℐ-closed, 

2. For all 𝑥 ∈ 𝐶𝑙∗(𝑊), 𝑔∗𝐶𝑙({𝑥}) ∩ 𝑊 ≠ ∅, 

3. 𝐶𝑙∗(𝑊) − 𝑊 contains no nonempty 𝑔∗-closed set, 

4. 𝑊∗ − 𝑊 contains no nonempty 𝑔∗-closed set, 

Proof. (1) ⇒ (2) Suppose 𝑥 ∈ 𝐶𝑙∗(𝑊). If 𝑔∗𝐶𝑙({𝑥}) ∩ 𝑊 = ∅, then 𝑊 ⊆ 𝑋 − 𝑔∗𝐶𝑙({𝑥}). By Definition 3.1, 𝐶𝑙∗(𝑊) ⊆
𝑋 − 𝑔∗𝐶𝑙({𝑥}), which is a contradiction, since 𝑥 ∈ 𝐶𝑙∗(𝑊). 

(2) ⇒ (3) Suppose 𝐹 ⊆ 𝐶𝑙∗(𝑊) − 𝑊, 𝐹 is 𝑔∗-closed and 𝑥 ∈ 𝐹. Since 𝐹 ⊆ 𝑋 − 𝑊 and 𝐹 is 𝑔∗-closed, then 𝑊 ⊆ 𝑋 − 𝐹 

and 𝐹 is 𝑔∗-closed, 𝑔∗𝐶𝑙({𝑥}) ∩ 𝑊 = ∅. Which is a contradiction. Since 𝑥 ∈ 𝐶𝑙∗(𝑊) by (3), 𝑔∗𝐶𝑙({𝑥}) ∩ 𝑊 ≠ ∅. 

Therefore 𝐶𝑙∗(𝑊) − 𝑊 contains no nonempty 𝑔∗-closed set. 

(3) ⇒ (4) Since 𝑙∗(𝑊) − 𝑊 = (𝑊 ∪ 𝑊∗) − 𝑊 = (𝑊 ∪ 𝑊∗) ∩ 𝑊𝑐 = (𝑊 ∩ 𝑊𝑐) ∪ (𝑊∗ ∩ 𝑊𝑐) = 𝑊∗ ∩ 𝑊𝑐 = 𝑊∗ −
𝑊. Therefore 𝑊∗ − 𝑊 contains no nonempty 𝑔∗-closed set. 

(4) ⇒ (1) Let 𝑊 ⊆ 𝑈 where 𝑈 is a 𝑔∗-open set. Therefore 𝑋 − 𝑈 ⊆ 𝑋 − 𝑊 and so 𝐶𝑙∗(𝑊) ∩ (𝑋 − 𝑈) ⊆ 𝐶𝑙∗(𝑊) ∩ (𝑋 −
𝑊) = 𝑊∗ − 𝑊. Therefore 𝐶𝑙∗(𝑊) ∩ (𝑋 − 𝑈) ⊆ 𝑊∗ − 𝑊. 

Since 𝐶𝑙∗(𝑊) is always ∗-closed set, so 𝐶𝑙∗(𝑊) is 𝑔∗-closed set and so 𝐶𝑙∗(𝑊) ∩ (𝑋 − 𝑈) is a 𝑔∗-closed set contained 

in 𝑊∗ − 𝑊. Therefore 𝐶𝑙∗(𝑊) ∩ (𝑋 − 𝑈) = ∅ and hence 𝐶𝑙∗(𝑊) ⊆ 𝑈. Therefore 𝑊 is 𝑔∗
∗ − ℐ-closed. 

Theorem 3.7. If (𝑋, 𝜏, ℐ) is an ideal space, then 𝑊∗ is always 𝑔∗
∗ − ℐ-closed for every subset 𝑊 of 𝑋. 

Proof. Let 𝑊∗ ⊆ 𝑈 where 𝑈 is 𝑔∗-open. Since (𝑊∗)∗ ⊆ 𝑊∗ so by Lemma 2.11, we have 𝐶𝑙∗(𝑊∗) ⊆ 𝑈 whenever 𝑊∗ ⊂
𝑈 and 𝑈 is 𝑔∗-open. Hence 𝑊∗ is 𝑔∗

∗ − ℐ-closed. 

Theorem 3.8. Let (𝑋, 𝜏, ℐ) be an ideal space. For every 𝑊 ∈ ℐ, 𝑊 is 𝑔∗
∗ − ℐ-closed. 

Proof. Let 𝑊 ⊆ 𝑈 where 𝑈 is 𝑔∗-open set. Since 𝑊∗ = ∅ for every 𝑊 ∈ ℐ, then 𝐶𝑙∗(𝑊) = 𝑊 ∪ 𝑊∗ = 𝑊 ⊆ 𝑈. Therefore, 

𝑊 is 𝑔∗
∗ − ℐ-closed. 

Corollary 3.9. If (𝑋, 𝜏, ℐ) is an ideal space and 𝑊 is a 𝑔∗
∗ − ℐ-closed set, Then the following are equivalent: 

1. W is a *-closed set, 

2. 𝐶𝑙∗(𝑊) − 𝑊 is a 𝑔∗-closed set, 

3. 𝑊∗ − 𝑊 is a 𝑔∗-closed set. 

Proof. (1) ⇒ (2) If 𝑊 is ∗-closed, then 𝑊∗ ⊆ 𝑊 and so 𝐶𝑙∗(𝑊) − 𝑊 = (𝑊 ∪ 𝑊∗) − 𝑊 = ∅, so 𝐶𝑙(∅) = ∅ ⊆ 𝑈. Hence 

𝐶𝑙∗(𝑊) − 𝑊 is 𝑔∗-closed set. 

(2) ⇒ (3) Since 𝐶𝑙∗(𝑊) − 𝑊 = 𝑊∗ − 𝑊 and so 𝑊∗ − 𝑊 is 𝑔∗-closed set. 

(3) ⇒ (1) If 𝑊∗ − 𝑊 is a 𝑔∗-closed set, since 𝑊 is 𝑔∗
∗ − ℐ-closed set, by Theorem 3.6, 𝑊∗ − 𝑊 = ∅ and so 𝑊 is ∗-

closed. 

Theorem 3.10. Let (𝑋, 𝜏, ℐ) be an ideal space. Then every 𝑔∗
∗ − ℐ-closed, 𝑔∗-open set is *-closed set. 

Proof. Since 𝑊 is 𝑔∗
∗ − ℐ-closed and 𝑔∗-open. Then 𝐶𝑙∗(𝑊) ⊆ 𝑊 whenever 𝑊 ⊆ 𝑊 and 𝑊 is 𝑔∗-open. Hence 𝑊 is ∗-

closed. 

Corollary 3.11. If (𝑋, 𝜏, ℐ) is a 𝑇ℐ ideal space and 𝑊 is a  𝑔∗
∗ − ℐ-closed set, then 𝑊 is ∗-closed set. 

Proof. Since every 𝑔∗
∗ − ℐ-closed set is an ℐ𝑔-closed set in an ideal space (𝑋, 𝜏, ℐ) and 𝑋 is 𝑇ℐ space, so every ℐ𝑔-closed 

set is ∗-closed. So 𝑊 is ∗-closed. 
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Theorem 3.12. If (𝑋, 𝜏, ℐ) is an ideal space, Then every 𝑔∗-closed set is an 𝑔∗
∗ − ℐ-closed set but not conversely. 

Proof. Let 𝑊 be a 𝑔∗-closed set. If 𝑊 ⊆ 𝑈, whenever 𝑈 is 𝑔∗-open. Since every 𝑔∗-open is 𝑔-open and 𝑊 is 𝑔∗-open, so 

𝐶𝑙(𝑊) ⊆ 𝑈. But, since 𝐶𝑙∗(𝑊) ⊆ 𝐶𝑙(𝑊) ⊆ 𝑈, whenever 𝑊 ⊆ 𝑈 and 𝑈 is 𝑔∗-open, so 𝑊 is 𝑔𝑖
∗ − ℐ-closed. 

Example 3.13. Let 𝑋 = {𝑥, 𝑦, 𝑧} with a topology 𝜏 = {∅, 𝑋, {𝑥}, {𝑥, 𝑧}} and an ideal ℐ = {∅, {𝑥}}. Then 𝑔∗
∗ − ℐ-closed sets 

are ∅, 𝑋, {𝑥}, {𝑦}, {𝑥, 𝑦}, {𝑦, 𝑧} and 𝑔∗-closed sets are ∅, 𝑋, {𝑦}, {𝑦, 𝑧}. It is clear that {𝑥} is a 𝑔∗
∗ − ℐ-closed set but it is not 

𝑔∗-closed in (𝑋, 𝜏). 

Example 3.14. Let 𝑋 = {𝑥, 𝑦, 𝑧} with a topology 𝜏 = {∅, 𝑋, {𝑥}, {𝑥, 𝑧}} and an ideal ℐ = {∅, {𝑦}, {𝑧}, {𝑦, 𝑧}}. Clearly, the 

set {𝑧} is a 𝑔∗
∗ − ℐ-closed set but it is not 𝑔∗-closed in (𝑋, 𝜏, ℐ). 

Theorem 3.15. If (𝑋, 𝜏, ℐ) is an ideal space, and 𝑊 is a ∗-dense in itself, 𝑔∗
∗ − ℐ-closed subset of 𝑋, then 𝑊 is 𝑔∗-closed. 

Proof. Suppose 𝑊 is a ∗-dense in itself, 𝑔∗
∗ − ℐ-closed subset of 𝑋. Let 𝑊 ⊆ 𝑈 where 𝑈 is 𝑔-open. Then, 𝐶𝑙∗(𝑊) ⊆ 𝑈 

whenever 𝑊 ⊆ 𝑈 and 𝑈 is 𝑔-open. Since 𝑊 is ∗-dense in itself, so every 𝑔∗-open is 𝑔-open and 𝑊 is ∗-dense in itself, by 

Lemma 2.5, 𝐶𝑙(𝑊) = 𝐶𝑙∗(𝑊). Therefore 𝐶𝑙(𝑊) ⊆ 𝑈 whenever 𝑊 ⊆ 𝑈 and 𝑈 is 𝑔-open. Hence 𝑊 is 𝑔∗-closed. 

Corollary 3.16. If (𝑋, 𝜏, ℐ) is an ideal space where ℐ = {∅}, then 𝑊 is 𝑔∗
∗ − ℐ-closed if and only if 𝑊 is 𝑔∗-closed 

Proof. From the fact that for ℐ = {∅}, 𝑊∗ = 𝐶𝑙(𝑊) ⊇ 𝑊. Therefore 𝑊 is ∗-dense in itself. Since 𝑊 is 𝑔∗
∗ − ℐ-closed, by 

Theorem 3.15, 𝑊 is 𝑔∗-closed. 

Conversely, by Theorem 3.12, every 𝑔∗-closed set is a 𝑔∗
∗ − ℐ-closed set. 

Theorem 3.17. Let (𝑋, 𝜏, ℐ) be an ideal space and 𝑊 ⊆ 𝑋. Then 𝑊 is 𝑔∗
∗ − ℐ-closed if and only if 𝑊 = 𝐹 − 𝑁 where 𝐹 is 

∗-closed and 𝑁 contains no nonempty 𝑔∗-closed set. 

Proof. If 𝑊 is 𝑔∗
∗ − ℐ-closed, then by Theorem 3.6 (4), 𝑁 = 𝑊∗ − 𝑊 contains no nonempty 𝑔∗-closed set. If 𝐹 = 𝐶𝑙∗(𝑊), 

then F is ∗-closed such that 𝐹 − 𝑁 = (𝑊 ∪ 𝑊∗) − (𝑊∗ − 𝑊) = (𝑊 ∪ 𝑊∗) ∩ (𝑊∗ ∩ 𝑊𝑐)𝑐 = (𝑊 ∪ 𝑊∗) ∩ ((𝑊∗)𝑐 ∪
𝑊) = (𝑊 ∪ 𝑊∗) ∩ (𝑊 ∪ (𝑊∗)𝑐) = 𝑊 ∪ (𝑊∗ ∩ (𝑊∗)𝑐) = 𝑊. 

Conversely, suppose 𝑊 = 𝐹 − 𝑁 where 𝐹 is ∗-closed and 𝑁 contains no nonempty 𝑔∗-closed set. Let 𝑈 be a 𝑔∗-open set 

such that 𝑊 ⊆ 𝑈. Then 𝐹 − 𝑁 ⊆ 𝑈 which implies that 𝐹 ∩ (𝑋 − 𝑈) ⊆ 𝑁. Now 𝑊 ⊆ 𝐹 and 𝐹∗ ⊆ 𝐹 then 𝑊∗ ⊆ 𝐹∗ and so 

(𝑊∗ ∪ 𝑊) ∩ (𝑋 − 𝑈) ⊆ 𝐹∗ ∩ (𝑋 − 𝑈) ⊆ 𝐹 ∩ (𝑋 − 𝑈) ⊆ 𝑁. By hypothesis, since (𝑊∗ ∪ 𝑊) ∩ (𝑋 − 𝑈) is 𝑔∗-closed, 

(𝑊∗ ∪ 𝑊) ∩ (𝑋 − 𝑈) = ∅ and so 𝐶𝑙∗(𝑊) ⊆ 𝑈. Hence 𝑊 is 𝑔∗
∗ − ℐ-closed. 

Theorem 3.18. Let (𝑋, 𝜏, ℐ) be an ideal space and 𝑊 ⊆ 𝑋. If 𝑊 ⊆ 𝐵 ⊆ 𝑊∗, then 𝑊∗ = 𝐵∗ and 𝐵 is ∗-dense in itself. 

Proof. Since 𝑊 ⊆ 𝐵, then 𝑊∗ ⊆ 𝐵∗ and since 𝐵 ⊆ 𝑊∗, then 𝐵∗ ⊆ (𝑊∗)∗ ⊆ 𝑊∗. Therefore 𝑊∗ = 𝐵∗ and 𝐵 ⊆ 𝑊∗ ⊆ 𝐵∗. 

Hence proved. 

Theorem 3.19. Let (𝑋, 𝜏, ℐ) be an ideal space and 𝑊 ⊆ 𝑋. If 𝑊 and 𝐵 are subsets of 𝑋 such that 𝑊 ⊆ 𝐵 ⊆ 𝐶𝑙∗(𝑊) and 

𝑊 is 𝑔∗
∗ − ℐ-closed, then 𝐵 is 𝑔∗

∗ − ℐ-closed. 

Proof. Let 𝐵 ⊆ 𝑈 and 𝑈 is 𝑔∗-open. Since 𝑊 ⊆ 𝐵 and 𝑊 is 𝑔∗
∗ − ℐ-closed, so 𝐶𝑙∗(𝑊) ⊆ 𝑈. But, since 𝐵 ⊆ 𝐶𝑙∗(𝑊), 

implies that 𝐶𝑙∗(𝐵) ⊆ 𝐶𝑙∗(𝐶𝑙∗(𝑊)) = 𝐶𝑙∗(𝑊) ⊆ 𝑈. Therefor 𝐶𝑙∗(𝑊) ⊆ 𝑈, whenever 𝐵 ⊆ 𝑈. And 𝑈 is 𝑔∗-open. Thus 𝐵 

is 𝑔∗
∗ − ℐ-closed. 

Corollary 3.20. Let (𝑋, 𝜏, ℐ) be an ideal space. If 𝑊 and 𝐵 are subsets of 𝑋 such that 𝑊 ⊆ 𝐵 ⊆ 𝑊∗ and 𝑊 is 𝑔∗
∗ − ℐ-

closed, then 𝑊 and 𝐵 are 𝑔∗-closed sets. 
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Proof. Let 𝑊 and 𝐵 be subsets of 𝑋 such that 𝑊 ⊆ 𝐵 ⊆ 𝑊∗ which implies that 𝑊 ⊆ 𝐵 ⊆ 𝑊∗ ⊆ 𝐶𝑙∗(𝑊) and 𝑊 is 𝑔∗
∗ − ℐ-

closed. By Theorem 3.19, 𝐵 is 𝑔∗
∗ − ℐ-closed. Since 𝑊 ⊆ 𝐵 ⊆ 𝑊∗, then 𝑊∗ = 𝐵∗ and so 𝑊 and 𝐵 are ∗-dense in itself. 

By Theorem 3.15, 𝑊 and 𝐵 are 𝑔∗-closed. 

Theorem 3.21. Let (𝑋, 𝜏, ℐ) be an ideal space and 𝑊 ⊆ 𝑋. Then 𝑊 is 𝑔∗
∗ − ℐ-open if and only if 𝐹 ⊆ int  ∗(𝑊) whenever 

𝐹 is 𝑔∗-closed and 𝐹 ⊆ 𝑊. 

Proof. Suppose 𝑊 is 𝑔∗
∗ − ℐ-open. If 𝐹 is 𝑔∗-closed and 𝐹 ⊆ 𝑊, then 𝑋 − 𝑊 ⊆ 𝑋 − 𝐹 and so 𝐶𝑙∗(𝑋 − 𝑊) ⊆ 𝑋 − 𝐹. 

Therefore 𝐹 ⊆ 𝑋 − 𝐶𝑙∗(𝑋 − 𝑊) = int  ∗(𝑊). Hence 𝐹 ⊆ int∗ (𝑊). 

Conversely, suppose the condition holds. Let 𝑈 be a 𝑔∗-open set such that 𝑋 − 𝑊 ⊆ 𝑈. Then by hypothesis 𝑋 − 𝑈 ⊆ 𝑊 

and so 𝑋 − 𝑈 ⊆ int∗ (𝑊). Therefore 𝐶𝑙∗(𝑋 − 𝑊) ⊆ 𝑈. Thus, 𝑋 − 𝑊 is 𝑔∗
∗ − ℐ-closed. Hence 𝑊 is 𝑔∗

∗ − ℐ-open. 

Corollary 3.22. Let (𝑋, 𝜏, ℐ) be an ideal space and 𝑊 ⊆ 𝑋. If 𝑊 is a 𝑔∗
∗ − ℐ-open, then 𝐹 ⊆ int  ∗(𝑊) whenever 𝐹 is closed 

and 𝐹 ⊆ 𝑊. 

Proof. Since every closed set is 𝑔∗-closed set, so by Theorem 3.21 we get the result. 

The following theorem gives a property of 𝑔∗
∗ − ℐ-closed. 

Theorem 3.23. Let (𝑋, 𝜏, ℐ) be an ideal space and 𝑊 ⊆ 𝑋. If 𝑊 is 𝑔∗
∗ − ℐ-open and int  ∗(𝑊) ⊆ 𝐵 ⊆ 𝑊, then 𝐵 is 𝑔∗

∗ − ℐ-

open. 

Proof. Since 𝑊 is 𝑔∗
∗ − ℐ-open, then 𝑋 − 𝑊 is 𝑔∗

∗ − ℐ-closed. By Theorem 3.6 (4), 𝐶𝑙∗(𝑋 − 𝑊) − (𝑋 − 𝑊) contains no 

nonempty 𝑔∗-closed set. Since int (𝑊) ⊆ 𝑖𝑛𝑡∗(𝐵) which implies that 𝐶𝑙∗(𝑋 − 𝐵) ⊆ 𝐶𝑙∗(𝑋 − 𝑊) and so 𝐶𝑙∗(𝑋 − 𝐵) −
(𝑋 − 𝐵) ⊆ 𝐶𝑙∗(𝑋 − 𝑊) − (𝑋 − 𝑊) by Theorem 3.6 we get, 𝑋 − 𝐵 is 𝑔∗

∗ − ℐ-closed. Thus, 𝐵 is 𝑔∗
∗ − ℐ - open. 

       The following theorem gives a characterization of 𝑔∗
∗ − ℐ-closed sets in terms of 𝑔∗

∗ − ℐ-open sets. 

Theorem 3.24. If (𝑋, 𝜏, ℐ) be an ideal topological space and 𝑊 ⊆ 𝑋. Then the following are equivalent: 

1. 𝑊 is 𝑔∗
∗ − ℐ-closed, 

2. 𝑊 ∪ (𝑋 − 𝑊∗) is 𝑔∗
∗ − ℐ-closed, 

3. 𝑊∗ − 𝑊 is 𝑔∗
∗ − ℐ-open. 

Proof. (1) ⇒ (2) Suppose W is 𝑔∗
∗ − ℐ-closed. If 𝑈 is any 𝑔∗-open set such that ∪ (𝑋 − 𝑊∗) ⊆ 𝑈, then 𝑋 − 𝑈 ⊆ 𝑋 −

(𝑊 ∪ (𝑋 − 𝑊∗)) = 𝑋 ∩ (𝑊 ∪ (𝑊∗)𝑐)𝑐 = 𝑊∗ ∩ 𝑊𝑐 = 𝑊∗ − 𝑊. Since 𝑊 is 𝑔∗
∗ − ℐ-closed, by Theorem 3.6 (4), it 

follows that 𝑋 − 𝑈 = ∅ and so 𝑋 = 𝑈. Therefore 𝑊 ∪ (𝑋 − 𝑊∗) ⊆ 𝑈 which implies that 𝑊 ∪ (𝑋 − 𝑊∗) ⊆ 𝑋 and so 

𝐶𝑙∗(𝑊 ∪ (𝑋 − 𝑊∗)) ⊆ 𝑋 = 𝑈. Hence 𝑊 ∪ (𝑋 − 𝑊∗) is 𝑔∗
∗ − ℐ-closed. 

(2) ⇒ (1) Suppose 𝑊 ∪ (𝑋 − 𝑊∗) is 𝑔∗
∗ − ℐ-closed. If 𝐹 is any 𝑔∗-closed set such that 𝐹 ⊆ 𝑊∗ − 𝑊, then 𝐹 ⊆ 𝑊∗ and 

𝐹 ⊆ 𝑋 ∖ 𝑊 which implies that 𝑋 − 𝑊∗ ⊆ 𝑋 − 𝐹 and 𝑊 ⊆ 𝑋 − 𝐹. Therefore 𝑊 ∪ (𝑋 − 𝑊∗) ⊆ 𝑊 ∪ (𝑋 − 𝐹) = 𝑋 − 𝐹 

and 𝑋 − 𝐹 is 𝑔∗-open. Since 𝐶𝑙∗(𝑊 ∪ (𝑋 − 𝑊∗)) ⊆ 𝑋 − 𝐹 and since (𝑊 ∪ (𝑋 − 𝑊∗))
∗

⊆ 𝐶𝑙∗(𝑊 ∪ (𝑋 − 𝑊∗)) ⊆ 𝑋 −

𝐹 which implies that 𝑊∗ ∪ (𝑋 − 𝑊∗)∗ ⊆ 𝑋 − 𝐹 and so 𝑊∗ ⊆ 𝑋 − 𝐹 which implies that 𝐹 ⊆ 𝑋 − 𝑊∗. Since 𝐹 ⊆ 𝑊∗, it 

follows that 𝐹 = ∅. Hence by Theorem 3.6 𝑊 is 𝑔∗
∗ − ℐ closed. 

(2) ⇒ (3) Since −(𝑊∗ − 𝑊) = 𝑋 ∩ (𝑊∗ ∩ 𝑊𝑐)𝑐 = 𝑋 ∩ ((𝑊∗)𝑐 ∪ 𝑊) = (𝑋 ∩ (𝑊∗)𝑐) ∪ (𝑋 ∩ 𝑊) = 𝑊 ∪ (𝑋 − 𝑊∗). 

Therefore, 𝑋 − (𝑊∗ − 𝑊) is 𝑔∗
∗ − ℐ-closed. Hence, 𝑊∗ − 𝑊 is 𝑔∗

∗ − ℐ − open. The equivalence is clear. 

Theorem 3.25. If (𝑋, 𝜏, ℐ) is an ideal topological space. Then every subset of 𝑋 is 𝑔∗
∗ − ℐ closed if and only if every 𝑔∗-

open set is ∗-closed. 

Proof. Suppose every subset of 𝑋 is 𝑔∗
∗ − ℐ-closed. If 𝑈 ⊆ 𝑋 is 𝑔∗-open, then 𝑈 is 𝑔∗

∗ − ℐ closed and so 𝐶𝑙∗(𝑈) ⊆ 𝑈, then 

𝑈∗ ⊆ 𝐶𝑙∗(𝑈) ⊆ 𝑈. Hence 𝑈 is ∗-closed. 
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Conversely, suppose that every 𝑔∗-open set is ∗-closed. If 𝑈 is 𝑔∗-open set such that ⊆ 𝑈 ⊆ 𝑋, then 𝑊∗ ∪ 𝑊 = 𝐶𝑙∗(𝑊) ⊆
𝑈∗ ∪ 𝑈 = 𝑈 and so 𝑊 is 𝑔∗

∗ − ℐ-closed. 

Corollary 3.26. Let (𝑋, 𝜏, ℐ) be an ideal space. If 𝑊 is a 𝑔∗
∗ − ℐ-closed subset of 𝑋, then W is ℐ-compact. 

Proof. The proof follows from the fact that every 𝑔∗
∗ − ℐ-closed is ℐ𝑔-closed. 

Definition 3.27. Let 𝑁 be a subset of (𝑋, 𝜏, ℐ) and 𝑥 ∈ 𝑋. The subset 𝑁 of 𝑋 is called a 𝑔∗
∗ − ℐ-open neighbourhood of 𝑥 

if there exists 𝑔∗
∗ − ℐ-open set 𝑈 containing 𝑥 such that 𝑈 ⊂ 𝑁. 

Theorem 3.28. For each (𝑋, 𝜏, ℐ) either {𝑥} is 𝑔∗-closed or {𝑥}𝑐 is 𝑔∗
∗ − ℐ-closed in 𝑋. 

Proof. {𝑥} is not 𝑔∗-closed, then {𝑥}𝑐 is not 𝑔∗-open.Therefore the only 𝑔∗-open set containing {𝑥}𝑐 is 𝑋 and 𝐶𝑙∗({𝑥}𝑐) ⊆
𝑋 which proves that {𝑥}𝑐 is 𝑔∗

∗ − ℐ-closed. 

Theorem 3.29. If 𝑊 and 𝐵 are 𝑔∗
∗ − ℐ-closed sets in an ideal space (𝑋, 𝜏, ℐ), then 𝑊 ∪ 𝐵 is also a 𝑔∗

∗ − ℐ-closed set. 

Proof. Let 𝑈 be a 𝑔∗-open subset of (𝑋, 𝜏, ℐ) containing 𝑊 ∪ 𝐵. Then 𝑊 ⊂ 𝑈 and ⊂ 𝑈. Since 𝑊 and 𝐵 are 𝑔∗
∗ − ℐ-closed, 

𝐶𝑙∗(𝑊) ⊂ 𝑈 and 𝐶𝑙∗(𝐵) ⊂ 𝑈. By Lemma 2.12, 𝐶𝑙∗(𝑊 ∪ 𝐵) = 𝐶𝑙∗(𝑊) ∪ 𝐶𝑙∗(𝐵) ⊆ 𝑈 ∪ 𝑈 = 𝑈. where 𝑊 ∪ 𝐵 ⊂ 𝑈 and 

𝑈 is 𝑔∗-open which implies 𝑊 ∪ 𝐵 is 𝑔∗
∗ − ℐ-closed. 

Theorem 3.30. Let (𝑋, 𝜏, ℐ) be a g-multiplicative ideal space and let 𝑊 be 𝑔∗
∗ − ℐ-closed. Then 𝑊 is 𝜏∗-closed ⟺ 𝑊∗ −

𝑊 is closed. 

Proof. Necessity: 𝑊 is 𝜏∗-closed ⟹ 𝑊∗ ⊂ 𝑊 ⟹ 𝑊∗ − 𝑊 = ∅ which is closed. 

Sufficiency: Let 𝑊∗ − 𝑊 be closed. Then it is 𝑔-closed By (4) of theorem 3.6, 𝑊∗ − 𝑊 = ∅ which implies 𝑊∗ ⊂ 𝑊. 

Theorem 3.31. Let (𝑋, 𝜏, ℐ) be a 𝑔-multiplicative ideal space and 𝑊 ⊂ 𝑋. If 𝑊 is 𝑔∗
∗ − ℐ closed then 𝑊 ∪ (𝑋 − 𝑊∗) is 

𝑔∗
∗ − ℐ-closed. 

Proof. Let 𝑈 be 𝑔∗-open and 𝑊 ∪ (𝑋 − 𝑊∗) ⊂ 𝑈 

Then 𝑋 − 𝑈 ⊂ 𝑋 − [𝑊 ∪ (𝑋 − 𝑊∗)] = 𝑊∗ − 𝑊. Since 𝑊 is 𝑔∗
∗ − ℐ-closed, 𝑊∗ − 𝑊 contains no non-empty 𝑔∗-closed 

set. Therefore 𝑋 − 𝑈 = ∅ which implies 𝑋 = 𝑈. Thus 𝑋 is the only 𝑔∗-open set containing 𝑊 ∪ (𝑋 − 𝑊∗), then 

𝐶𝑙∗(𝑊 ∪ (𝑋 − 𝑊∗)) ⊆ 𝑋, which proves 𝑊 ∪ (𝑋 − 𝑊∗) is 𝑔∗
∗ − ℐ-closed. 

Theorem 3.32. Let 𝑊 be a subset of a 𝑔-multiplicative ideal space (𝑋, 𝜏, ℐ). If 𝑊 is 𝑔∗
∗ − ℐ closed then 𝑊∗ − 𝑊 is 𝑔∗

∗ − ℐ-

open 

Proof. Since 𝑋 − (𝑊∗ − 𝑊) = 𝑊 ∪ (𝑋 − 𝑊∗), the proof follows from Theorem 3.30. 

Theorem 3.33. Let (𝑋, 𝜏, ℐ) be an ideal space and 𝑊 ⊂ 𝑌 ⊂ 𝑋. If 𝑊 is 𝑔∗
∗ − ℐ-closed in (𝑌, 𝜏𝑌, ℐ𝑌), 𝑌 is 𝛼-open and 𝜏∗-

closed in 𝑋. Then 𝑊 is 𝑔∗
∗ − ℐ-closed in 𝑋. 

Proof. Let 𝑊 ⊂ 𝑈 and 𝑈 be 𝑔∗-open in 𝑋. Then 𝑊∗(ℐ𝑌, 𝜏/𝑌) = 𝑊∗(ℐ, 𝜏) ∩ 𝑌 ⊂ 𝑈 ∩ 𝑌. Then 𝑌 ⊂ 𝑈 ∪ (𝑋 − 𝑊∗(ℐ, 𝜏)). 

Since 𝑌 is 𝜏∗-closed, 𝑌∗ ⊂ 𝑌. Therefore 𝑊∗ ⊂ 𝑌∗ ⊂ 𝑌 ⊂ 

𝑈 ∪ (𝑋 − 𝑊∗(𝜏, ℐ)). This implies 𝑊∗ ⊂ 𝑈 and hence 𝐶𝑙∗(𝑊) ⊂ 𝑈. So 𝑊 is 𝑔∗
∗ − ℐ-closed in 𝑋. 

Theorem 3.34. Let (𝑋, 𝜏, ℐ) be an ideal space. If every 𝑔∗-open set is 𝜏∗-closed, then every subset of 𝑋 is 𝑔∗
∗ − ℐ-closed. 

Proof. Let 𝑊 ⊂ 𝑈 and 𝑈 be a 𝑔∗-open set in 𝑋. Then 𝐶𝑙∗(𝑊) ⊂ 𝐶𝑙∗(𝑈) = 𝑈 which proves 𝑊 is 𝑔∗
∗ − ℐ-closed. 
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 𝒈∗
∗ − 𝓘  مجموعات مغلقة وخصائصها في الفضاء الطوبولوجي المثالي 

 
     2درويش ، هةلطورد محمد ، 1 رغزاي ، شوان محمود

 قسم الرياضيات ، كلية العلوم ، جامعة السليمانية ، السليمانية ، العراق   
 

أست  \ ^أست  \ _ مجموعات مغلقة ، التوصيفات وخصائص ز - {أنا}ماثكال \ -أست   \ ^أست \ _في هذه الورقة ، ونحن نقدم ز  الخلاصة:
مجموعات   - _ {أنا}ماثكال \ -أست   \ ^أست \ _نثبت أن فئة ز .مجموعات مغلقة ومكملة لها ومجموعات أخرى ذات الصلة - {أنا}ماثكال \ -

 \ -أست   \ ^أست \ _أيضا ، نجد بعض العلاقات بين ز .مجموعات مغلقة-أست\مجموعات مغلقة وفئة ز-ماثكال}أنا{ز\مغلقة تقع بين فئة  
 .يتم تقديم الحي المفتوح ويتم التحقيق في ممتلكاتهم .مجموعات مغلقة ومجموعات مغلقة موجودة بالفعل - {أنا}ماثكال

مجموعة  -أنا-أست \ ^أست \ _مجموعة مغلقة ، ز-أستي \ ^مجموعة مغلقة ، ز-هو \ ^الفضاء الطوبولوجي المثالي ، ز  الكلمات المفتاحية:
 مفتوحة 

 

 


