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 The purpose of this research is to estimate the cumulative distribution function 𝐶𝐷𝐹 

using the local polynomial regression 𝐿𝑃𝑅 and compare it to parameter estimation using the 

method of moments and the maximum likelihood method to calculate both the mean square 

error and the bias using the ranked sets sample 𝑅𝑆𝑆  and the median ranked sets 

sample  𝑀𝑅𝑆𝑆 . As well as 𝑅𝑆𝑆  frequently produces more exact estimates than simple 

random sampling 𝑆𝑅𝑆 for the same sample size. By ranking samples based on some easily 

measurable characteristic, the variability within each set is decreased, resulting in more 

accurate estimations. We investigated three different degrees of local polynomial 

regression: the first, second, and third. The simulation analysis demonstrated that the second 

degree outperforms the other degrees. Also, when 𝐿𝑃𝑅 is used to analyze 𝑅𝑆𝑆 data, it takes 

advantage of the reduced variability within each ranked set, resulting in more precise and 

reliable regression function estimates. Following that, we investigated several degrees of 

bandwidth (0.1, 0.2, … and 0.9) and discovered that the bandwidth of degree 0.8 is superior 

to the other degrees based on a simulation study. Finally, we analyzed the relative efficiency 

of each of the three approaches:𝐿𝑃𝑅, 𝑀𝑂𝑀, and 𝑀𝐿𝐸, and we discovered that 𝐿𝑃𝑅 is more 

efficient than the other methods for estimating the 𝐶𝐷𝐹  in different kernels (normal 

(gaussian), epanechinkov). The numerical results provide that the suggested estimator 𝐶𝐷𝐹 

based on 𝐿𝑃𝑅 is more efficient than other methods, as predicted by the simulation analysis. 
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1. Introduction 

Cumulative Distribution Function CDF is a strong tool for understanding and evaluating random variables, as well as forecasting 

future occurrences; it is a foundational idea in probability theory and statistics. Also, establish that the occurrence is likely to 

take place until a specific point. When we utilize it, we encounter several obstacles. One of the challenges is studying 

nonparametric analysis in-depth and identifying several population features, such as odds, survival analysis, hazards, etc. 

Estimating the CDF using ranked sets sample RSS is more efficient than basic random sample SRS because RSS frequently 

yields more precise estimates with the same sample size, as well studying variables and measuring them is not easy; sometimes 

it is too expensive or time-consuming, but ranking the variables is easy or has a negligible cost. The first to introduce the rank-

set sample was McIntyre (1952) for estimating the paster of yields in Australia and expressed expectations about how to develop 

the estimator that would be more effective for the paster of yields. Halls and Dell (1966) conducted a field trial evaluating its 

applicability to the estimation of forage yields in a pine-hardwood forest, the terminology ranked set sampling was, coined by 

Halls and Dell. Takahasi and Wakimoto (1968) proved the first theoretical result is that, when ranking is perfect, the ranked set 
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sample mean is an unbiased estimator of the population mean, and the variance of the ranked set sample mean is always smaller 

than the variance of the mean of a simple random sample of the same size. Research has continued in ranked sets since (1997). 

Muttlak (1997) suggested studying median ranked sets sampling to estimate the population mean instead of ranked sets sampling, 

and it is a strategy to minimize the error in ranking. Gulati (2004) studied the empirical distribution function of Stokes and Sagar 

with smooth estimators and properties using simulation to compare the smooth and empirical estimators. Frey (2012) derived 

the constraint to estimate the cumulative distribution function with the mean of the population to create a Woodruff-type 

confidence interval for the population quantile. Al-Saleh and Ahmad (2019) suggested a new technique of ranked sets sampling, 

which was called Moving extreme ranked sets sampling, to estimate the cumulative distribution function and then compared the 

proposed estimator with the corresponding estimator based on both. Zamanzade (2020) established two estimators in moving 

extreme ranked sets sampling with simulation and also showed that the proposed estimators provide a substantial improvement 

over their competitors and prove that the estimators are utilized to estimate the stress-strength probability. Abdallah and Al-

Omari (2022) considered the problem of estimating the cumulative distribution function and the odds measure under moving 

extreme ranked set sampling. 

The paper is structured as follows: Section 2 describes ranked sets sampling and median ranked sets sampling. Section 3 

describes local polynomial regression. Section 4 Estimation of cumulative distribution function using the Maximum Likelihood 

Method, Method of Moments, and local polynomial regression. Section 5 Simulation study and conclusions. 

 

2. Description RSS & MRSS 

2-1. Methodology of ranked sets sample (RSS) 
 

McIntyre (1952) was the first one who suggested the ranked sets sampling as a strategy to estimate the paster of yields. In the 

𝑅𝑆𝑆 technique, taking samples is much cheaper than measurement of the variable. We will describe how to select ranked sets 

sampling in the following steps: 

1. Draw randomly 𝑚2 sample units from the population of interest. Divided the 𝑚2 units into 𝑚 groups each one of the 

groups has a size of 𝑚.   

2. Based on the judgment rank the unit sets without actual measurement by eyes or by a bit price method for the variable of 

interest. 

3. From the first set, select the smallest order observation, discard the other units, and then from the second set, select the 

second smallest order observation, and discard the other units. The process continues until get the 𝑚𝑡ℎ maximum order 

observation. 

4. From steps 1-3 we can get the ranked sets sample RSS of one group 

5. To obtain 𝑅𝑆𝑆 with size 𝑘, we can repeat steps (1-3) 𝑟 times, where 𝑘 = 𝑚𝑟. 

Let {𝑌(𝑖;𝑖)𝑗 , 𝑖 = 1,2, … ,𝑚 𝑎𝑛𝑑 𝑗 = 1,2, . . , 𝑟} be the 𝑅𝑆𝑆 element set, 𝑌(𝑖;𝑖)𝑗  be the judgment order statistics of the 𝑖𝑡ℎ sample of 

size 𝑚, and the 𝑗𝑡ℎ cycle of the 𝑟 repeated. You should notice that we utilize square brackets [.], when the ranked sets sample is 

imperfect ranking it means there is an error in ranking, if there is no error in ranking it means that the ranked sets sample is 

perfect ranking we use the round brackets (.), it’s very important to note that for each 𝑖 {𝑌(𝑖;𝑖)1, 𝑌(𝑖;𝑖)2, … , 𝑌(𝑖;𝑖)𝑟} are independent 

and identically distributed (𝑖𝑖𝑑). And for each 𝑗 {𝑌(1;1)𝑗 , 𝑌(2;2)𝑗 , … , 𝑌(𝑚;𝑚)𝑗} are just independent. 

 

2-2. Methodology of median ranked sets sample (𝑴𝑹𝑺𝑺) 

 
Muttlak (1997) suggested a new strategy of ranked sets sampling, which is called median ranked sets sampling 𝑀𝑅𝑆𝑆, to 

minimize errors in the process of ranking units within groups and to increase the efficiency of the estimator in the presence of 

errors in ranking, also to increase the efficiency over 𝑅𝑆𝑆 with perfect ranking. The following summarizes the 𝑀𝑅𝑆𝑆 procedure 

for drawing a sample of size 𝑘. We will describe how to select median ranked sets sampling 𝑀𝑅𝑆𝑆 in the following steps: 

1) Drow randomly 𝑚2 sample units from the population of interest. 

2) Divided the 𝑚2 units into 𝑚 groups each one of the groups has a size of 𝑚. 

3) If the sample size of 𝑚 group is odd, the odd will be measured by rule 
𝑚+1

2
 it is equal to the units in the medial of the groups, 

if the sample size of the 𝑚 group is even, the even will be measured the first half group units with rule 
𝑚

2
 and the second half 

with rule 
𝑚+2

2
. 

4) Steps 1-3 can be replayed 𝑟 times, if necessary to get 𝑀𝑅𝑆𝑆 of size 𝑘 = 𝑚𝑟. 

 

If the 𝑚 groups are odd, the median ranked sets sample odd, symbolized 𝑀𝑅𝑆𝑆𝑜, where the units of the 𝑀𝑅𝑆𝑆𝑜 for variable 𝑌, 

is described as follows: 
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 {𝑌
𝑖(

𝑚+1

2
)𝑗

, 𝑖 = 1,2, . . , 𝑚, 𝑗 = 1,2, . . , 𝑟} Be the judgment order statistics of the 𝑖𝑡ℎ sample of size 𝑚 and the 𝑗𝑡ℎcycle of the 𝑟 

repeated. 

If the 𝑚 groups are even, the median ranked sets sample even, symbolized 𝑀𝑅𝑆𝑆𝑒 , Also {
𝑚

2
} is the units of the 𝑀𝑅𝑆𝑆𝑒  for 

variable 𝑌, is described as follows: 

Where {𝑌
𝑖(

𝑚

2
)𝑗

; 𝑌𝑚

2
+𝑖(

𝑚+2

2
)𝑗

, 𝑖 = 1,2, . . ,
𝑚

2
, 𝑗 = 1,2, . . , 𝑟} be the judgment order statistics of the 𝑖𝑡ℎ sample of size {

𝑚

2
} and the 

𝑗𝑡ℎcycle of the 𝑟 repeated. 

 

3. Local polynomial regression (LPR) 

Local polynomial regression is a nonparametric technique used to generalize kernel regression, also used to model functions and 

smoothing one of the statistics plots, which is called the scatter plot. One of the most important uses is to find the relationship 

between the dependent variable and the independent variable, 𝐿𝑃𝑅 is better than other types of regression for having a good 

performance near the boundary. For each point of 𝑧𝑜 a 𝑊𝐿𝑆 which is low order weighted least square regression is fit at each 

point of 𝑧. By the Fan and Gijbels (1996), (𝑍𝑖 , 𝑌𝑖) are defined according to the fixed model in equation (1). 

𝑌𝑖 = 𝑚(𝑍𝑖) + 𝜎(𝑍𝑖)𝜀𝑖            𝑖 = 1, … , 𝑛                                                                                                                                  (1) 

Where 𝑍𝑖 =
𝑖

𝑛
, 𝜎(𝑍𝑖) is the variance of 𝑌𝑖 at point 𝑍𝑖, 𝜀𝑖 is a residual error with normal distribution with mean zero and variance 

𝜎2. For estimating 𝑚(𝑍𝑖) we use a Tylor series.  

𝑚(𝑧𝑖) ≈ 𝑚(𝑧) + 𝑚(1)(𝑧𝑖)(𝑧𝑖 − 𝑧) + ⋯+
𝑚(𝑃)(𝑧𝑖)(𝑧𝑖−𝑧)(𝑃)

𝑃!
                                                                                                     (2) 

We need the point in the area of z because it gives us a higher weight than the other point remaining, we can estimate the 

unknown parameters in equation (2) by using 𝑊𝐿𝑆 weighted least square, depending on the following formula: 

𝑧 = [

1 (𝑧1 − 𝑧) ⋯ (𝑧1 − 𝑧)𝑃

1 (𝑧2 − 𝑧) ⋯ (𝑧2 − 𝑧)𝑃

⋮
1

⋮
(𝑧𝑛 − 𝑧)

⋯ (𝑧𝑛 − 𝑧)𝑃

]

𝑛∗𝑚

;  𝑌 = [

𝑦1

𝑦2

⋮
𝑦𝑛

]

𝑛∗1

�̂� =  (𝑍𝑇𝑊𝑍)−1𝑍𝑇𝑊𝑌    

     𝑊 =

[
 
 
 
 
 
1

ℎ
𝑘 (

(𝑍1−𝑍)

ℎ
) 0    …                 0                

0
1

ℎ
𝑘 (

(𝑍2−𝑍)

ℎ
) …                  0             

⋮
0

⋮
0

⋱ ⋮

⋯
1

ℎ
𝑘 (

(𝑍𝑛−𝑍)

ℎ
) ]

 
 
 
 
 

𝑛∗𝑚

 

�̂� =

[
 
 
 
�̂�𝑜

�̂�1

⋮
�̂�𝑛]

 
 
 

𝑛∗1

, 𝑒1 = {1 0 0 ⋯⋯0} and  𝑤 = 𝑑𝑖𝑎𝑔 {
1

ℎ
𝑘 (

(𝑧𝑖−𝑧)

ℎ
)}  𝑖 = 1,2, … ,𝑚 ; 𝑗 = 1,2, … , 𝑟  

𝑘(. ) represents kernel function, ℎ represents bandwidth. 𝑊  represents the diagonal elements matrix of weight, where 𝑒1 =
{1 0 0 ⋯⋯ 0} is the (𝑃 + 1) 𝑡𝑖𝑚𝑒𝑠 1 with 1 in the first entry and 0 elsewhere. 

4. Estimation of cumulative distribution function (CDF) 

4.1. Estimation of (CDF) using The Maximum likelihood Method (MLE): 

4.1.1. Based on ranked sets sampling (RSS). 
 

Al-Saleh and Ahmad (2019) suggested and proved 𝐶𝐷𝐹 using 𝑀𝐿𝐸 based on 

 {𝑌(𝑖;𝑖)𝑗 , 𝑖 = 1,2, … ,𝑚 𝑎𝑛𝑑 𝑗 = 1,2, . . , 𝑟} the represent RSS that we selected from the population with 𝑃𝑑𝑓 𝑓(. ) and 𝐶𝐷𝐹 𝐹(. ), 

and then we will use the maximum likelihood estimation 𝑀𝐿𝐸  for estimating 𝐶𝐷𝐹  𝐹(𝑌𝑅𝑆𝑆) depending on the 𝑅𝑆𝑆 . They 

assumed that the variable 𝑌𝑖 = ∑ 𝑌(𝑖;𝑖)𝑗
𝑟
𝑗=1 ; 𝑖 = 1,2, … ,𝑚 is distributed according to a binomial distribution with mass parameter 

𝑚 and success probability 𝐹(𝑌𝑅𝑆𝑆). Therefore, the estimator of the probability distribution function is defined according to the 

following relationship: 

  

�̂�𝑀𝐿𝐸(𝑌𝑅𝑆𝑆) =
∑ ∑ 𝑌(𝑖,𝑖)𝑗

𝑚
𝑖=1

𝑟
𝑗=1

𝑚𝑟
= 

∑ ∑ 𝑌(𝑖,𝑖)𝑗
𝑚
𝑖=1

𝑟
𝑗=1

𝑘
= �̅�𝑅𝑆𝑆                                                                                                 (3) 
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�̅�𝑅𝑆𝑆 is the mean obtained by estimating the 𝐶𝐷𝐹 based on 𝑀𝐿𝐸 by using 𝑅𝑆𝑆. 

 

4.1.2. Based on odd median ranked sets sampling (𝐌𝐑𝐒𝐒𝐨). 
 

Let {𝑌
𝑖(

𝑚+1

2
)𝑗

, 𝑖 = 1, … ,𝑚, 𝑗 = 1,… , 𝑟}, be median ranked sets sample odd 𝑀𝑅𝑆𝑆𝑜 of size (𝑘 = 𝑚𝑟), that we selected from the 

population with 𝑃𝑑𝑓 𝑓(. ) and 𝐶𝐷𝐹 𝐹(. ), and then we will use the maximum likelihood estimation 𝑀𝐿𝐸 for estimating 𝐶𝐷𝐹 

𝐹(𝑌𝑀𝑅𝑆𝑆𝑜
) depending on the 𝑀𝑅𝑆𝑆𝑜 , note that for each 𝑖 ,  {I (𝑌

𝑖(
𝑚+1

2
)1

≤ 𝑌𝑀𝑅𝑆𝑆𝑜
) , I (𝑌

𝑖(
𝑚+1

2
)2

≤ 𝑌𝑀𝑅𝑆𝑆𝑜
) , … , I (𝑌

𝑖(
𝑚+1

2
)𝑟

≤

𝑌𝑀𝑅𝑆𝑆𝑜
)} are independent and identically distributed (𝑖𝑖𝑑) each unit distributed Bernoulli distribution with probability of success 

𝐹(𝑌𝑀𝑅𝑆𝑆𝑜
), and 𝐼(. ) represent indicator.  

Let {𝑌𝑖𝑀𝑅𝑆𝑆𝑜
= ∑ 𝐼 (𝑌

𝑖(
𝑚+1

2
)𝑗

≤ 𝑌𝑀𝑅𝑆𝑆𝑜
)𝑟

𝑗=1 , 𝑖 = 1, … ,𝑚 }, then variable 𝑌𝑖𝑀𝑅𝑆𝑆𝑜
 distributed binomial with mass parameter 𝑚 

and success probability 𝐹(𝑌𝑀𝑅𝑆𝑆𝑜
). 

The likelihood function is determined according to equation (4): 

𝑔 (𝑌𝑖𝑀𝑅𝑆𝑆𝑜
|𝑚, 𝐹(𝑌𝑀𝑅𝑆𝑆𝑜

)) = ∏(
𝑚

𝑌𝑖𝑀𝑅𝑆𝑆𝑜

)

𝑟

𝑗=1

(𝐹(𝑌𝑀𝑅𝑆𝑆𝑜
))

𝑌𝑖𝑀𝑅𝑆𝑆𝑜

(1 − 𝐹(𝑌𝑀𝑅𝑆𝑆𝑜
))

𝑚−𝑌𝑖𝑀𝑅𝑆𝑆𝑜                                   (4) 

 

Therefore, the estimator of the probability distribution function is defined according to the following relationship: 

 �̂�𝑀𝐿𝐸(𝑌𝑀𝑅𝑆𝑆𝑜
) =

∑ ∑ 𝑌
𝑖(

𝑚+1
2

)𝑗

𝑚
𝑖=1

𝑟
𝑗=1

𝑚𝑟
⇒

∑ ∑ 𝑌
𝑖(

𝑚+1
2

)𝑗

𝑚
𝑖=1

𝑟
𝑗=1

𝑘
= �̅�𝑀𝑅𝑆𝑆𝑜

                                                                            (5) 

�̅�𝑀𝑅𝑆𝑆𝑜
 is the mean obtained by estimating the 𝐶𝐷𝐹 based on 𝑀𝐿𝐸 by using 𝑀𝑅𝑆𝑆𝑜. 

 

4.1.3. Based on even median ranked sets sampling (𝐌𝐑𝐒𝐒𝐞). 
 

The 𝑀𝑅𝑆𝑆𝑒  element set is {𝑌
𝑖(

𝑚

2
)𝑗

, 𝑌𝑚

2
+𝑖(

𝑚+2

2
)𝑗

, 𝑖 = 1,2, … ,
𝑚

2
 𝑎𝑛𝑑 𝑗 = 1,2, . . , 𝑟} of size (𝑘 = 𝑚𝑟), that we selected from the 

population with 𝑃𝑑𝑓 𝑓(. ) and 𝐶𝐷𝐹 𝐹(. ), and then we will use the maximum likelihood estimation 𝑀𝐿𝐸 for estimating 𝐶𝐷𝐹 

𝐹(𝑌𝑀𝑅𝑆𝑆𝑒
) depending on the 𝑀𝑅𝑆𝑆𝑒, depending on the withdrawal method of median ranked sets, sample even note that for each 

𝑖 

{𝐼 (𝑌
𝑖(

𝑚

2
)1

, 𝑌𝑚

2
+𝑖(

𝑚+2

2
)1

≤ 𝑌𝑀𝑅𝑆𝑆𝑒
) , …   , 𝐼 (𝑌

𝑖(
𝑚

2
)𝑟

, 𝑌𝑚

2
+𝑖(

𝑚+2

2
)𝑟

≤ 𝑌𝑀𝑅𝑆𝑆𝑒
)}  are independent and identically distributed (𝑖𝑖𝑑) 

each unit distributed Bernoulli distribution with a probability of success 𝐹(𝑌𝑀𝑅𝑆𝑆𝑒
), and 𝐼(. ) represent indicator.  

Let  {𝑌𝑖𝑀𝑅𝑆𝑆𝑒
= ∑ 𝐼 (𝑌

𝑖(
𝑚

2
)1

, 𝑌𝑚

2
+𝑖(

𝑚+2

2
)1

≤ 𝑌𝑀𝑅𝑆𝑆𝑒
)𝑟

𝑗=1 , 𝑖 = 1, … ,
𝑚

2
} , then variable 𝑌𝑖𝑀𝑅𝑆𝑆𝑒

 distributed binomial with mass 

parameter 𝑚 and success probability 𝐹(𝑌𝑀𝑅𝑆𝑆𝑒
). 

The likelihood function is determined according to equation (6): 

𝑤 (𝑌𝑖𝑀𝑅𝑆𝑆𝑒
|𝑚, 𝐹(𝑌𝑀𝑅𝑆𝑆𝑒

)) = ∏(

𝑚

2
𝑌𝑖𝑀𝑅𝑆𝑆𝑒

)

𝑟

𝑗=1

(𝐹(𝑌𝑀𝑅𝑆𝑆𝑒
))

𝑌𝑖𝑀𝑅𝑆𝑆𝑒

(1 − 𝐹(𝑌𝑀𝑅𝑆𝑆𝑒
))

𝑚
2

−𝑌𝑖𝑀𝑅𝑆𝑆𝑒 ×                             (6) 

 (
𝑚

𝑌𝑚
2

+𝑖𝑀𝑅𝑆𝑆𝑒

) (𝐹(𝑌𝑀𝑅𝑆𝑆𝑒
))

𝑌𝑚
2 +𝑖𝑀𝑅𝑆𝑆𝑒

(1 − 𝐹(𝑌𝑀𝑅𝑆𝑆𝑒
))

𝑚−𝑌𝑚
2 +𝑖𝑀𝑅𝑆𝑆𝑒  

Therefore, the estimator of the probability distribution function is defined according to the following relationship: 

  �̂�𝑀𝐿𝐸(𝑌𝑀𝑅𝑆𝑆𝑒
)  =

∑ {∑ 𝑌
𝑖(

𝑚
2

)𝑗

𝑚
2
𝑖=1

+ ∑ 𝑌
𝑖(

𝑚+2
2

)𝑗

𝑚

𝑖=
𝑚
2

+1
}𝑟

𝑗=1

𝑘
= �̅�𝑀𝑅𝑆𝑆𝑒

                                                                              (7) 

�̅�𝑀𝑅𝑆𝑆𝑒
 is the mean obtained by estimating the 𝐶𝐷𝐹 based on 𝑀𝐿𝐸 by using 𝑀𝑅𝑆𝑆𝑒. 
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4.2. Estimation of (CDF) using the Method of Moments 

4.2.1 Based on 𝐑𝐒𝐒: 
 

Stokes and Sager (1988) suggested a new estimator, which is called the method of moments, for estimating the distribution 

function 𝐹 𝐹(𝑌𝑅𝑆𝑆), by using the ranked sets sample, the equation (8) shows us the suggested estimator. 

�̂�𝑀𝑂𝑀(𝑌𝑅𝑆𝑆) =
∑ ∑ 𝐼(𝑌(𝑖,𝑖)𝑗 ≤ 𝑌𝑅𝑆𝑆)

𝑚
𝑖=1

𝑟
𝑗=1

𝑘
                                                                                                                       (8) 

They proved that 𝐶𝐷𝐹 ranked set sample �̂�𝑅𝑆𝑆(𝑌𝑅𝑆𝑆) is an unbiased estimator for 𝐹(𝑌𝑅𝑆𝑆) and also has better efficiency than 

𝐶𝐷𝐹 of simple random sample �̂�𝑆𝑅𝑆(𝑌𝑆𝑅𝑆). 

4.2.2. Based on 𝐌𝐑𝐒𝐒𝐨: 
 

Depending on the description of 𝑀𝑅𝑆𝑆𝑜 in the subsection 4.1.2, the distribution 

{𝑌
𝑖(

𝑚+1

2
)𝑗

, 𝑖 = 1,2, … ,𝑚 𝑎𝑛𝑑 𝑗 = 1,2, . . , 𝑟}, for 𝑟 independent binomial distribution with each mass parameter 𝑚 and success 

probability 𝑃𝑀𝑅𝑆𝑆𝑜
, can be obtained in equation (9) 

𝑔 (𝑌𝑖𝑀𝑅𝑆𝑆𝑜
|𝑚, 𝑃𝑀𝑅𝑆𝑆𝑜

) = 𝑟 (
𝑚

𝑌𝑖𝑀𝑅𝑆𝑆𝑜

) (𝑃𝑀𝑅𝑆𝑆𝑜
)
𝑌𝑖𝑀𝑅𝑆𝑆𝑜

(1 − 𝑃𝑀𝑅𝑆𝑆𝑜
)
𝑚−𝑌𝑖𝑀𝑅𝑆𝑆𝑜                                                    (9) 

We take the expectation for equation (9) for the purpose of calculating the distribution parameter estimate 𝑃𝑀𝑅𝑆𝑆𝑜
, which 

represents the 𝐶𝐷𝐹 𝐹(𝑌𝑀𝑅𝑆𝑆𝑜
) and probability of success, based on the method of moments, through equation (10) we will get 

the mean: 

𝐸 (𝑌𝑖𝑀𝑅𝑆𝑆𝑜
) = 𝑘𝑃𝑀𝑅𝑆𝑆𝑜

= ∑∑ 𝑌
𝑖(

𝑚+1
2

)𝑗

𝑚

𝑖=1

𝑟

𝑗=1

                                                                                                               (10) 

 �̂�𝑀𝑂𝑀 ( 𝑌𝑀𝑅𝑆𝑆𝑜
) =

∑ ∑ 𝑌
𝑖(

𝑚+1
2

)𝑗

𝑚
𝑖=1

𝑟
𝑗=1

𝑘
= �̅�𝑀𝑅𝑆𝑆𝑜

                                                                                                     (11) 

�̅�𝑀𝑅𝑆𝑆𝑜
 is the mean obtained by estimating the 𝐶𝐷𝐹 based on 𝑀𝑂𝑀 by using 𝑀𝑅𝑆𝑆𝑜 

4.2.3. Based on 𝐌𝐑𝐒𝐒𝐞: 
Depending on the description of 𝑀𝑅𝑆𝑆𝑒  in the subsection 4.1.3, the distribution 

{𝑌
𝑖(

𝑚

2
)𝑗

, 𝑌𝑚

2
+𝑖(

𝑚+2

2
)𝑗

, 𝑖 = 1,2, … ,
𝑚

2
; 𝑎𝑛𝑑 𝑗 = 1,2, . . , 𝑟}  for 𝑟  independent binomial distribution with mass parameter 𝑚  and 

success probability 𝑃𝑀𝑅𝑆𝑆𝑒
, which can be obtained in equation (12) 

𝑤 (𝑌𝑖𝑀𝑅𝑆𝑆𝑒
|𝑘, 𝑃𝑀𝑅𝑆𝑆𝑒

) = 𝑟 {(

𝑚
2

𝑌𝑖𝑀𝑅𝑆𝑆𝑒

) (𝑃𝑀𝑅𝑆𝑆𝑒
)

𝑌𝑖𝑀𝑅𝑆𝑆𝑒

(1 − 𝑃𝑀𝑅𝑆𝑆𝑒
)
𝑚
2

−𝑌𝑖𝑀𝑅𝑆𝑆𝑒 +                                     (12) 

                                                                   (
𝑚

𝑌𝑚

2
+𝑖𝑀𝑅𝑆𝑆𝑒

) (𝑃𝑀𝑅𝑆𝑆𝑒
)
𝑌𝑚

2 +𝑖𝑀𝑅𝑆𝑆𝑒
(1 − 𝑃𝑀𝑅𝑆𝑆𝑒

)
𝑚−𝑌𝑚

2 +𝑖𝑀𝑅𝑆𝑆𝑒} 

 

To calculate the distribution parameter estimate 𝑃𝑀𝑅𝑆𝑆𝑒
, Where 𝑃𝑀𝑅𝑆𝑆𝑒

= 𝐹(𝑌𝑀𝑅𝑆𝑆𝑒
) which is the probability of success and 

represents the 𝐶𝐷𝐹 of the function, based on the method of moments, the expectation of the 𝑃𝑀𝑅𝑆𝑆𝑒
= 𝐹(𝑌𝑀𝑅𝑆𝑆𝑒

) is defined 

according to the following: 

𝐸 (𝑌𝑖𝑀𝑅𝑆𝑆𝑒
) = 𝑘𝑃𝑀𝑅𝑆𝑆𝑒

= ∑ {∑𝑌
𝑖(

𝑚
2

)𝑗

𝑚
2

𝑖=1

+ ∑ 𝑌
𝑖(

𝑚+2
2

)𝑗

𝑚

𝑖=
𝑚
2

+1

}

𝑟

𝑗=1

                                                                         (13) 

�̂�𝑀𝑂𝑀(𝑌𝑀𝑅𝑆𝑆𝑒
) =

∑ {∑ 𝑌
𝑖(

𝑚
2

)𝑗

𝑚
2
𝑖=1

+ ∑ 𝑌
𝑖(

𝑚+2
2

)𝑗

𝑚

𝑖=
𝑚
2

+1
}𝑟

𝑗=1

𝑘
= �̅�𝑀𝑅𝑆𝑆𝑒

                                                                        (14) 



Iraqi Journal of Statistical Sciences, Vol. 22, No. 1, 2025, pp (19-38) 
 

 

24 

 

�̅�𝑀𝑅𝑆𝑆𝑒
 is the mean obtained by estimating the 𝐶𝐷𝐹 based on 𝑀𝑂𝑀 by using 𝑀𝑅𝑆𝑆𝑒 

 

4.3. Estimation of (CDF) using local polynomial regression (LPR) 

4.3.1. LPR based on 𝐑𝐒𝐒: 

 
Estimation of cumulative distribution function 𝐶𝐷𝐹 using local polynomial regression 𝐿𝑃𝑅 based on ranked sets sampling 𝑅𝑆𝑆, 

𝐹𝐿𝑃𝑅(𝑌𝑅𝑆𝑆) can be linearized by using a Tylor series, depending on section (3) equation (2) that we defined 𝐿𝑃𝑅 with 𝑃 degree. 

Consider a fixed regression model: 

𝐹(𝑌𝑅𝑆𝑆) = 𝐹(𝑌(𝑖,𝑖)𝑗) + 𝜎(𝑌(𝑖,𝑖)𝑗)𝜀𝑖𝑗  ; 𝑖 =  1,2, …  𝑚 ;  𝑗 = 1,2, …  𝑟                                                                          (15)  

𝜎(𝑌(𝑖,𝑖)𝑗) is the variance of 𝑌𝑅𝑆𝑆 at point 𝑌(𝑖,𝑖)𝑗, 𝜀𝑖𝑗 is a residual error with normal distribution with mean zero and variance 𝜎2. 

𝐹𝐿𝑃𝑅(𝑌𝑅𝑆𝑆) ≈ 𝐹(𝑌) + 𝐹(1)(𝑌)(𝑌𝑅𝑆𝑆 − 𝑌) +
𝐹(2)(𝑌)

2!
(𝑌𝑅𝑆𝑆 − 𝑌)2 + ⋯+ 

𝐹(𝑝)(𝑌)

𝑃!
(𝑌𝑅𝑆𝑆 − 𝑌)𝑃                        (16) 

Where ≈ represent the approximate equality, 𝐹(𝑖)(𝑌) =
𝜕(𝑖)𝐹𝐿𝑃𝑅(𝑌𝑅𝑆𝑆)

𝜕𝑌𝑅𝑆𝑆
(𝑖) |

𝑌𝑅𝑆𝑆=𝑌

 𝑖 = 1,2, … , 𝑃  

Where 𝑃 is the degree of the local polynomial range and 𝑌 is an observation from a data neighborhood around 𝑌𝑅𝑆𝑆. If the 𝐶𝐷𝐹 

of the ranked sets sample 𝐹𝐿𝑃𝑅(𝑌𝑅𝑆𝑆) is unknown, the equation (16) is as follows: 

𝐹𝐿𝑃𝑅(𝑌(𝑖,𝑖)𝑗) ≈ 𝐹(𝑌𝑅𝑆𝑆) + 𝐹(1)(𝑌(𝑖,𝑖)𝑗)(𝑌(𝑖,𝑖)𝑗 − 𝑌𝑅𝑆𝑆) +
𝐹(2)(𝑌(𝑖,𝑖)𝑗)

2!
(𝑌(𝑖,𝑖)𝑗 − 𝑌𝑅𝑆𝑆)

2
+ ⋯

+
𝐹(𝑃)(𝑌(𝑖,𝑖)𝑗)

𝑃!
(𝑌(𝑖,𝑖)𝑗 − 𝑌𝑅𝑆𝑆)

𝑃
                                                                                                       (17) 

𝑖 =  1,2, …  𝑚 ;  𝑗 = 1,2, …  𝑟   

By estimating the ranked sets sample units 𝐹𝐿𝑃𝑅(𝑌(𝑖,𝑖)𝑗), the equation (17) will be as follows: 

�̂�𝐿𝑃𝑅(𝑌(𝑖,𝑖)𝑗) ≈ 𝛽𝑜𝑅𝑆𝑆
+ 𝛽1𝑅𝑆𝑆

(𝑌(𝑖,𝑖)𝑗 − 𝑌𝑅𝑆𝑆) + 𝛽2𝑅𝑆𝑆
(𝑌(𝑖,𝑖)𝑗 − 𝑌𝑅𝑆𝑆)

2
+ ⋯ + 𝛽𝑃𝑅𝑆𝑆

(𝑌(𝑖,𝑖)𝑗 − 𝑌𝑅𝑆𝑆)
𝑃
             (18) 

Where �̂�𝑖𝑅𝑆𝑆
=

𝐹(𝑖)(𝑌(𝑖,𝑖)𝑗)

𝑖 !
 𝑖 = 0,1,2, … , 𝑃  

Using ordinary least square to estimate the unknown parameter 𝛽𝑅𝑆𝑆. Fan and Gijbles (1996) mentioned that the point in the 

area of 𝑌𝑅𝑆𝑆 is giving us a higher weight than the other point. Rather, we can estimate the unknown parameters in equation (18) 

by using weighted least square depending on the following formula: 

�̂�𝑅𝑆𝑆 =

[
 
 
 
 
�̂�𝑜𝑅𝑆𝑆

�̂�1𝑅𝑆𝑆

⋮
�̂�𝑃𝑅𝑆𝑆]

 
 
 
 

𝑃∗1

;  �̂�𝑅𝑆𝑆 = (𝑌𝑅𝑆𝑆
∗ 𝑇𝑊𝑅𝑆𝑆𝑌𝑅𝑆𝑆

∗ )
−1

𝑌𝑅𝑆𝑆
∗ 𝑇𝑊𝑅𝑆𝑆�̂�𝑅𝑆𝑆                                                                             (19) 

Where 

 

𝑌𝑅𝑆𝑆
∗ =

[
 
 
 
 
  1 (𝑌(1,1)1 − 𝑌𝑅𝑆𝑆)  …

 ⋮ ⋮

.
1
⋮
1

(𝑌(𝑚,𝑚)1 − 𝑌𝑅𝑆𝑆) … 

⋮
(𝑌(𝑚,𝑚)𝑟 − 𝑌𝑅𝑆𝑆) …

    

(𝑌(1,1)1 − 𝑌𝑅𝑆𝑆)
𝑃

⋮

 (𝑌(𝑚,𝑚)1 − 𝑌𝑅𝑆𝑆)
𝑃

⋮

(𝑌(𝑚,𝑚)𝑟 − 𝑌𝑅𝑆𝑆)
𝑃
]
 
 
 
 
 

 ;  �̂�𝑅𝑆𝑆 =

[
 
 
 
 
 
�̂�(𝑌(1,1)1)

⋮
�̂�(𝑌(𝑚,𝑚)1)

⋮
�̂�(𝑌(𝑚,𝑚)𝑟)]

 
 
 
 
 

𝑘∗1

 

 

 &  𝑊𝑅𝑆𝑆 = 𝑑𝑖𝑎𝑔 {
1

ℎ𝑅𝑆𝑆

𝑘𝑅𝑆𝑆 (
(𝑌(𝑖,𝑖)𝑗 − 𝑌𝑅𝑆𝑆)

ℎ𝑅𝑆𝑆

)} , 𝑖 = 1,… ,𝑚, 𝑗 = 1,… , 𝑟                                                           (20)  

Since 𝑘𝑅𝑆𝑆(. ) represent kernel function, ℎ𝑅𝑆𝑆 represent bandwidth that manages the size of the point in the zone of 𝑌𝑅𝑆𝑆. 𝑊𝑅𝑆𝑆 

represents diagonal elements matrix of weight, since the estimator of �̂�𝑜𝑅𝑆𝑆
 is the 𝐶𝐷𝐹 of local polynomial regression in ranked 

sets sample, where 𝑒1 is the vector has 1 in the first entry and somewhere else is zero. 

�̂�𝐿𝑃𝑅(𝑌𝑅𝑆𝑆) = 𝑒1 × �̂�𝑅𝑆𝑆 = 𝑒1 × (𝑌𝑅𝑆𝑆
∗ 𝑇𝑊𝑅𝑆𝑆𝑌𝑅𝑆𝑆

∗ )
−1

𝑌𝑅𝑆𝑆
∗ 𝑇𝑊𝑅𝑆𝑆�̂�𝑅𝑆𝑆 = �̂�𝑜𝑅𝑆𝑆

 ;  𝑒1 = {1 0 0 ⋯⋯ 0}            (21) 

We have concluded  in equation (21) that the estimator �̂�𝑜𝑅𝑆𝑆
 is equal likely to the �̂�𝐿𝑃𝑅(𝑌𝑅𝑆𝑆) which is the estimator of the 𝐶𝐷𝐹 

based on 𝐿𝑃𝑅 with degree 𝑃, this indicates that the estimator �̂�𝑜𝑅𝑆𝑆
 is equal to the estimator �̂�𝐿𝑃𝑅(0)

(𝑌𝑅𝑆𝑆) which is the estimator 

of the 𝐶𝐷𝐹 based on 𝐿𝑃𝑅 with degree 𝑃 = 0 in 𝑅𝑆𝑆, with the value of the vector 𝑒1
𝑇 = {1} in equation (22). 
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�̂�𝐿𝑃𝑅(0)
(𝑌𝑅𝑆𝑆) =

∑ ∑ 𝑘𝑅𝑆𝑆(𝑌(𝑖,𝑖)𝑗 − 𝑌𝑅𝑆𝑆)�̂�𝑅𝑆𝑆
𝑚
𝑖=1

𝑟
𝑗=1

∑ ∑ 𝑘𝑅𝑆𝑆(𝑌(𝑖,𝑖)𝑗 − 𝑌𝑅𝑆𝑆)
𝑚
𝑖=1

𝑟
𝑗=1

                                                                                             (22) 

We have proved in equation (21) that the estimator �̂�𝑜𝑅𝑆𝑆
 is equal likely to the �̂�𝐿𝑃𝑅(𝑌𝑅𝑆𝑆), and also the estimator �̂�𝑜𝑅𝑆𝑆

 is equal 

to the �̂�𝐿𝑃𝑅(1)
(𝑌𝑅𝑆𝑆) which is the estimator of the 𝐶𝐷𝐹 based on 𝐿𝑃𝑅 with degree 𝑃 = 1 in 𝑅𝑆𝑆, with the value of vector 𝑒1

𝑇 =

{1,0}, in equation (23). 

�̂�𝐿𝑃𝑅(1)
(𝑌𝑅𝑆𝑆) = 𝑘𝑅𝑆𝑆

−1
𝑆0(𝑌(𝑖,𝑖)𝑗 , ℎ𝑅𝑆𝑆) − 𝑆1(𝑌(𝑖,𝑖)𝑗 , ℎ𝑅𝑆𝑆)(𝑌(𝑖,𝑖)𝑗 − 𝑌𝑅𝑆𝑆)

𝑆0(𝑌(𝑖,𝑖)𝑗 , ℎ𝑅𝑆𝑆)𝑆2(𝑌(𝑖,𝑖)𝑗, ℎ𝑅𝑆𝑆) − 𝑆1(𝑌(𝑖,𝑖)𝑗 , ℎ𝑅𝑆𝑆)
                                                          (23) 

Where 𝑆𝐿(𝑌(𝑖,𝑖)𝑗 , ℎ𝑅𝑆𝑆) = 𝑘𝑅𝑆𝑆
−1 ∑ ∑ (𝑌(𝑖,𝑖)𝑗 , 𝑌𝑅𝑆𝑆)

𝐿
𝑘𝑅𝑆𝑆ℎ

(𝑌(𝑖,𝑖)𝑗 , 𝑌𝑅𝑆𝑆)
𝑚
𝑖=1

𝑟
𝑗=1  

The properties of 𝐶𝐷𝐹 will be studied based on local polynomial using ranked sets sampling depending on these conditions: 

1- The function 𝐹(2)(𝑌) and 𝜎 each continuous on [0,1]. 
2- The kernel 𝑘𝑅𝑆𝑆 is symmetric about zero and is reinforced on [−1,1]. 
3- The bandwidth ℎ𝑅𝑆𝑆 = ℎ𝑅𝑆𝑆𝑘

 it is a satisfactory sequence, ℎ𝑅𝑆𝑆 → 0 𝑎𝑛𝑑 𝑘ℎ𝑅𝑆𝑆 → ∞ 𝑎𝑠 𝑘 → ∞. 

4- The point 𝑌(𝑖,𝑖)𝑗 at which the estimate is made satisfactory ℎ𝑅𝑆𝑆 < 𝑌(𝑖,𝑖)𝑗 < 1 − ℎ𝑅𝑆𝑆 for all 𝑘 ≥ 𝑘0, where 𝑘0 is fixed. 

In this subsection, we will make a derivative for the bias and 𝑀𝑆𝐸 of the estimate 𝐶𝐷𝐹 based on local polynomial. 

𝐸 (�̂�𝐿𝑃𝑅(1)
(𝑌𝑅𝑆𝑆)) = 𝐸 {𝑒1

𝑇(𝑌𝑅𝑆𝑆
∗ 𝑇𝑊𝑅𝑆𝑆𝑌𝑅𝑆𝑆

∗ )
−1

𝑌𝑅𝑆𝑆
∗ 𝑇𝑊𝑅𝑆𝑆�̂�𝑅𝑆𝑆}                                                        

𝐸 (�̂�𝐿𝑃𝑅(1)
(𝑌𝑅𝑆𝑆)) = 𝐹𝑅𝑆𝑆 +

1

2
ℎ𝑅𝑆𝑆

(2)
𝐹𝑅𝑆𝑆

(2)
𝜇2(𝑘𝑅𝑆𝑆) + 𝑂(ℎ𝑅𝑆𝑆

(2)
𝑘𝑅𝑆𝑆

−1 )                                                                     (24) 

𝐵𝑖𝑎𝑠 (�̂�𝐿𝑃𝑅(1)
(𝑌𝑅𝑆𝑆)) =

1

2
ℎ𝑅𝑆𝑆

(2)
𝐹𝑅𝑆𝑆

(2)
𝜇2(𝑘𝑅𝑆𝑆) + 𝑂(ℎ𝑅𝑆𝑆

(2)
𝑘𝑅𝑆𝑆

−1 )                                                                             (25) 

𝑀𝑆𝐸 (�̂�𝐿𝑃𝑅(1)
(𝑌𝑅𝑆𝑆))  = 𝑒1

𝑇(𝑌𝑅𝑆𝑆
∗ 𝑇𝑊𝑅𝑆𝑆𝑌𝑅𝑆𝑆

∗ )
−1

𝑌𝑅𝑆𝑆
∗ 𝑇𝑊𝑅𝑆𝑆𝑉(𝐹(𝑌𝑅𝑆𝑆))𝑊𝑅𝑆𝑆𝑌𝑅𝑆𝑆

∗ (𝑌𝑅𝑆𝑆
∗ 𝑇𝑊𝑅𝑆𝑆𝑌𝑅𝑆𝑆

∗ )
−1

𝑒1  (26) 

𝑀𝑆𝐸 (�̂�𝐿𝑃𝑅(1)
(𝑌𝑅𝑆𝑆)) = (𝑘ℎ𝑅𝑆𝑆)

−1𝑅(𝑘𝑅𝑆𝑆)𝑉(𝐹(𝑌𝑅𝑆𝑆)) + 𝑂{(𝑘ℎ𝑅𝑆𝑆)
−1}                                                       (27) 

In the applied aspect, in Table 1.1, we use the R-Program to obtain values of the empirical 𝑀𝑆𝐸 and 𝐵𝑖𝑎𝑠 of 𝐶𝐷𝐹 based on 𝐿𝑃𝑅 

by using 𝑅𝑆𝑆, with four level sets size (𝑚 = 2,3,4,5) and number of cycles (𝑟 = 3,5,7). We take degree  𝑃 =  2 of 𝐿𝑃𝑅 with 

bandwidth 0.8 because they give a good result compared to other bandwidths and degrees and use kernel (normal, epanechnikov) 

with three values of probability (𝑃𝑅𝑆𝑆  = 0.25,0.50,0.75). 

 

Table 1.1: The empirical mean square error and bias of CDF based on LPR by Using RSS 
Kernel / Normal 

 r = 3 m = 2, k = 6 m = 3, k = 9 m = 4, k = 12 m = 5, k = 15 

𝑷𝑹𝑺𝑺 = 0.25 Mse = 0.000107486 

Bias = 0.0004636507 

Mse = 0.0001035949 

Bias = 0.0004551812 

Mse = 0.0001014252 

Bias = 0.0004503893 

Mse = 7.986923e-05 

Bias = 0.0003996729 

𝑷𝑹𝑺𝑺 = 0.50 Mse = 5.946986e-05 Bias = 0.0003448764 Mse = 5.383707e-05 

Bias = 0.0003281374 

Mse = 4.66936e-05 Bias = 0.0003055932 Mse = 4.70322e-05 Bias = 0.0003066992 

𝑷𝑹𝑺𝑺 = 0.75 Mse = 2.168546e-05 

Bias = 0.0002082569 

Mse = 2.295053e-05 

Bias = 0.0002142453 

Mse = 4.179461e-05 

Bias = 0.000289118 

Mse = 2.598391e-05 

Bias = 0.0002279645 

r = 5 m = 2, k = 10 m = 3, k = 15 m = 4, k = 20 m = 5, k = 25 

𝑷𝑹𝑺𝑺 = 0.25 Mse = 3.894282e-05 

Bias = 0.00027908 

Mse = 2.321515e-05 

Bias = 0.0002154769 

Mse = 3.138624e-05 

Bias = 0.0002505444 

Mse = 2.607705e-05 

Bias = 0.0002283727 

𝑷𝑹𝑺𝑺 = 0.50 Mse = 2.158395e-05 Bias = 0.0002077689 Mse = 2.049009e-05 

Bias = 0.0002024356 

Mse = 1.98626e-05 Bias = 0.0001993118 Mse = 2.083776e-05 Bias = 0.0002041458 

𝑷𝑹𝑺𝑺 = 0.75 Mse = 1.459885e-05 

Bias = 0.0001708733 

Mse = 1.734523e-05 

Bias = 0.0001862537 

Mse = 1.692903e-05 

Bias = 0.0001840056 

Mse = 1.845636e-05 

Bias = 0.0001921268 

r = 7 m = 2, k = 14 m = 3, k = 21 m = 4, k = 28 m = 5, k = 35 

𝑷𝑹𝑺𝑺 = 0.25 Mse = 1.264575e-05 

Bias = 0.000159033 

Mse = 1.352716e-05 

Bias = 0.000164482 

Mse = 1.15039e-05 

Bias = 0.0001516832 

Mse = 1.099064e-05 

Bias = 0.0001482609 

𝑷𝑹𝑺𝑺 = 0.50 Mse = 1.211694e-05 Bias = 0.0001556723 Mse = 1.238188e-05 

Bias = 0.0001573651 

Mse = 1.398311e-05 Bias = 0.0001672311 Mse = 9.6613e-06 

bias = 0.0001390058 

𝑷𝑹𝑺𝑺 = 0.75 Mse = 7.667563e-06 

Bias = 0.0001238351 

Mse = 9.508394e-06 

Bias = 0.0001379014 

Mse = 1.167593e-05 

Bias = 0.0001528131 

Mse = 6.628009e-06 

Bias = 0.0001151348 

Kernel / Epanechnikov 

 r = 3 m = 2, k = 6 m = 3, k = 9 m = 4, k = 12 m = 5, k = 15 

𝑷𝑹𝑺𝑺 = 0.25 Mse = 0.0001206227 Mse = 8.56113e-05 Mse = 6.935339e-05 Mse = 8.86133e-05 
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Bias = 0.0004911674 Bias = 0.0004137905 Bias = 0.0003724336 Bias = 0.0004209829 

𝑷𝑹𝑺𝑺 = 0.50 Mse = 5.661436e-05 Bias = 0.0003364947 Mse = 5.640625e-05 

Bias = 0.0003358757 

Mse = 5.636432e-05 Bias = 0.0003357509 Mse = 5.704077e-05 Bias = 0.0003377596 

𝑷𝑹𝑺𝑺 = 0.75 Mse = 1.99026e-05 

Bias = 0.0001995124 

Mse = 2.287863e-05 

Bias = 0.0002139095 

Mse = 3.196004e-05 

Bias = 0.0002528242 

Mse = 4.15294e-05 

Bias = 0.0002881992 

r = 5 m = 2, k = 10 m = 3, k = 15 m = 4, k = 20 m = 5, k = 25 

𝑷𝑹𝑺𝑺 = 0.25 Mse = 3.369704e-05 

Bias = 0.0002596037 

Mse = 2.682286e-05 

Bias = 0.0002316154 

Mse = 1.952314e-05 

Bias = 0.0001976013 

Mse = 2.263933e-05 

Bias = 0.0002127878 

𝑷𝑹𝑺𝑺 = 0.50 Mse = 2.034624e-05 

Bias = 0.0002017238 

Mse = 1.930976e-05 

Bias = 0.0001965185 

Mse = 1.933795e-05 

Bias = 0.0001966619 

Mse = 2.062103e-05 

Bias = 0.0002030814 

𝑷𝑹𝑺𝑺 = 0.75 Mse = 7.79924e-06 

Bias = 0.0001248939 

Mse = 1.103365e-05 

Bias = 0.0001485506 

Mse = 1.969276e-05 

Bias = 0.0001984578 

Mse = 1.909245e-05 

Bias = 0.0001954096 

r = 7 m = 2, k = 14 m = 3, k = 21 m = 4, k = 28 m = 5, k = 35 

𝑷𝑹𝑺𝑺 = 0.25 Mse = 1.560244e-05 

Bias = 0.000176649 

Mse = 1.161882e-05 

Bias = 0.000152439 

Mse = 1.186293e-05 

Bias = 0.000154032 

Mse = 1.385473e-05 

Bias = 0.0001664616 

𝑷𝑹𝑺𝑺 = 0.50 Mse = 1.03374e-05 bias = 0.0001437874 Mse = 1.377892e-05 

Bias = 0.0001660056 

Mse = 1.074807e-05 

Bias = 0.0001466156 

Mse = 1.121305e-05 

Bias = 0.0001497535 

𝑷𝑹𝑺𝑺 = 0.75 Mse = 8.002706e-06 

Bias = 0.0001265125 

Mse = 6.681595e-06 

Bias = 0.0001155993 

Mse = 6.970129e-06 

Bias = 0.0001180689 

Mse = 1.073552e-05 

Bias = 0.00014653 

 

From the results of table 1.1, 𝑓𝑖𝑔𝑢𝑟𝑒 1, and 𝑓𝑖𝑔𝑢𝑟𝑒 2, we can observe the following: 

1- For fixed values 𝑃𝑅𝑆𝑆 and 𝑚, when the number of cycles is increasing 𝑟 = 3,5 and 7, the values of Mse and Bias are decreasing. 

For more evidence, we can see 𝐹𝑖𝑔𝑢𝑟𝑒 1 when the  blue line gradually curves as the number of cycles increases. 

2- For fixed values 𝑚 and sample size 𝑘, when the probability is increasing 

𝑃𝑅𝑆𝑆  = 0.25, 0.50, and 0.75, the blue line gradually curves; see  𝐹𝑖𝑔𝑢𝑟𝑒 2, which means that values of Mse and Bias are 

decreasing. 

3- Kernel epanechnikov gives us a better result than the gaussian kernel; for evidence, the result of empirical Mse and Bias in 

epanchnikov are less than gaussian. 

4.3.2.  LPR based on 𝐌𝐑𝐒𝐒𝐎: 

Estimation of cumulative distribution function 𝐶𝐷𝐹  using local polynomial regression 𝐿𝑃𝑅  based on median ranked sets 

sampling odd 𝑀𝑅𝑆𝑆𝑂, we take 𝑃 degree of local polynomial regression, and using a Tylor series for linearizing 𝐹𝐿𝑃𝑅(𝑌𝑀𝑅𝑆𝑆𝑂
) 

as follows: 

Consider a fixed regression model: 

𝐹(𝑌𝑀𝑅𝑆𝑆𝑂
) = 𝐹 (𝑌

𝑖(
𝑚+1

2
)𝑗

) + 𝜎 (𝑌
𝑖(

𝑚+1
2

)𝑗
) 𝜀𝑖𝑗  ; 𝑖 =  1,2, …  𝑚 ;  𝑗 = 1,2, …  𝑟                                                  (28)  

𝜎 (𝑌
𝑖(

𝑚+1

2
)𝑗

) is the variance of 𝑌𝑀𝑅𝑆𝑆𝑂
 at point 𝑌

𝑖(
𝑚+1

2
)𝑗

, 𝜀𝑖𝑗 is a residual error with normal distribution with mean zero and 

variance 𝜎2. 

𝐹𝐿𝑃𝑅(𝑌𝑀𝑅𝑆𝑆𝑂
) ≈ 𝐹(𝑌) + 𝐹(1)(𝑌)(𝑌𝑀𝑅𝑆𝑆𝑂

− 𝑌) +
𝐹(2)(𝑌)

2!
(𝑌𝑀𝑅𝑆𝑆𝑂

− 𝑌)
2
+ ⋯

+
𝐹(𝑃)(𝑌)

𝑃!
(𝑌𝑀𝑅𝑆𝑆𝑂

− 𝑌)
𝑃
                                                                                                              (29) 

Where  𝐹(𝑖)(𝑌) =
𝜕(𝑖)𝐹(𝑌𝑀𝑅𝑆𝑆𝑂

)

𝜕𝑌𝑀𝑅𝑆𝑆𝑂
(𝑖) |

𝑌𝑀𝑅𝑆𝑆𝑂
=𝑌

 𝑖 = 1,2, … , 𝑃 ; 𝑌 is an observation from a data neighborhood around 𝑌𝑀𝑅𝑆𝑆𝑂
, equation 

(29) is reformulated as follows: 
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𝐹𝐿𝑃𝑅 (𝑌
𝑖(

𝑚+1
2

)𝑗
) ≈ 𝐹(𝑌𝑀𝑅𝑆𝑆𝑂

) + 𝐹(1) (𝑌
𝑖(

𝑚+1
2

)𝑗
) (𝑌

𝑖(
𝑚+1

2
)𝑗

− 𝑌𝑀𝑅𝑆𝑆𝑂
)                                                        (30)

+

𝐹(2) (𝑌
𝑖(

𝑚+1
2

)𝑗
)

2!
(𝑌

𝑖(
𝑚+1

2
)𝑗

− 𝑌𝑀𝑅𝑆𝑆𝑂
)

2

+ ⋯+

𝐹(𝑃) (𝑌
𝑖(

𝑚+1
2

)𝑗
)

𝑃!
(𝑌

𝑖(
𝑚+1

2
)𝑗

− 𝑌𝑀𝑅𝑆𝑆𝑂
)

𝑃

 

 𝑖 =  1,2, …  𝑚 ;  𝑗 = 1,2, …  𝑟 

By estimating the ranked sets, sample units 𝐹𝐿𝑃𝑅 (𝑌
𝑖(

𝑚+1

2
)𝑗

) in equation (30) will be as follows: 

�̂�𝐿𝑃𝑅 (𝑌
𝑖(

𝑚+1
2

)𝑗
) ≈ 𝛽𝑜𝑀𝑅𝑆𝑆𝑂

+ 𝛽1𝑀𝑅𝑆𝑆𝑂
(𝑌

𝑖(
𝑚+1

2
)𝑗

− 𝑌𝑀𝑅𝑆𝑆𝑂
) + 𝛽2𝑀𝑅𝑆𝑆𝑂

(𝑌
𝑖(

𝑚+1
2

)𝑗
− 𝑌𝑀𝑅𝑆𝑆𝑂

)
2

             (31) 

+ ⋯+ 𝛽𝑃𝑀𝑅𝑆𝑆𝑂
(𝑌

𝑖(
𝑚+1

2
)𝑗

− 𝑌𝑀𝑅𝑆𝑆𝑂
)

𝑃

                                                            

Where 𝛽𝑖𝑀𝑅𝑆𝑆𝑂
=

𝐹(𝑖)(𝑌
𝑖(

𝑚+1
2 )𝑗

)

𝑖 !
 𝑖 = 0,1,2, … , 𝑃  

 

�̂�𝑀𝑅𝑆𝑆𝑂
=

[
 
 
 
 
�̂�𝑜𝑀𝑅𝑆𝑆𝑂

�̂�1𝑀𝑅𝑆𝑆𝑂

⋮
�̂�𝑝𝑀𝑅𝑆𝑆𝑂]

 
 
 
 

𝑝∗1

;  �̂�𝑀𝑅𝑆𝑆𝑂
= (𝑌𝑀𝑅𝑆𝑆𝑂

∗ 𝑇𝑊𝑀𝑅𝑆𝑆𝑂
𝑌𝑀𝑅𝑆𝑆𝑂

∗ )
−1

𝑌𝑀𝑅𝑆𝑆𝑂
∗ 𝑇𝑊𝑀𝑅𝑆𝑆𝑂

�̂�𝑀𝑅𝑆𝑆𝑂
                           (32) 

𝑌𝑀𝑅𝑆𝑆𝑂
∗ =

[
 
 
 
 
 
 
 
 1 (𝑌

1(
𝑚+1

2
)1

− 𝑌𝑀𝑅𝑆𝑆𝑂
)       …

⋮ ⋮

1
⋮
1

(𝑌
𝑚(

𝑚+1
2

)1
− 𝑌𝑀𝑅𝑆𝑆𝑂

)       …

⋮

(𝑌
𝑚(

𝑚+1
2

)𝑟
− 𝑌𝑀𝑅𝑆𝑆𝑂

)        …

          (𝑌
1(

𝑚+1
2

)1
− 𝑌𝑀𝑅𝑆𝑆𝑂

)
𝑃

⋮

         

(𝑌
𝑚(

𝑚+1
2

)1
− 𝑌𝑀𝑅𝑆𝑆𝑂

)
𝑃

⋮

(𝑌
𝑚(

𝑚+1
2

)𝑟
− 𝑌𝑀𝑅𝑆𝑆𝑂

)
𝑃

]
 
 
 
 
 
 
 
 

𝑃∗𝑃

�̂�𝑀𝑅𝑆𝑆𝑂
=

[
 
 
 
 
 
 
 �̂� (𝑦

1(
𝑚+1

2
)1

)

⋮

�̂� (𝑦
𝑚(

𝑚+1
2

)1
)

⋮

�̂� (𝑦
𝑚(

𝑚+1
2

)𝑟
)
]
 
 
 
 
 
 
 

𝑃∗1

 

𝑊𝑀𝑅𝑆𝑆𝑂
= 𝑑𝑖𝑎𝑔 {

1

ℎ𝑀𝑅𝑆𝑆𝑂

𝑘𝑀𝑅𝑆𝑆𝑂
(

(𝑌
𝑖(

𝑚+1
2 )𝑗

−𝑌𝑀𝑅𝑆𝑆𝑂
)

ℎ𝑀𝑅𝑆𝑆𝑂

)} , 𝑖 = 1,… ,𝑚, 𝑗 = 1,… , 𝑟                                                           (33)  

𝑘𝑀𝑅𝑆𝑆𝑂
(. ) represents the kernel function of 𝑀𝑅𝑆𝑆𝑂, and ℎ𝑀𝑅𝑆𝑆𝑂

 represents the bandwidth that manages the size of the point in 

the zone of 𝑌𝑀𝑅𝑆𝑆𝑂
. 𝑊𝑀𝑅𝑆𝑆𝑂

 represents the diagonal element matrix of weight since the estimator of �̂�𝑜𝑀𝑅𝑆𝑆𝑂
 is the 𝐶𝐷𝐹 of local 

polynomial regression in median ranked sets sample odd, where 𝑒1 is the vector with 1 in the first entry and elsewhere is zero. 

�̂�𝐿𝑃𝑅(𝑌𝑀𝑅𝑆𝑆𝑂
) = 𝑒1 × �̂�𝑀𝑅𝑆𝑆𝑂

= 𝑒1 × (𝑌𝑀𝑅𝑆𝑆𝑂
∗ 𝑇𝑊𝑀𝑅𝑆𝑆𝑂

𝑌𝑀𝑅𝑆𝑆𝑂
∗ )

−1
𝑌𝑀𝑅𝑆𝑆𝑂

∗ 𝑇𝑊𝑀𝑅𝑆𝑆𝑂
�̂�𝑀𝑅𝑆𝑆𝑂

= �̂�𝑜𝑀𝑅𝑆𝑆𝑂
   (34) 

Estimation of the 𝐶𝐷𝐹 based on 𝐿𝑃𝑅 with degree 𝑃 = 0, with the value of vector 𝑒1
𝑇 = {1}, indicates that the estimator �̂�𝑜𝑀𝑅𝑆𝑆𝑂

 

is equally likely to the �̂�𝐿𝑃𝑅(𝑌𝑀𝑅𝑆𝑆𝑂
), which is equal to the estimator �̂�𝐿𝑃𝑅(0)

(𝑌𝑀𝑅𝑆𝑆𝑂
) in equation (35). 

�̂�𝐿𝑃𝑅(0)
(𝑌𝑀𝑅𝑆𝑆𝑂

) =

∑ ∑ 𝑘𝑀𝑅𝑆𝑆𝑂
(𝑌

𝑖(
𝑚+1

2
)𝑗

− 𝑌𝑀𝑅𝑆𝑆𝑂
) �̂�𝑀𝑅𝑆𝑆𝑂

𝑚
𝑖=1

𝑟
𝑗=1

∑ ∑ 𝑘𝑀𝑅𝑆𝑆𝑂
𝑚
𝑖=1

𝑟
𝑗=1 (𝑌

𝑖(
𝑚+1

2
)𝑗

− 𝑌𝑀𝑅𝑆𝑆𝑂
)

                                                                (35) 
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We have proved in equation (34) that the estimator �̂�𝑜𝑀𝑅𝑆𝑆𝑂
 is equally likely to the estimator �̂�𝐿𝑃𝑅(𝑌𝑀𝑅𝑆𝑆𝑂

), which is equal to 

the estimator �̂�𝐿𝑃𝑅(1)
(𝑌𝑀𝑅𝑆𝑆𝑂

), which is the estimator of the 𝐶𝐷𝐹 based on 𝐿𝑃𝑅 with degree 𝑃 = 1, with the value of the vector 

being 𝑒1
𝑇 = {1,0}, in equation (36). 

�̂�𝐿𝑃𝑅(1)
(𝑌𝑀𝑅𝑆𝑆𝑂

) = 𝑘𝑀𝑅𝑆𝑆𝑂
−1

𝑆0 (𝑌
𝑖(

𝑚+1
2

)𝑗
, ℎ𝑀𝑅𝑆𝑆𝑂

) − 𝑆1 (𝑌
𝑖(

𝑚+1
2

)𝑗
, ℎ𝑀𝑅𝑆𝑆𝑂

) (𝑌
𝑖(

𝑚+1
2

)𝑗
− 𝑌𝑀𝑅𝑆𝑆𝑂

)

𝑆0 (𝑌
𝑖(

𝑚+1
2

)𝑗
, ℎ𝑀𝑅𝑆𝑆𝑂

) 𝑆2 (𝑌
𝑖(

𝑚+1
2

)𝑗
, ℎ𝑀𝑅𝑆𝑆𝑂

) − 𝑆1 (𝑌
𝑖(

𝑚+1
2

)𝑗
, ℎ𝑀𝑅𝑆𝑆𝑂

)
                   (36) 

Where 𝑆𝐿 (𝑌
𝑖(

𝑚+1

2
)𝑗

, ℎ) = 𝑘𝑀𝑅𝑆𝑆𝑂
−1 ∑ ∑ (𝑌

𝑖(
𝑚+1

2
)𝑗

, 𝑌𝑀𝑅𝑆𝑆𝑂
)

𝐿

𝑘𝑀𝑅𝑆𝑆𝑂ℎ
(𝑌

𝑖(
𝑚+1

2
)𝑗

, 𝑌𝑀𝑅𝑆𝑆𝑂
)𝑚

𝑖=1
𝑟
𝑗=1  

The properties of 𝐶𝐷𝐹 will be studied based on local polynomial using median ranked sets sampling odd, depending on these 

conditions : 

1- The function 𝐹(2)(𝑌) and 𝜎 each continuous on [0,1]. 

2- The kernel 𝑘𝑀𝑅𝑆𝑆𝑂
 is symmetric about zero and is reinforced on [−1,1]. 

3- The bandwidth ℎ𝑀𝑅𝑆𝑆𝑂
= ℎ𝑀𝑅𝑆𝑆𝑂𝑘

 it is a satisfactory sequence, ℎ𝑀𝑅𝑆𝑆𝑂
→ 0 𝑎𝑛𝑑 𝑘ℎ𝑀𝑅𝑆𝑆𝑂

→ ∞ 𝑎𝑠 𝑘 → ∞. 

4- The point 𝑌
𝑖(

𝑚+1

2
)𝑗

 at which the estimate is made satisfactory ℎ𝑀𝑅𝑆𝑆𝑂
< 𝑌

𝑖(
𝑚+1

2
)𝑗

< 1 − ℎ𝑀𝑅𝑆𝑆𝑂
 for all 𝑘 ≥ 𝑘0, where 𝑘0 is 

fixed. 

In this subsection, we will make a derivative for the Bias and 𝑀𝑆𝐸 of the estimate 𝐶𝐷𝐹 based on local polynomial. 

𝐸 (�̂�𝐿𝑃𝑅(1)
(𝑌𝑀𝑅𝑆𝑆𝑂

)) = 𝐸 {𝑒1
𝑇(𝑌𝑀𝑅𝑆𝑆𝑂

∗ 𝑇𝑊𝑀𝑅𝑆𝑆𝑂
𝑌𝑀𝑅𝑆𝑆𝑂

∗ )
−1

𝑌𝑀𝑅𝑆𝑆𝑂
∗ 𝑇𝑊𝑀𝑅𝑆𝑆𝑂

�̂�𝑀𝑅𝑆𝑆𝑂
}                                   

𝐸 (�̂�𝐿𝑃𝑅(1)
(𝑌𝑀𝑅𝑆𝑆𝑂

)) = 𝐹𝑀𝑅𝑆𝑆𝑂
+

1

2
ℎ𝑀𝑅𝑆𝑆𝑂

(2)
𝐹𝑀𝑅𝑆𝑆𝑂

(2)
𝜇2(𝑘𝑀𝑅𝑆𝑆𝑂

) + 𝑂(ℎ𝑀𝑅𝑆𝑆𝑂

(2)
𝑘𝑀𝑅𝑆𝑆𝑂

−1 )                                           (37) 

𝐵𝑖𝑎𝑠 (�̂�𝐿𝑃𝑅(1)
(𝑌𝑀𝑅𝑆𝑆𝑂

)) =
1

2
ℎ𝑀𝑅𝑆𝑆𝑂

(2)
𝐹𝑀𝑅𝑆𝑆𝑂

(2)
𝜇2(𝑘𝑀𝑅𝑆𝑆𝑂

) + 𝑂(ℎ𝑀𝑅𝑆𝑆𝑂

(2)
𝑘𝑀𝑅𝑆𝑆𝑂

−1 )                                                       (38) 

𝑀𝑆𝐸 (�̂�𝐿𝑃𝑅(1)
(𝑌𝑀𝑅𝑆𝑆𝑂

))  = 𝑒1
𝑇(𝑌𝑀𝑅𝑆𝑆𝑂

∗ 𝑇𝑊𝑀𝑅𝑆𝑆𝑂
𝑌𝑀𝑅𝑆𝑆𝑂

∗ )
−1

𝑌𝑀𝑅𝑆𝑆𝑂
∗ 𝑇𝑊𝑀𝑅𝑆𝑆𝑂

𝑉 (𝐹(𝑌𝑀𝑅𝑆𝑆𝑂
))                               (39) 

                                                         𝑊𝑀𝑅𝑆𝑆𝑂
𝑌𝑀𝑅𝑆𝑆𝑂

∗ 𝑇(𝑌𝑀𝑅𝑆𝑆𝑂
∗ 𝑇𝑊𝑀𝑅𝑆𝑆𝑂

𝑌𝑀𝑅𝑆𝑆𝑂
∗ )

−1
𝑒1

𝑇 

𝑀𝑆𝐸 (�̂�𝐿𝑃𝑅(1)
(𝑌𝑀𝑅𝑆𝑆𝑂

)) = (𝑘𝑀𝑅𝑆𝑆𝑂
ℎ𝑀𝑅𝑆𝑆𝑂

)
−1

𝑅(𝑘𝑀𝑅𝑆𝑆𝑂
)𝑉 (𝐹(𝑌𝑀𝑅𝑆𝑆𝑂

)) + 𝑂 {(𝑘𝑀𝑅𝑆𝑆𝑂
ℎ𝑀𝑅𝑆𝑆𝑂

)
−1

}            (40) 

In the Table 1.2, we use the R-Program to achieve the result of the empirical mean square error and bias of 𝐶𝐷𝐹 based on 𝐿𝑃𝑅 

by using 𝑀𝑅𝑆𝑆 𝑜𝑑𝑑 with four levels of set size (𝑚 = 3,5,7,9), with three values of probability (𝑃𝑀𝑅𝑆𝑆𝑂
 = 0.25,0.50,0.75), and 

with the same number of cycles 𝑟, degree of kernel, type of kernel, and bandwidth as in the previous table 1.1. 

Table 1.2: The empirical mean square error and bias of CDF based on LPR by Using MRSS ODD 

Kernel / Normal 

 r = 3 m = 3, k = 9 m = 5, k = 15 m = 7, k = 21 m = 9, k = 27 

𝑷𝑴𝑹𝑺𝑺𝑶
= 0.25 Mse = 8.512535e-05 

Bias = 0.0004126145 

Mse = 7.691912e-05 

Bias = 0.0003922222 

Mse = 8.174425e-05 

Bias = 0.0004043371 

Mse = 7.924077e-05 

Bias = 0.0003980974 

𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.50 Mse = 5.865291e-05 Bias = 0.0003424994 Mse = 5.529911e-05 

Bias = 0.0003325631 

Mse = 6.341845e-05 Bias = 0.0003561417 Mse = 6.342218e-05 Bias = 0.0003561522 

𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.75 Mse = 2.326374e-05 

Bias = 0.0002157023 

Mse = 3.806345e-05 

Bias = 0.000275911 

Mse = 4.086824e-05 

Bias = 0.0002858959 

Mse = 3.77983e-05 

Bias = 0.0002749484 

r = 5 m = 3, k = 15 m = 5, k = 25 m = 7, k = 35 m = 9, k = 45 

𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.25 Mse = 2.637953e-05 

Bias = 0.0002296934 

Mse = 2.60296e-05 

Bias = 0.0002281649 

Mse = 2.278614e-05 

Bias = 0.0002134767 

Mse = 2.114632e-05 

Bias = 0.0002056517 

𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.50 Mse = 1.524377e-05 Bias = 0.0001746068 Mse = 1.809422e-05 

Bias = 0.0001902326 

Mse = 1.96922e-05 Bias = 0.000198455 Mse = 1.632715e-05 Bias = 0.000180705 
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𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.75 Mse = 1.107483e-05 

Bias = 0.0001488276 

Mse = 1.713709e-05 

Bias = 0.0001851329 

Mse = 1.3506e-05 

Bias = 0.0001643533 

Mse = 1.482615e-05 

Bias = 0.0001721984 

r = 7 m = 3, k = 21 m = 5, k = 35 m = 7, k = 49 m = 9, k = 63 

𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.25 Mse = 1.56476e-05 

Bias = 0.0001769045 

Mse = 9.443144e-06 

Bias = 0.0001374274 

Mse = 1.042319e-05 

Bias = 0.0001443828 

Mse = 1.071913e-05 

Bias = 0.0001464181 

𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.50 Mse = 8.674636e-06 Bias = 0.0001317166 Mse = 9.210139e-06 

Bias = 0.0001357213 

Mse = 8.552546e-06 Bias = 0.0001307864 Mse = 7.716423e-06 Bias = 0.000124229 

𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.75 Mse = 9.022209e-06 

Bias = 0.0001343295 

Mse = 6.555129e-06 

Bias = 0.0001145 

Mse = 9.568994e-06 

Bias = 0.0001383401 

Mse = 8.611258e-06 

Bias = 0.0001312346 

Kernel / Epanechnikov 

 r = 3 m = 3, k = 9 m = 5, k = 15 m = 7, k = 21 m = 9, k = 27 

𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.25 Mse = 0.0001048237 

Bias = 0.0004578727 

Mse = 7.279169e-05 

Bias = 0.0003815539 

Mse = 6.217946e-05 

Bias = 0.0003526456 

Mse = 6.378918e-05 

Bias = 0.0003571811 

𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.50 Mse = 5.373519e-05 

Bias = 0.0003278267 

Mse = 5.708709e-05 

Bias = 0.0003378967 

Mse = 7.544543e-05 

Bias = 0.0003884467 

Mse = 5.500072e-05 

Bias = 0.0003316647 

𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.75 Mse = 3.294451e-05 

Bias = 0.0002566886 

Mse = 3.944943e-05 

Bias = 0.0002808894 

Mse = 3.64872e-05 

Bias = 0.0002701377 

Mse = 3.562654e-05 

Bias = 0.0002669327 

r = 5 m = 3, k = 15 m = 5, k = 25 m = 7, k = 35 m = 9, k = 45 

𝑷𝑴𝑹𝑺𝑺𝑶
= 0.25 Mse = 2.706822e-05 

Bias = 0.0002326724 

Mse = 2.142626e-05 

Bias = 0.0002070085 

Mse = 2.363208e-05 

Bias = 0.0002174032 

Mse = 1.916575e-05 

Bias = 0.0001957843 

𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.50 Mse = 2.02618e-05 

Bias = 0.0002013047 

Mse = 1.732828e-05 

Bias = 0.0001861627 

Mse = 2.406087e-05 

Bias = 0.0002193667 

Mse = 1.673458e-05 

Bias = 0.0001829458 

𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.75 Mse = 1.15668e-05 

Bias = 0.0001520973 

Mse = 1.023598e-05 

Bias = 0.0001430803 

Mse = 1.64224e-05 

Bias = 0.0001812313 

Mse = 1.666829e-05 

Bias = 0.0001825831 

r = 7 m = 3, k = 21 m = 5, k = 35 m = 7, k = 49 m = 9, k = 63 

𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.25 Mse = 1.297796e-05 

Bias = 0.0001611084 

Mse = 1.355451e-05 

Bias = 0.0001646481 

Mse = 1.365714e-05 

Bias = 0.0001652703 

Mse = 1.144232e-05 

Bias = 0.0001512767) 

𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.50 Mse = 1.17379e-05 bias = 0.0001532181 Mse = 1.000622e-05 

Bias = 0.0001414653 

Mse = 1.265157e-05 

Bias = 0.0001590696 

Mse = 1.054311e-05 

Bias = 0.000145211) 

𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.75 Mse = 9.345159e-06 

Bias = 0.0001367125 

Mse = 8.477178e-06 

Bias = 0.0001302089 

Mse = 8.385006e-06 

Bias = 0.0001294991 

Mse = 1.065344e-05 

Bias = 0.0001459688) 

The following steps describe table 1.2, 𝐹𝑖𝑔𝑢𝑟𝑒 3, and 𝐹𝑖𝑔𝑢𝑟𝑒 4: 

1- When the number of cycles is increasing 𝑟 = 3,5 and 7, for fixed values 𝑃𝑀𝑅𝑆𝑆𝑂
 and 𝑚, the values of Mse and Bias are 

decreasing, and also 𝐹𝑖𝑔𝑢𝑟𝑒 3 proves that the blue line is curving gradually when we increase the cycles 𝑟. 

2- In 𝐹𝑖𝑔𝑢𝑟𝑒 4, we notice that the blue line continues to curve as the probability increases ( 𝑃𝑀𝑅𝑆𝑆𝑂
 = 0.25, 0.50, 0.75), and this 

indicates a decrease in the values of Mse and bias for fixed values 𝑚 and sample size 𝑘. 

3- In table 1.2, we notice that the kernel epanechnikov is better than the kernel gaussian. Evidence of this is that the experimental 

values in Mse and Bias are lower than what they are in the kernel gaussian. 

 

4.3.3. LPR based on 𝐌𝐑𝐒𝐒𝐞: 

Estimation of cumulative distribution function 𝐶𝐷𝐹  using local polynomial regression 𝐿𝑃𝑅  based on median ranked sets 

sampling even 𝑀𝑅𝑆𝑆𝑒, we can linearize the 𝐶𝐷𝐹, 𝐹(𝑌𝑀𝑅𝑆𝑆𝑒
), by using a Tylor series and with 𝑃 degree of local polynomial 

regression. 

The regression fixed model based on median ranked sets sample even: 

𝐹(𝑌𝑀𝑅𝑆𝑆𝑒
) = 𝐹 (𝑌

𝑖(
𝑚
2

)𝑗
+ 𝑌𝑚

2
+𝑖(

𝑚+2
2

)𝑗
) + 𝜎 (𝑌

𝑖(
𝑚
2

)𝑗
+ 𝑌𝑚

2
+𝑖(

𝑚+2
2

)𝑗
) 𝜀𝑖𝑗                                                                 (39) 

𝑖 =  1,2, … 
𝑚

2
 ;  𝑗 = 1,2, …  𝑟                                                                                                                    

𝐹𝐿𝑃𝑅(𝑌𝑀𝑅𝑆𝑆𝑒
) ≈ 𝐹(𝑌) + 𝐹(1)(𝑌)(𝑌𝑀𝑅𝑆𝑆𝑒

− 𝑌) +
𝐹(2)(𝑌)

2!
(𝑌𝑀𝑅𝑆𝑆𝑒

− 𝑌)
2
+ ⋯                                                      (40)

+
𝐹(𝑃)(𝑌)

𝑃!
(𝑌𝑀𝑅𝑆𝑆𝑒

− 𝑌)
𝑃

 

where 𝐹(𝑖)(𝑌) =
𝜕(𝑖)𝐹(𝑌𝑀𝑅𝑆𝑆𝑒)

𝜕𝑌𝑀𝑅𝑆𝑆𝑒
(𝑖) |

𝑌𝑀𝑅𝑆𝑆𝑒=𝑌

 𝑖 = 1,2, … , 𝑃 ; 𝑌 is an observation from the data neighborhood around 𝑌𝑀𝑅𝑆𝑆𝑒
; if the 

𝐶𝐷𝐹 of ranked sets sample 𝐹𝐿𝑃𝑅(𝑌𝑀𝑅𝑆𝑆𝑒
) is unknown, the equation (40) will be as follows: 
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𝐹𝐿𝑃𝑅 (𝑌
𝑖(

𝑚
2

)𝑗
+ 𝑌𝑚

2
+𝑖(

𝑚+2
2

)𝑗
) ≈                                                                                                                                (41) 

                                    𝐹(𝑌𝑒) + 𝐹(1) (𝑌
𝑖(

𝑚
2

)𝑗
+ 𝑌𝑚

2
+𝑖(

𝑚+2
2

)𝑗
) ((𝑌

𝑖(
𝑚
2

)𝑗
+ 𝑌𝑚

2
+𝑖(

𝑚+2
2

)𝑗
) − 𝑌𝑀𝑅𝑆𝑆𝑒

) + 

+

𝐹(2) (𝑌
𝑖(

𝑚
2

)𝑗
+ 𝑌𝑚

2
+𝑖(

𝑚+2
2

)𝑗
)

2!
((𝑌

𝑖(
𝑚
2

)𝑗
+ 𝑌𝑚

2
+𝑖(

𝑚+2
2

)𝑗
) − 𝑌𝑀𝑅𝑆𝑆𝑒

)

2

+ ⋯

+

𝐹(𝑃) (𝑌
𝑖(

𝑚
2

)𝑗
+ 𝑌𝑚

2
+𝑖(

𝑚+2
2

)𝑗
)

𝑃!
((𝑌

𝑖(
𝑚
2

)𝑗
+ 𝑌𝑚

2
+𝑖(

𝑚+2
2

)𝑗
) − 𝑌𝑀𝑅𝑆𝑆𝑒

)

𝑃

 

𝑖 =  1,2, … ,
𝑚

2
  ;  𝑗 = 1,2, … , 𝑟,     where ≈ {

𝑚

2
+

𝑚

2
= 𝑚} 

By estimating the ranked sets sample units 𝐹𝐿𝑃𝑅 (𝑌
𝑖(

𝑚

2
)𝑗

+ 𝑌𝑚

2
+𝑖(

𝑚+2

2
)𝑗

), the equation (41) will be: 

�̂�𝐿𝑃𝑅 (𝑌
𝑖(

𝑚
2

)𝑗
+ 𝑌𝑚

2
+𝑖(

𝑚+2
2

)𝑗
) ≈ 𝛽𝑜𝑀𝑅𝑆𝑆𝑒

+ 𝛽1𝑀𝑅𝑆𝑆𝑒
((𝑌

𝑖(
𝑚
2

)𝑗
+ 𝑌𝑚

2
+𝑖(

𝑚+2
2

)𝑗
) − 𝑌𝑀𝑅𝑆𝑆𝑒

) +                      (42) 

𝛽2𝑀𝑅𝑆𝑆𝑒
((𝑌

𝑖(
𝑚
2

)𝑗
+ 𝑌𝑚

2
+𝑖(

𝑚+2
2

)𝑗
) − 𝑌𝑀𝑅𝑆𝑆𝑒

)

2

+ ⋯+ 𝛽𝑃𝑀𝑅𝑆𝑆𝑒
((𝑌

𝑖(
𝑚
2

)𝑗
+ 𝑌𝑚

2
+𝑖(

𝑚+2
2

)𝑗
) − 𝑌𝑀𝑅𝑆𝑆𝑒

)

𝑃

        

Where 𝛽𝑖𝑀𝑅𝑆𝑆𝑒
=

𝐹(𝑖)(𝑌
𝑖(

𝑚
2 )𝑗

+𝑌𝑚
2 +𝑖(

𝑚+2
2 )𝑗

)

𝑖 !
 𝑖 = 0,1,2, … , 𝑃  

 

�̂�𝑀𝑅𝑆𝑆𝑒
=

[
 
 
 
 
�̂�𝑜𝑀𝑅𝑆𝑆𝑒

�̂�1𝑀𝑅𝑆𝑆𝑒

⋮
�̂�𝑝𝑀𝑅𝑆𝑆𝑒]

 
 
 
 

𝑝∗1

;  �̂�𝑀𝑅𝑆𝑆𝑒
= (𝑌𝑀𝑅𝑆𝑆𝑒

∗ 𝑇𝑊𝑀𝑅𝑆𝑆𝑒
𝑌𝑀𝑅𝑆𝑆𝑒

∗ )
−1

𝑌𝑀𝑅𝑆𝑆𝑒
∗ 𝑇𝑊𝑀𝑅𝑆𝑆𝑒

�̂�𝑀𝑅𝑆𝑆𝑒
                                 (43) 

𝑌𝑀𝑅𝑆𝑆𝑒
∗ =

[
 
 
 
 
 
 
 
 
 1 ((𝑌

1(
𝑚
2

)1
+ 𝑌𝑚

2
+1(

𝑚+2
2

)1
) − 𝑌𝑀𝑅𝑆𝑆𝑒

) …  

 ⋮ ⋮

.
1
⋮
1

((𝑌𝑚
2

(
𝑚
2

)1
+ 𝑌

𝑚(
𝑚+2

2
)1

) − 𝑌𝑀𝑅𝑆𝑆𝑒
) … 

⋮

((𝑌𝑚
2

(
𝑚
2

)𝑟
+ 𝑌

𝑚(
𝑚+2

2
)𝑟

) − 𝑌𝑀𝑅𝑆𝑆𝑒
)  …    

   ((𝑌
1(

𝑚
2

)1
+ 𝑌𝑚

2
+1(

𝑚+2
2

)1
) − 𝑌𝑀𝑅𝑆𝑆𝑒

)

𝑃

⋮

 

((𝑌𝑚
2

(
𝑚
2

)1
+ 𝑌

𝑚(
𝑚+2

2
)1

) − 𝑌𝑀𝑅𝑆𝑆𝑒
)

𝑃

⋮

((𝑌𝑚
2

(
𝑚
2

)𝑟
+ 𝑌

𝑚(
𝑚+2

2
)𝑟

) − 𝑌𝑀𝑅𝑆𝑆𝑒
)

𝑃

]
 
 
 
 
 
 
 
 
 

𝑃∗𝑃

 

�̂�𝑀𝑅𝑆𝑆𝑒
=

[
 
 
 
 
 
 
 �̂� (𝑌

1(
𝑚
2

)1
+ 𝑌𝑚

2
+1(

𝑚+2
2

)1
)

⋮

�̂� (𝑌𝑚
2

(
𝑚
2

)1
+ 𝑌

𝑚(
𝑚+2

2
)1

)

⋮

�̂� (𝑌𝑚
2

(
𝑚
2

)𝑟
+ 𝑌

𝑚(
𝑚+2

2
)𝑟

)
]
 
 
 
 
 
 
 

𝑘∗1

 

𝑊𝑀𝑅𝑆𝑆𝑒
= 𝑑𝑖𝑎𝑔 {

1

ℎ𝑀𝑅𝑆𝑆𝑒

𝑘𝑀𝑅𝑆𝑆𝑒
(

(𝑌
𝑖(

𝑚
2 )𝑗

+𝑌𝑚
2 +𝑖(

𝑚+2
2 )𝑗

)−𝑌𝑀𝑅𝑆𝑆𝑒

ℎ𝑀𝑅𝑆𝑆𝑒

)} , 𝑖 = 1,… ,
𝑚

2
, 𝑗 = 1, … , 𝑟                                             (44)  

𝑘𝑀𝑅𝑆𝑆𝑒
(. ) represents the kernel function of 𝑀𝑅𝑆𝑆𝑒, and ℎ𝑀𝑅𝑆𝑆𝑒

 represents the bandwidth that manages the size of the point in 

the zone of 𝑌𝑀𝑅𝑆𝑆𝑒
. 𝑊𝑀𝑅𝑆𝑆𝑒

 represents the diagonal element matrix of weight since the estimator of �̂�𝑜𝑀𝑅𝑆𝑆𝑒
 is the 𝐶𝐷𝐹 of local 

polynomial regression in median ranked sets sample even, where 𝑒1 is the vector with 1 in the first entry and elsewhere is zero. 

�̂�(𝑌𝑀𝑅𝑆𝑆𝑒
) = 𝑒1 × �̂�𝑀𝑅𝑆𝑆𝑒

= 𝑒1 × (𝑌𝑀𝑅𝑆𝑆𝑒

𝑇𝑊𝑀𝑅𝑆𝑆𝑒
𝑌𝑀𝑅𝑆𝑆𝑒

)
−1

𝑌𝑀𝑅𝑆𝑆𝑒

𝑇𝑊𝑀𝑅𝑆𝑆𝑒
�̂�𝑀𝑅𝑆𝑆𝑒

= �̂�𝑜𝑀𝑅𝑆𝑆𝑒
                               (45)  
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In equation (45), we get the estimator �̂�𝑜𝑀𝑅𝑆𝑆𝑒
, which is equally likely to the �̂�𝐿𝑃𝑅(𝑌𝑀𝑅𝑆𝑆𝑒

), which is equal to the �̂�𝐿𝑃𝑅(0)
(𝑌𝑀𝑅𝑆𝑆𝑒

) 

the estimator of the 𝐶𝐷𝐹 based on 𝐿𝑃𝑅 with degree 𝑃 = 0, with the value of vector 𝑒1
𝑇 = {1}, in equation (46). 

�̂�𝐿𝑃𝑅(0)
(𝑌𝑀𝑅𝑆𝑆𝑒

) =

∑ ∑ 𝑘𝑀𝑅𝑆𝑆𝑒
(𝑌

𝑖(
𝑚
2

)𝑗
+ 𝑌𝑚

2
+𝑖(

𝑚+2
2

)𝑗
− 𝑌𝑀𝑅𝑆𝑆𝑒

) �̂�𝑀𝑅𝑆𝑆𝑒

𝑚
2
𝑖=1

𝑟
𝑗=1

∑ ∑ 𝑘𝑀𝑅𝑆𝑆𝑒

𝑚
2
𝑖=1

𝑟
𝑗=1 (𝑌

𝑖(
𝑚
2

)𝑗
+ 𝑌𝑚

2
+𝑖(

𝑚+2
2

)𝑗
− 𝑌𝑀𝑅𝑆𝑆𝑒

)

                                                             (46) 

In the equation (47) we prove �̂�𝐿𝑃𝑅(1)
(𝑌𝑀𝑅𝑆𝑆𝑒

), which is the estimator of the 𝐶𝐷𝐹 based on 𝐿𝑃𝑅 with degree 𝑃 = 1, with the 

value of the vector being 𝑒1
𝑇 = {1,0}, this indicates that the estimation of �̂�𝑜𝑀𝑅𝑆𝑆𝑒

 is equally likely to the �̂�𝐿𝑃𝑅(𝑌𝑀𝑅𝑆𝑆𝑒
), which 

is equal to the �̂�𝐿𝑃𝑅(1)
(𝑌𝑀𝑅𝑆𝑆𝑒

) in equation (47). 

�̂�𝐿𝑃𝑅(1)
(𝑌𝑀𝑅𝑆𝑆𝑒

) = 

𝑘𝑀𝑅𝑆𝑆𝑒
−1

𝑆0 (𝑌
𝑖(

𝑚
2

)𝑗
+ 𝑌𝑚

2
+𝑖(

𝑚+2
2

)𝑗
, ℎ𝑀𝑅𝑆𝑆𝑒

) − 𝑆1 (𝑌
𝑖(

𝑚
2

)𝑗
+ 𝑌𝑚

2
+𝑖(

𝑚+2
2

)𝑗
, ℎ𝑀𝑅𝑆𝑆𝑒

) (𝑌
𝑖(

𝑚
2

)𝑗
+ 𝑌𝑚

2
+𝑖(

𝑚+2
2

)𝑗
− 𝑌𝑀𝑅𝑆𝑆𝑒

)

𝑆0 (𝑌
𝑖(

𝑚
2

)𝑗
+ 𝑌𝑚

2
+𝑖(

𝑚+2
2

)𝑗
, ℎ𝑀𝑅𝑆𝑆𝑒

) 𝑆2 (𝑌
𝑖(

𝑚
2

)𝑗
+ 𝑌𝑚

2
+𝑖(

𝑚+2
2

)𝑗
, ℎ𝑀𝑅𝑆𝑆𝑒

) − 𝑆1 (𝑌
𝑖(

𝑚
2

)𝑗
+ 𝑌𝑚

2
+𝑖(

𝑚+2
2

)𝑗
, ℎ𝑀𝑅𝑆𝑆𝑒

)
 (47) 

Where 𝑆𝐿 (𝑌
𝑖(

𝑚

2
)𝑗

+ 𝑌𝑚

2
+𝑖(

𝑚+2

2
)𝑗

, ℎ𝑀𝑅𝑆𝑆𝑒
) = 

𝑘𝑀𝑅𝑆𝑆𝑒
−1 ∑∑ (𝑌

𝑖(
𝑚
2

)𝑗
+ 𝑌𝑚

2
+𝑖(

𝑚+2
2

)𝑗
, 𝑌𝑀𝑅𝑆𝑆𝑒

)
𝐿

𝑘𝑀𝑅𝑆𝑆𝑒ℎ
(𝑌

𝑖(
𝑚
2

)𝑗
+ 𝑌𝑚

2
+𝑖(

𝑚+2
2

)𝑗
, 𝑌𝑀𝑅𝑆𝑆𝑒

)                                         (48)

𝑚
2

𝑖=1

𝑟

𝑗=1

 

The properties of 𝐶𝐷𝐹 will be studied based on local polynomial using median ranked sets sampling even depending on these 

conditions : 

1- The function 𝐹(2)(𝑌) and 𝜎 each continuous on [0,1]. 
2- The kernel 𝑘𝑀𝑅𝑆𝑆𝑒

 is symmetric about zero and is reinforced on [−1,1]. 

3- The bandwidth ℎ𝑀𝑅𝑆𝑆𝑒
= ℎ𝑀𝑅𝑆𝑆𝑒𝑘

 it is a satisfactory sequence, ℎ𝑀𝑅𝑆𝑆𝑒
→ 0 𝑎𝑛𝑑 𝑘ℎ𝑀𝑅𝑆𝑆𝑒

→ ∞ 𝑎𝑠 𝑘 → ∞. 

4- The point (𝑌
𝑖(

𝑚

2
)𝑗

+ 𝑌𝑚

2
+𝑖(

𝑚+2

2
)𝑗

) at which the estimate is made satisfactory. 

ℎ𝑀𝑅𝑆𝑆𝑒
< 𝑌

𝑖(
𝑚

2
)𝑗

+ 𝑌𝑚

2
+𝑖(

𝑚+2

2
)𝑗

< 1 − ℎ𝑀𝑅𝑆𝑆𝑒
 for all 𝑘 ≥ 𝑘0, where 𝑘0 is fixed. 

In this subsection, we will make a derivative for the bias and 𝑀𝑆𝐸 of the estimate 𝐶𝐷𝐹 based on local polynomial. 

𝐸 (�̂�𝐿𝑃𝑅(1)
(𝑌𝑀𝑅𝑆𝑆𝑒

)) = 𝐸 {𝑒1
𝑇(𝑌𝑀𝑅𝑆𝑆𝑒

∗ 𝑇𝑊𝑀𝑅𝑆𝑆𝑒
𝑌𝑀𝑅𝑆𝑆𝑒

∗ )
−1

𝑌𝑀𝑅𝑆𝑆𝑒
∗ 𝑇𝑊𝑀𝑅𝑆𝑆𝑒

�̂�𝑀𝑅𝑆𝑆𝑒
}                                     

𝐸 (�̂�𝐿𝑃𝑅(1)
(𝑌𝑀𝑅𝑆𝑆𝑒

)) = 𝐹𝑀𝑅𝑆𝑆𝑒
+

1

2
ℎ𝑀𝑅𝑆𝑆𝑒

(2)
𝐹𝑀𝑅𝑆𝑆𝑒

(2)
𝜇2(𝑘𝑀𝑅𝑆𝑆𝑒

) + 𝑂(ℎ𝑀𝑅𝑆𝑆𝑒

(2)
𝑘𝑀𝑅𝑆𝑆𝑒

−1 )                                                       (49) 

𝐵𝑖𝑎𝑠 (�̂�𝐿𝑃𝑅(1)
(𝑌𝑀𝑅𝑆𝑆𝑒

)) =
1

2
ℎ𝑀𝑅𝑆𝑆𝑒

(2)
𝐹𝑀𝑅𝑆𝑆𝑒

(2)
𝜇2(𝑘𝑀𝑅𝑆𝑆𝑒

) + 𝑂(ℎ𝑀𝑅𝑆𝑆𝑒

(2)
𝑘𝑀𝑅𝑆𝑆𝑒

−1 )                                                                   (50) 

𝑀𝑆𝐸 (�̂�𝐿𝑃𝑅(1)
(𝑌𝑀𝑅𝑆𝑆𝑒

))  = 𝑒1
𝑇(𝑌𝑀𝑅𝑆𝑆𝑒

∗ 𝑇𝑊𝑀𝑅𝑆𝑆𝑒
𝑌𝑀𝑅𝑆𝑆𝑒

∗ )
−1

𝑌𝑀𝑅𝑆𝑆𝑒
∗ 𝑇𝑊𝑀𝑅𝑆𝑆𝑒

𝑉 (𝐹(𝑌𝑀𝑅𝑆𝑆𝑒
))                                            (51) 

                                                   𝑊𝑀𝑅𝑆𝑆𝑒
𝑌𝑀𝑅𝑆𝑆𝑒

∗ 𝑇(𝑌𝑀𝑅𝑆𝑆𝑒
∗ 𝑇𝑊𝑀𝑅𝑆𝑆𝑒

𝑌𝑀𝑅𝑆𝑆𝑒
∗ )

−1
𝑒1

𝑇 

𝑀𝑆𝐸 (�̂�𝐿𝑃𝑅(1)
(𝑌𝑀𝑅𝑆𝑆𝑒

)) = (𝑘𝑀𝑅𝑆𝑆𝑒
ℎ𝑀𝑅𝑆𝑆𝑒

)
−1

𝑅(𝑘𝑀𝑅𝑆𝑆𝑒
)𝑉 (𝐹(𝑌𝑀𝑅𝑆𝑆𝑒

)) + 𝑂 {(𝑘𝑀𝑅𝑆𝑆𝑒
ℎ𝑀𝑅𝑆𝑆𝑒

)
−1

}                          (52) 

In Table 1.3, we will solve the empirical mean square error and bias of 𝐶𝐷𝐹 based on 𝐿𝑃𝑅 by using 𝑀𝑅𝑆𝑆 𝑒𝑣𝑒𝑛 with four levels 

of set size (𝑚 = 2,4,6,8), with three levels of probability (𝑃𝑀𝑅𝑆𝑆𝑒
 = 0.25,0.50,0.75) with the same number of cycles 𝑟, degree of 

kernel, type of kernel, and bandwidth as in the previous tables. 

 

Table 1.3: The empirical mean square error and bias of CDF based on LPR by Using MRSS EVEN 
Kernel / Normal 

 r = 3 m = 2, k = 6 m = 4, k = 12 m = 6, k = 18 m = 8, k = 24 

𝑷𝑴𝑹𝑺𝑺𝒆
 = 0.25 Mse = 0.0001086189 

Bias = 0.0004660877 

Mse = 9.811098e-05 

Bias = 0.0004429695 

Mse = 6.557998e-05 

Bias = 0.0003621601 

Mse = 8.739888e-05 

Bias = 0.0004180882 

𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.50 Mse = 5.418607e-05 Bias = 0.0003291993 Mse = 5.512962e-05 

Bias = 0.000332053 

Mse = 4.664477e-05 Bias = 0.0003054334 Mse = 6.312043e-05 Bias = 0.0003553039 

𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.75 Mse = 1.983807e-05 

Bias = 0.0001991887 

Mse = 2.367623e-05 

Bias = 0.0002176062 

Mse = 3.517974e-05 

Bias = 0.0002652536 

Mse = 3.618193e-05 

Bias = 0.0002690053 
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r = 5 m = 2, k = 10 m = 4, k = 20 m = 6, k = 30 m = 8, k = 40 

𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.25 Mse = 3.73182e-05 

Bias = 0.0002731966 

Mse = 2.330108e-05 

Bias = 0.0002158753 

Mse = 2.754449e-05 

Bias = 0.0002347104 

Mse = 2.789499e-05 

Bias = 0.000236199 

𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.50 Mse = 1.611155e-05 Bias = 0.0001795079 Mse = 2.056189e-05 

Bias = 0.00020279 

Mse = 1.56869e-05 Bias = 0.0001771265 Mse = 1.545758e-05 Bias = 0.000175827 

𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.75 Mse = 1.09177e-05 

Bias = 0.000147768 

Mse = 1.606776e-05 

Bias = 0.0001792639 

Mse = 1.418493e-05 

Bias = 0.0001684336 

Mse = 1.940943e-05 

Bias = 0.000197025 

r = 7 m = 2, k = 14 m = 4, k = 28 m = 6, k = 42 m = 8, k = 56 

𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.25 Mse = 1.541827e-05 

Bias = 0.0001756034 

Mse = 1.022398e-05 

Bias = 0.0001429964 

Mse = 1.08598e-05 

Bias = 0.0001473757 

Mse = 1.15695e-05 

Bias = 0.0001521151 

𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.50 Mse = 1.078183e-05 Bias = 0.0001468457 Mse = 1.026643e-05 

Bias = 0.000143292 

Mse = 1.229568e-05 Bias = 0.0001568163 Mse = 6.829758e-06 Bias = 0.0001168739 

𝑷𝑴𝑹𝑺𝑺𝒆
 = 0.75 Mse = 6.130213e-06 

Bias = 0.0001107268 

Mse = 7.483774e-06 

Bias = 0.0001223419 

Mse = 8.35094e-06 

Bias = 0.0001292358 

Mse = 8.344404e-06 

Bias = 0.0001291852 

Kernel / Epanechnikov 

 r = 3 m = 2, k = 6 m = 4, k = 12 m = 6, k = 18 m = 8, k = 24 

𝑷𝑴𝑹𝑺𝑺𝒆
 = 0.25 Mse = 0.0001040585 

Bias = 0.0004561985 

Mse = 0.0001081452 

Bias = 0.0004650703 

Mse = 7.688896e-05 

Bias = 0.0003921453 

Mse = 8.177441e-05 

Bias = 0.0004044117 

𝑷𝑴𝑹𝑺𝑺𝒆
 = 0.50 Mse = 5.506826e-05 

Bias = 0.0003318682 

Mse = 4.512977e-05 

Bias = 0.0003004323 

Mse = 4.609768e-05 

Bias = 0.0003036369 

Mse = 6.321508e-05 

Bias = 0.0003555702 

𝑷𝑴𝑹𝑺𝑺𝒆
 = 0.75 Mse = 2.04245e-05 

Bias = 0.0002021114 

Mse = 3.123355e-05 

Bias = 0.0002499342 

Mse = 3.560996e-05 

Bias = 0.0002668706 

Mse = 4.591781e-05 

Bias = 0.0003030439 

r = 3 m = 2, k = 10 m = 4, k = 20 m = 6, k = 30 m = 8, k = 40 

𝑷𝑴𝑹𝑺𝑺𝒆
 = 0.25 Mse = 3.372501e-05 

Bias = 0.0002597114 

Mse = 2.574094e-05 

Bias = 0.0002268962 

Mse = 2.332808e-05 

Bias = 0.0002160004 

Mse = 2.738825e-05 

Bias = 0.0002340438 

𝑷𝑴𝑹𝑺𝑺𝒆
 = 0.50 Mse = 2.510962e-05 

Bias = 0.0002240965 

Mse = 1.965092e-05 

Bias = 0.0001982469 

Mse = 1.50904e-05 

Bias = 0.0001737262 

Mse = 1.491986e-05 

Bias = 0.0001727418 

𝑷𝑴𝑹𝑺𝑺𝒆
 = 0.75 Mse = 7.975208e-06 

Bias = 0.000126295 

Mse 1.677073e-05 

Bias = 0.0001831433 

Mse = 1.190957e-05 

Bias = 0.0001543345 

Mse = 1.722819e-05 

Bias = 0.0001856243 

r = 7 m = 2, k = 14 m = 4, k = 28 m = 6, k = 42 m = 8, k = 56 

𝑷𝑴𝑹𝑺𝑺𝒆
= 0.25 Mse = 1.558296e-05 

Bias = 0.0001765387 

Mse = 1.510541e-05 

Bias = 0.0001738126 

Mse = 9.30583e-06 

Bias = 0.0001364246 

Mse = 1.232422e-05 

Bias = 0.0001569982 

𝑷𝑴𝑹𝑺𝑺𝒆
 = 0.50 Mse = 1.284562e-05 

Bias = 0.0001602849 

Mse = 9.537822e-06 

Bias = 0.0001381146 

Mse = 9.276924e-06 

Bias = 0.0001362125 

Mse = 1.013299e-05 

Bias = 0.0001423586 

𝑷𝑴𝑹𝑺𝑺𝒆
 = 0.75 Mse = 7.110055e-06 

Bias = 0.0001192481 

Mse = 8.564457e-06 

Bias = 0.0001308775 

Mse = 8.637282e-06 

Bias = 0.0001314327 

Mse = 8.434095e-06 

Bias = 0.0001298776 

Table 1.3, 𝐹𝑖𝑔𝑢𝑟𝑒 5, and 𝐹𝑖𝑔𝑢𝑟𝑒 6, were interpreted as follows: 

1- The values of 𝑃𝑀𝑅𝑆𝑆𝑒
 and 𝑚 are immutability, Mse and Bias are decreasing, such as the blue line curving in the 𝑓𝑖𝑔𝑢𝑟𝑒 5, 

this happens when the repetitions are increasing, 𝑟 = 3,5,7. 

2- As the probability 𝑃𝑀𝑅𝑆𝑆𝑒
 = 0.25,0.50, and 0.75 increases, the value of both Mse and Bias decreases if the sample size 𝑘 and 

𝑚 are stable. 𝐹𝑖𝑔𝑢𝑟𝑒 6 proves that through the curvature of the blue line. 

3- On the basis of the result empirical Mse and Bias, we confirmed that the kernel epanechnikov is better than the kernel gaussian. 

 

5. SIMULATION STUDY AND CONCLUSION 

5.1. MONTE CARLO COMPARISONS 

In this part, a comparison is made between the 𝐶𝐷𝐹 estimator for the three methods (moment, maximum likelihood, and local 

polynomial regression) based on the relative efficiency 𝑅𝐸, which is defined according to the following relationship: 

                      𝑅𝐸𝑖(𝐶𝐷𝐹) =  
𝑀𝑆𝐸(�̂�𝑖(𝑌𝑘))

𝑀𝑆𝐸(�̂�(𝑌𝑘))
              𝑖 = 𝑀𝑂𝑀,𝑀𝐿𝐸 ; 𝑘 = 𝑅𝑆𝑆,𝑀𝑅𝑆𝑆                                    (53) 

To generate 𝑅𝑆𝑆 and 𝑀𝑅𝑆𝑆 , we assume that the ranking process is done using imperfect ranking mode, with a binomial 

distribution when simulation 𝑛 = 500 and sample size 𝑘 =  𝑚 ∗ 𝑟 in four levels of sets size 𝑚 = 2,3,4,5, in 𝑅𝑆𝑆. And in 𝑀𝑅𝑆𝑆 

𝑚 = 3,5,7,9 for type 𝑜𝑑𝑑, also 𝑚 = 2,4,6,8 for type 𝑒𝑣𝑒𝑛, cycles 𝑟 = 3,5,7. With three degrees of probability (0.25, 0.50, 0.75), 

we used two types of kernels (normal, epanechnikov). We use bandwidth 0.8 with degree 2 for 𝐿𝑃𝑅 because they give a good 

result compared to other bandwidths and degrees. In Tables 2.1, 2.2, and 2.3, we use R-programing to obtain the result of the 

relative efficiency 𝑅𝐸. 
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Table 2.1: The Relative Efficiency (RE) Of the Method Of Moment And MLE To LPR based on RSS 
Kernel / Normal 

r = 3 m = 2, k = 6 m = 3, k = 9 m = 4, k = 12 m = 5, k = 15 

MOM & LPR 𝑷𝑹𝑺𝑺 = 0.25 1.135750702 1.16406889 1.17344999 1.471932307 

MLE & LPR 𝑷𝑹𝑺𝑺 = 0.25 1.137516514 1.162210688 1.174450728 1.474069551 

MOM & LPR 𝑷𝑹𝑺𝑺 = 0.50 8.206516713 8.963245957 10.20831334 10.00206242 

MLE & LPR 𝑷𝑹𝑺𝑺 = 0.50 8.208776681 8.952738327 10.19476759 10.00882799 

MOM & LPR 𝑷𝑹𝑺𝑺 = 0.75 5.063775451 47.27995388 25.63634402 40.74663898 

MLE & LPR 𝑷𝑹𝑺𝑺 = 0.75 5.063065298 47.27842886 25.64026797 40.71708223 

r = 5 m = 2, k = 10 m = 3, k = 15 m = 4, k = 20 m = 5, k = 25 

MOM & LPR 𝑷𝑹𝑺𝑺 = 0.25 3.081517979 5.066695671 3.676639827 4.322041795 

MLE & LPR 𝑷𝑹𝑺𝑺 = 0.25 3.089373086 5.06586001 3.67284517 4.334577723 

MOM & LPR 𝑷𝑹𝑺𝑺 = 0.50 2.225527765 22.94889871 23.22915932 21.62112914 

MLE & LPR 𝑷𝑹𝑺𝑺 = 0.50 2.226000338 22.96821049 23.25431716 21.65576338 

MOM & LPR 𝑷𝑹𝑺𝑺 = 0.75 7.401329557 61.04156589 61.22146396 55.01398976 

MLE & LPR 𝑷𝑹𝑺𝑺 = 0.75 7.400843217 60.98252949 61.2500539 54.99610974 

r = 7 m = 2, k = 14 m = 3, k = 21 m = 4, k = 28 m = 5, k = 35 

MOM & LPR 𝑷𝑹𝑺𝑺 = 0.25 9.350327185 8.481033713 9.664600701 9.828317550 

MLE & LPR 𝑷𝑹𝑺𝑺 = 0.25 9.314370441 8.501444501 9.677066038 9.871335973 

MOM & LPR 𝑷𝑹𝑺𝑺 = 0.50 3.896041410 37.03106475 31.81991703 44.73795452 

MLE & LPR 𝑷𝑹𝑺𝑺 = 0.50 3.899763472 37.01806995 31.86743149 44.7348804 

MOM & LPR 𝑷𝑹𝑺𝑺 = 0.75 1.386600932 108.5673353 85.88318018 146.7357995 

MLE & LPR 𝑷𝑹𝑺𝑺 = 0.75 1.385961876 108.5636544 85.8482365 146.9243931 

Kernel / Epanechikov 

r = 3 m = 2, k = 6 m = 3, k = 9 m = 4, k = 12 m = 5, k = 15 

MOM & LPR 𝑷𝑹𝑺𝑺 = 0.25 1.012059090 1.408594426 1.716100684 1.326686852 

MLE & LPR 𝑷𝑹𝑺𝑺 = 0.25 1.013632592 1.406345891 1.717564203 1.328613199 

MOM & LPR 𝑷𝑹𝑺𝑺 = 0.50 8.620434815 8.554989917 8.456819846 8.24706609 

MLE & LPR 𝑷𝑹𝑺𝑺 = 0.50 8.622808771 8.544960886 8.445598208 8.252644556 

MOM & LPR 𝑷𝑹𝑺𝑺 = 0.75 5.517384663 47.42853921 33.52502062 25.49415595 

MLE & LPR 𝑷𝑹𝑺𝑺 = 0.75 5.516610895 47.4270094 33.53015203 25.47566302 

r = 5 m = 2, k = 10 m = 3, k = 15 m = 4, k = 20 m = 5, k = 25 

MOM & LPR 𝑷𝑹𝑺𝑺 = 0.25 3.561232678 4.385218429 5.910724402 4.978331956 

MLE & LPR 𝑷𝑹𝑺𝑺 = 0.25 3.570310627 4.384495166 5.904623949 4.992771429 

MOM & LPR 𝑷𝑹𝑺𝑺 = 0.50 2.360911893 24.35167501 23.85938013 21.84837033 

MLE & LPR 𝑷𝑹𝑺𝑺 = 0.50 2.361413214 24.37216724 23.88522051 21.88336858 

MOM & LPR 𝑷𝑹𝑺𝑺 = 0.75 1.385402937 95.95917942 52.62949429 53.18112657 

MLE & LPR 𝑷𝑹𝑺𝑺 = 0.75 1.385311902 95.86637242 52.65407185 53.16384225 

r = 7 m = 2, k = 14 m = 3, k = 21 m = 4, k = 28 m = 5, k = 35 

MOM & LPR 𝑷𝑹𝑺𝑺 = 0.25 7.578423631 9.874006138 9.372102845 7.796579219 

MLE & LPR 𝑷𝑹𝑺𝑺 = 0.25 7.549280754 9.897769309 9.384190921 7.830704748 

MOM & LPR 𝑷𝑹𝑺𝑺 = 0.50 4.566728578 33.27649772 41.39732994 38.54676471 

MLE & LPR 𝑷𝑹𝑺𝑺 = 0.50 4.571091377 33.26482046 41.45914569 38.54411601 

MOM & LPR 𝑷𝑹𝑺𝑺 = 0.75 1.328531874 154.4991877 143.8662039 90.59330149 

MLE & LPR 𝑷𝑹𝑺𝑺 = 0.75 1.327919581 154.4939494 143.8076684 90.7097374 

Table 2.2: The Relative Efficiency (RE) Of the Method Of Moment And MLE To LPR Of MRSS ODD 
Kernel / Normal 

r = 3 m = 3, k = 9 m = 5, k = 15 m = 7, k = 21 m = 9, k = 27 

MOM & LPR 𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.25 1.415389188 1.527881494 1.402094949 1.406503243 

MLE & LPR  𝑷𝑴𝑹𝑺𝑺𝑶
= 0.25 1.414098151 1.531513881 1.405189967 1.412945634 

MOM & LPR 𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.50 8.226359101 8.515932716 7.231069192 7.052961598 

MLE & LPR 𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.50 8.222205855 8.499512922 7.225271195 7.053201262 

MOM & LPR  𝑷𝑴𝑹𝑺𝑺𝑶
= 0.75 4.664795944 27.80029136 25.26318726 26.65122506 

MLE & LPR 𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.75 4.662367272 27.79661329 25.27047898 26.64191247 

r = 5 m = 3, k = 15 m = 5, k = 25 m = 7, k = 35 m = 9, k = 45 

MOM & LPR 𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.25 4.458475947 4.336927959 4.756751253 4.901259415 

MLE & LPR  𝑷𝑴𝑹𝑺𝑺𝑶
= 0.25 4.466569344 4.335760058 4.73894657 4.898157221 
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MOM & LPR 𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.50 3.088215710 24.9128672 21.95669351 25.34578294 

MLE & LPR 𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.50 3.088062861 24.93722305 21.95971501 25.32617144 

MOM & LPR  𝑷𝑴𝑹𝑺𝑺𝑶
= 0.75 9.552986366 59.23718671 72.01075818 62.79158109 

MLE & LPR 𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.75 9.559189622 59.21191988 72.07851325 62.82913636 

r = 7 m = 3, k = 21 m = 5, k = 35 m = 7, k = 49 m = 9, k = 63 

MOM & LPR 𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.25 7.326612388 11.49452979 9.720133663 8.919277964 

MLE & LPR  𝑷𝑴𝑹𝑺𝑺𝑶
= 0.25 1.322835909 11.41768038 9.745375456 8.955212783 

MOM & LPR 𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.50 5.287188996 47.05310094 47.58948973 49.52667836 

MLE & LPR 𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.50 5.287012619 46.91815183 47.52536847 49.5257712 

MOM & LPR  𝑷𝑴𝑹𝑺𝑺𝑶
= 0.75 1.145476679 148.3637927 95.61809737 99.81082903 

MLE & LPR 𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.75 1.144674214 148.3842194 95.57852163 99.64525508 

Kernel / Epanechikov 

r = 3 m = 3, k = 9 m = 5, k = 15 m = 7, k = 21 m = 9, k = 27 

MOM & LPR 𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.25 1.149410868 1.614515338 1.843264641 1.747199133 

MLE & LPR  𝑷𝑴𝑹𝑺𝑺𝑶
= 0.25 1.148362441 1.618353688 1.847333509 1.755202058 

MOM & LPR 𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.50 8.979216413 8.249211862 6.078342982 8.132878988 

MLE & LPR 𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.50 8.974683071 8.233306339 6.073469261 8.133155348 

MOM & LPR  𝑷𝑴𝑹𝑺𝑺𝑶
= 0.75 3.294042012 26.82358148 28.29655331 28.27585839 

MLE & LPR 𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.75 3.292327007 26.82003263 28.30472056 28.26597812 

r = 5 m = 3, k = 15 m = 5, k = 25 m = 7, k = 35 m = 9, k = 45 

MOM & LPR 𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.25 4.345040051 5.268698317 4.586477365 5.407750805 

MLE & LPR  𝑷𝑴𝑹𝑺𝑺𝑶
= 0.25 4.352927529 5.267279497 4.569310023 5.404328033 

MOM & LPR 𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.50 2.323389334 26.0140591 17.9700734 24.7286995 

MLE & LPR 𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.50 2.323274339 26.03949151 17.9725463 24.70956546 

MOM & LPR  𝑷𝑴𝑹𝑺𝑺𝑶
= 0.75 9.146669779 99.17496908 59.22260449 55.85200401 

MLE & LPR 𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.75 9.152609192 99.13266732 59.27832716 55.88540876 

r = 7 m = 3, k = 21 m = 5, k = 35 m = 7, k = 49 m = 9, k = 63 

MOM & LPR 𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.25 8.833738122 8.007998814 7.418449251 8.355552021 

MLE & LPR  𝑷𝑴𝑹𝑺𝑺𝑶
= 0.25 8.842005986 7.954459438 7.437713899 8.389215649 

MOM & LPR 𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.50 3.907380366 43.30962142 32.17081358 36.2482038 

MLE & LPR 𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.50 3.907250019 43.18540868 32.12746718 36.24753986 

MOM & LPR  𝑷𝑴𝑹𝑺𝑺𝑶
= 0.75 1.105891296 114.7249474 109.1196595 80.67786555 

MLE & LPR 𝑷𝑴𝑹𝑺𝑺𝑶
 = 0.75 1.105116564 114.7407427 109.0744956 80.54403085 

 

Table 2.3: The Relative Efficiency (RE) Of the Method Of Moment And MLE To LPR based on MRSS EVEN 
Kernel / Normal 

r = 3 m = 2, k = 6 m = 4, k = 12 m = 6, k = 18 m = 8, k = 24 

MOM & LPR 𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.25 1.121467811 1.213447261 1.764840428 1.297525781 

MLE & LPR 𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.25 1.124377986 1.211776704 1.770773642 1.297350721 

MOM & LPR 𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.50 9.008062404 8.634465465 9.953317382 7.173374769 

MLE & LPR 𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.50 9.009959571 8.638287367 9.958276137 7.185803392 

MOM & LPR  𝑷𝑴𝑹𝑺𝑺𝒆
 = 0.75 5.533058407 45.2334261 29.71497231 28.20200581 

MLE & LPR 𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.75 5.534016162 45.28242039 29.74194806 28.18686013 

r = 5 m = 2, k = 10 m = 4, k = 20 m = 6, k = 30 m = 8, k = 40 

MOM & LPR 𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.25 3.217770418 4.952221099 4.012744473 3.795039898 

MLE & LPR 𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.25 3.225021571 4.94776637 4.016705337 3.786597522 

MOM & LPR 𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.50 2.979935512 22.41561938 28.1837648 27.35911443 

MLE & LPR 𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.50 2.980518944 22.41636834 28.1842429 27.38291505 

MOM & LPR  𝑷𝑴𝑹𝑺𝑺𝒆
 = 0.75 9.897176145 64.53177045 70.13118147 49.04326917 

MLE & LPR 𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.75 9.894483270 64.54179052 70.10334207 49.09162196 

r = 7 m = 2, k = 14 m = 4, k = 28 m = 6, k = 42 m = 8, k = 56 

MOM & LPR 𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.25 7.653310002 10.89775215 9.644330466 8.469671982 

MLE & LPR 𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.25 7.665166066 10.89591333 9.640288035 8.519949004 
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MOM & LPR 𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.50 4.383895869 43.43432917 34.10624707 57.80866613 

MLE & LPR 𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.50 4.379929010 43.36149957 34.12770176 57.71607135 

MOM & LPR  𝑷𝑴𝑹𝑺𝑺𝒆
 = 0.75 1.733270932 133.91933 112.9850412 106.2509198 

MLE & LPR 𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.75 1.734050677 133.9057005 113.0363767 106.5025735 

Kernel / Epanechikov 

r = 3 m = 2, k = 6 m = 4, k = 12 m = 6, k = 18 m = 8, k = 24 

MOM & LPR 𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.25 1.170616528 1.100857921 1.505264215 1.386770018 

MLE & LPR 𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.25 1.173654243 1.099342366 1.510324759 1.386582918 

MOM & LPR 𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.50 8.863753821 10.54768947 10.07144394 7.162634295 

MLE & LPR 𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.50 8.865620595 10.55235823 10.07646155 7.175044309 

MOM & LPR  𝑷𝑴𝑹𝑺𝑺𝒆
 = 0.75 5.374192759 34.28867356 29.35597232 22.22237951 

MLE & LPR 𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.75 5.375123014 34.32581311 29.38262217 22.21044514 

r = 5 m = 2, k = 10 m = 4, k = 20 m = 6, k = 30 m = 8, k = 40 

MOM & LPR 𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.25 3.560603837 4.48282386 4.738023875 3.865256086 

MLE & LPR 𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.25 3.568627556 4.478791373 4.742700642 3.856657508 

MOM & LPR 𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.50 1.912071150 23.45475428 29.29782511 28.34515203 

MLE & LPR 𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.50 1.912445509 23.45553796 29.29832211 28.36981044 

MOM & LPR  𝑷𝑴𝑹𝑺𝑺𝒆
 = 0.75 1.354878769 61.82682567 83.52995952 55.25257732 

MLE & LPR 𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.75 1.354510127 61.83642573 83.49680131 55.30705199 

r = 7 m = 2, k = 14 m = 4, k = 28 m = 6, k = 42 m = 8, k = 56 

MOM & LPR 𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.25 7.572425265 7.376059306 11.25482628 7.950999739 

MLE & LPR 𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.25 7.584156027 7.374814719 11.2501088 7.998197858 

MOM & LPR 𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.50 3.679574828 46.75234031 45.20458505 38.96374121 

MLE & LPR 𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.50 3.676245288 46.67394715 45.2330212 38.9013312 

MOM & LPR  𝑷𝑴𝑹𝑺𝑺𝒆
 = 0.75 1.494407568 117.0210791 109.2393765 105.1210118 

MLE & LPR 𝑷𝑴𝑹𝑺𝑺𝒆
  = 0.75 1.495079855 117.0091694 109.2890101 105.3699893 

The next five steps are a description and explanation of relative efficiency 𝑅𝐸 tables : 

1- 𝐿𝑃𝑅 was more efficient than the method of moment and maximum likelihood at the same set size and cycles for estimating 

𝐶𝐷𝐹. 

2- In different kernels, 𝐿𝑃𝑅 remains more efficient. 

3- By increasing the number of cycles, which is 𝑟, the efficiency of 𝐿𝑃𝑅 will increase.  

4- Evidently, using 𝐿𝑃𝑅 significantly improves the behavior  of the method of moment and 𝑀𝐿𝐸. It is apparent that all the 

proposed procedures based on 𝐿𝑃𝑅 can be the best choice. 

5- The relative efficiency in the case of 𝑀𝑅𝑆𝑆 𝑜𝑑𝑑, 𝑒𝑣𝑒𝑛 has a higher efficiency result with the 𝐿𝑃𝑅 method compared to the 

𝑅𝑆𝑆. 

 

5.2 CONCLUSION 

This article is concerned with estimating the cumulative distribution function 𝐶𝐷𝐹 based on the local polynomial regression 

𝐿𝑃𝑅 depending on 𝑅𝑆𝑆 and 𝑀𝑅𝑆𝑆. A new 𝐶𝐷𝐹 estimator depends on 𝐿𝑃𝑅 is derived. The resulting proposed estimator is used 

to introduce three ways of estimating 𝐶𝐷𝐹 (the method of moments, the maximum likelihood method, and 𝐿𝑃𝑅),  based on 𝑅𝑆𝑆 

and 𝑀𝑅𝑆𝑆. The method of moments and the maximum likelihood method based on 𝑅𝑆𝑆 were suggested by Al-Saleh and Ahmad 

(2019). In this study we get the same result of 𝐶𝐷𝐹 estimate for the method of moments and the maximum likelihood method, 

𝐶𝐷𝐹 estimator based on 𝐿𝑃𝑅 can have some advantages over their competitors for fixed or non-fixed samples; on the empirical 

side, we use kernel (normal, epanechikov) with bandwidth (0.1, 0.2, …, 0.9) and three levels of degree of kernel, We have 

concluded that kernel epanechikov is a little better than normal, with bandwidth 0.8 giving the best result. Compared to the 

others, bandwidth and degree 2 are also like that. We have concluded that 𝐶𝐷𝐹 of 𝐿𝑃𝑅 based on 𝑀𝑅𝑆𝑆 is better than 𝐶𝐷𝐹 of 

𝐿𝑃𝑅  based on 𝑅𝑆𝑆 because the data in 𝑀𝑅𝑆𝑆 is stable and is less prone to ranking errors for fixed or non-fixed samples. 

Depending on the relative efficiency, we get that there is no big difference between both kernels, nonetheless we conclude that 

relative efficiency depends on whether the 𝑀𝑅𝑆𝑆 is better than the 𝑅𝑆𝑆 and has more efficiency. We recommend using 𝐿𝑃𝑅 

based on estimators. 
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Fig. 1: The mean square error and bias of CDF based on RSS with. 𝑃 = 0.25. 

               𝒎 =  𝟐, 𝒓 = 𝟑, 𝒌 =  𝟔                   𝒎 =  𝟐, 𝒓 = 𝟓, 𝒌 =  𝟏𝟎                   𝒎 =  𝟐, 𝒓 = 𝟕  𝒌 = 𝟏𝟒  

 

Fig. 2: The mean square error and bias of CDF based on RSS with. 𝑚 = 5, 𝑟 =  3, 𝑘 =  15 

                         𝑷 = 𝟎. 𝟐𝟓                                              𝑷 = 𝟎. 𝟓                                        𝑷 = 𝟎. 𝟕𝟓      

 

Fig. 3: The mean square error and bias of CDF based on MRSS ODD with. 𝑚 = 5,𝑃 = 0.5. 

              𝒎 =  𝟓, 𝒓 = 𝟑, 𝒌 =  𝟏𝟓                  𝒎 =  𝟓, 𝒓 = 𝟓, 𝒌 =  𝟐𝟓                𝒎 =  𝟓, 𝒓 = 𝟕, 𝒌 =  𝟑𝟓      

 

Fig. 4: The mean square error and bias of CDF based on MRSS ODD with. 𝑚 =  9, 𝑟 =  5, 𝑘 = 45 

                      𝑷 = 𝟎. 𝟐𝟓                                                  𝑷 = 𝟎. 𝟓                                       𝑷 = 𝟎. 𝟕𝟓      

 
Fig. 5: The mean square error and bias of CDF based on MRSS EVEN with. 𝑚 = 6,𝑃 = 0.75. 

           𝒎 =  𝟔, 𝒓 = 𝟑, 𝒌 =  𝟏𝟖                  𝒎 =  𝟔, 𝒓 = 𝟓, 𝒌 =  𝟑𝟓                  𝒎 =  𝟔, 𝒓 = 𝟕  𝒌 =  𝟒𝟐      
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Fig. 6: The mean square error and bias of CDF based on MRSS EVEN with. 𝑚 = 8,r = 7,k = 56 

                           𝑷 = 𝟎. 𝟐𝟓                                          𝑷 = 𝟎. 𝟓                                       𝑷 = 𝟎. 𝟕𝟓      
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 طريقة التقدير اللامعلمية لدالة التوزيع باستخدام انواع مختلفة من مجموعات العينات المرتبة
 

 1و  ريكان عبد العزيز احمد  1رامي سعد غريب

 .قسم الإحصاء والمعلوماتية، كلية علوم الحاسوب والرياضيات، جامعة الموصل، موصل ، العراق1
التراكمي الخلاصة:   التوزيع  دالة  تقدير  البحث هو  المحلي   𝐶𝐷𝐹الغرض من هذا  الحدود  الانحدار متعدد  ومقارنته مع   𝐿𝑃𝑅باستخدام 

 منهجية   على  بالأعتماد  والتحيزالطرق المعلمية وهي كل من طريقة العزوم وطريقة الامكان الأعظم لغرض حساب متسوط مربع الخطأ  
غالبًا تنتج تقديرات أكثر دقة   𝑅𝑆𝑆. بالإضافة إلى أن  𝑀𝑅𝑆𝑆ومنهجية مجموعة عينات المرتبة الوسطى  𝑅𝑆𝑆 المرتبة  عينات  مجموعة

و لنفس حجم العينة, ويتم ذالك من خلال ترتيب العينات بناءً على بعض الخصائص التي يمكن قياسها  𝑆𝑅𝑆من عينة عشوتئية بسيطة 
بسهولة, يتم تقليل التباين داخل كل مجموعة, مما يؤدي إلى تقديرات أكثر دقة. لقد قمنا بدراسة ثلاث درجات مختلفة من الانحدار متعدد 

لثالثة, أظهر تحليل المحاكاة أن الدرجة الثانية تتفوق على الدرجات الأخرى, وعندما يتم استخدام  الحدود المحلي: الدرجة الأولى والثانية وا
𝐿𝑃𝑅   لتحليل بيانات𝑅𝑆𝑆  فإنه يستفيد من التباين المنخفض داخل كل مجموعة مرتبة, وهذا ما يؤدي إلى تقديرات أكثر دقة وموثوقية لدالة ,

( وتبينا لنا من خلال دراسة المحاكاة أن 0.9,..., 0.2, 0.1الانحدار, إضافة الى ذالك , قمنا بدراسة درجات مختلفة من النطاق الترددي )
 𝑀𝑂𝑀 و  𝐿𝑃𝑅يتفوق على الدرجات الأخرى. بعد ذالك, قمنا بتحليل الكفاءة النسبية لكل من الأساليب الثلاثة:    0.8النطاق الترددي للدرجة  

 𝑀𝐿𝐸  طريقة أن  لنا  تبينا  و   ,𝐿𝑃𝑅   لتقدير الأخرى  الطرق  من  كفاءة  أكثر  ) 𝐶𝐷𝐹هي  مختلفة  نواة  normal  (gaussian ,)في 
epanechinkov  و من ثم أظهرت دراسة المحاكاة أن مقدر ,)𝐶𝐷𝐹  المقترح بناءً على𝐿𝑃𝑅 .أكثر كفاءة من الطرق المعلمية 

 خطأ مربع دالة التوزيع التراكمي ، متوسط عينة مجموعة مرتبة  ،عينة مجموعة مرتبة  ،الانحدار متعدد الحدود المحلي الكلمات المفتاحية: 


