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The purpose of this research is to estimate the cumulative distribution function CDF
using the local polynomial regression LPR and compare it to parameter estimation using the
method of moments and the maximum likelihood method to calculate both the mean square
error and the bias using the ranked sets sample RSS and the median ranked sets
sample MRSS. As well as RSS frequently produces more exact estimates than simple
random sampling SRS for the same sample size. By ranking samples based on some easily
measurable characteristic, the variability within each set is decreased, resulting in more
accurate estimations. We investigated three different degrees of local polynomial
regression: the first, second, and third. The simulation analysis demonstrated that the second
degree outperforms the other degrees. Also, when LPR is used to analyze RSS data, it takes
advantage of the reduced variability within each ranked set, resulting in more precise and
reliable regression function estimates. Following that, we investigated several degrees of
bandwidth (0.1, 0.2, ... and 0.9) and discovered that the bandwidth of degree 0.8 is superior
to the other degrees based on a simulation study. Finally, we analyzed the relative efficiency
of each of the three approaches:LPR, MOM, and MLE, and we discovered that LPR is more
efficient than the other methods for estimating the CDF in different kernels (normal
(gaussian), epanechinkov). The numerical results provide that the suggested estimator CDF
based on LPR is more efficient than other methods, as predicted by the simulation analysis.
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1. Introduction

Cumulative Distribution Function CDF is a strong tool for understanding and evaluating random variables, as well as forecasting
future occurrences; it is a foundational idea in probability theory and statistics. Also, establish that the occurrence is likely to
take place until a specific point. When we utilize it, we encounter several obstacles. One of the challenges is studying
nonparametric analysis in-depth and identifying several population features, such as odds, survival analysis, hazards, etc.
Estimating the CDF using ranked sets sample RSS is more efficient than basic random sample SRS because RSS frequently
yields more precise estimates with the same sample size, as well studying variables and measuring them is not easy; sometimes
it is too expensive or time-consuming, but ranking the variables is easy or has a negligible cost. The first to introduce the rank-
set sample was Mclintyre (1952) for estimating the paster of yields in Australia and expressed expectations about how to develop
the estimator that would be more effective for the paster of yields. Halls and Dell (1966) conducted a field trial evaluating its
applicability to the estimation of forage yields in a pine-hardwood forest, the terminology ranked set sampling was, coined by
Halls and Dell. Takahasi and Wakimoto (1968) proved the first theoretical result is that, when ranking is perfect, the ranked set
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sample mean is an unbiased estimator of the population mean, and the variance of the ranked set sample mean is always smaller
than the variance of the mean of a simple random sample of the same size. Research has continued in ranked sets since (1997).
Muttlak (1997) suggested studying median ranked sets sampling to estimate the population mean instead of ranked sets sampling,
and it is a strategy to minimize the error in ranking. Gulati (2004) studied the empirical distribution function of Stokes and Sagar
with smooth estimators and properties using simulation to compare the smooth and empirical estimators. Frey (2012) derived
the constraint to estimate the cumulative distribution function with the mean of the population to create a Woodruff-type
confidence interval for the population quantile. Al-Saleh and Ahmad (2019) suggested a new technique of ranked sets sampling,
which was called Moving extreme ranked sets sampling, to estimate the cumulative distribution function and then compared the
proposed estimator with the corresponding estimator based on both. Zamanzade (2020) established two estimators in moving
extreme ranked sets sampling with simulation and also showed that the proposed estimators provide a substantial improvement
over their competitors and prove that the estimators are utilized to estimate the stress-strength probability. Abdallah and Al-
Omari (2022) considered the problem of estimating the cumulative distribution function and the odds measure under moving
extreme ranked set sampling.

The paper is structured as follows: Section 2 describes ranked sets sampling and median ranked sets sampling. Section 3
describes local polynomial regression. Section 4 Estimation of cumulative distribution function using the Maximum Likelihood
Method, Method of Moments, and local polynomial regression. Section 5 Simulation study and conclusions.

2. Description RSS & MRSS
2-1. Methodology of ranked sets sample (RSS)

Mclntyre (1952) was the first one who suggested the ranked sets sampling as a strategy to estimate the paster of yields. In the
RSS technique, taking samples is much cheaper than measurement of the variable. We will describe how to select ranked sets
sampling in the following steps:

1. Draw randomly m? sample units from the population of interest. Divided the m? units into m groups each one of the
groups has a size of m.

2. Based on the judgment rank the unit sets without actual measurement by eyes or by a bit price method for the variable of
interest.

3. From the first set, select the smallest order observation, discard the other units, and then from the second set, select the
second smallest order observation, and discard the other units. The process continues until get the m*® maximum order
observation.

4. From steps 1-3 we can get the ranked sets sample RSS of one group

5.To obtain RSS with size k, we can repeat steps (1-3) r times, where k = mr.

Let {Yp;,i = 1,2,...,mand j = 1,2,..,7} be the RSS element set, ¥{;,;); be the judgment order statistics of the i*" sample of
size m, and the j*"* cycle of the r repeated. You should notice that we utilize square brackets [.], when the ranked sets sample is
imperfect ranking it means there is an error in ranking, if there is no error in ranking it means that the ranked sets sample is
perfect ranking we use the round brackets (.), it’s very important to note that for each i {Y;.iy1, Yi.i)2, -, Yiiso)r  are independent

and identically distributed (iid). And for each j {Y(1.1);, Y2:2)j» ---» Yom:my;} @r€ just independent.
2-2. Methodology of median ranked sets sample (MRSS)

Muttlak (1997) suggested a new strategy of ranked sets sampling, which is called median ranked sets sampling MRSS, to
minimize errors in the process of ranking units within groups and to increase the efficiency of the estimator in the presence of
errors in ranking, also to increase the efficiency over RSS with perfect ranking. The following summarizes the MRSS procedure
for drawing a sample of size k. We will describe how to select median ranked sets sampling MRSS in the following steps:

1) Drow randomly m? sample units from the population of interest.

2) Divided the m? units into m groups each one of the groups has a size of m.

3) If the sample size of m group is odd, the odd will be measured by rule mT“ it is equal to the units in the medial of the groups,

if the sample size of the m group is even, the even will be measured the first half group units with rule % and the second half

. 2
with rule %

4) Steps 1-3 can be replayed r times, if necessary to get MRSS of size k = mr.

If the m groups are odd, the median ranked sets sample odd, symbolized MRSS,,, where the units of the MRSS, for variable Y,
is described as follows:
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{Yl.(m_-i—l)],,i =12,..,m,j = 1,2,..,7‘} Be the judgment order statistics of the i" sample of size m and the j**cycle of the r
2
repeated.

m

2

If the m groups are even, the median ranked sets sample even, symbolized MRSS,, Also { } is the units of the MRSS, for
variable Y, is described as follows:

Where {Y. m\ 3 Ym, miay i =1,2,..,0,) = 1,2,..,7'} be the judgment order statistics of the it" sample of size {E} and the
(G () 2 2

2
jt"cycle of the r repeated.

3. Local polynomial regression (LPR)

Local polynomial regression is a nonparametric technique used to generalize kernel regression, also used to model functions and
smoothing one of the statistics plots, which is called the scatter plot. One of the most important uses is to find the relationship
between the dependent variable and the independent variable, LPR is better than other types of regression for having a good
performance near the boundary. For each point of z, a WLS which is low order weighted least square regression is fit at each
point of z. By the Fan and Gijbels (1996), (Z;,Y;) are defined according to the fixed model in equation (1).

Y, =m(Z) +a(Z)¢g; i=1,..,n Q
Where Z; = i o(Z;) is the variance of Y; at point Z;, ¢; is a residual error with normal distribution with mean zero and variance
o?. For estimating m(Z;) we use a Tylor series.

(P)( D(zi-2)®)
m(z) ~ m(z) + mO(z)(z; —2) + -+ % .

We need the point in the area of z because it gives us a higher weight than the other point remaining, we can estimate the
unknown parameters in equation (2) by using WLS weighted least square, depending on the following formula:

1 (zi—2) - (z—-2)P° B4
P A
7 = 1 (ZZ _ Z) (ZZ - Z) ;Y = y:z B — (ZTwz)—lzTWY
: : —2)P '
1 (Zn _ Z) (Zn Z) e Yn nel
1, ((Z1-2)
1, ((Z5-2)
E E ) 1 (;n—Z)
0 0 k(B
Bo
g=|P| ,e,={100----0}and w = diag {%k((h—_))} i=12.,m;j=12 ..,
'Bn nxl

k(.) represents kernel function, h represents bandwidth. W represents the diagonal elements matrix of weight, where e; =
{100 .- 0} isthe (P + 1) times 1 with 1 in the first entry and 0 elsewhere.

4. Estimation of cumulative distribution function (CDF)

4.1. Estimation of (CDF) using The Maximum likelihood Method (MLE):

4.1.1. Based on ranked sets sampling (RSS).

Al-Saleh and Ahmad (2019) suggested and proved CDF using MLE based on

{Y(L-;L-)j,i =12,.,mandj =12, r} the represent RSS that we selected from the population with Pdf f(.) and CDF F(.),
and then we will use the maximum likelihood estimation MLE for estimating CDF F(Ygss) depending on the RSS. They
assumed that the variable Y; = ¥7_, Y(;;;y;; i = 1,2, ..., m is distributed according to a binomial distribution with mass parameter
m and success probability F(Ygzss). Therefore, the estimator of the probability distribution function is defined according to the
following relationship:

Y i Yanj _ ZjmaXitaYans _ g ®
— = X — ZRSS

FMLE(YRSS) =
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Yrss is the mean obtained by estimating the CDF based on MLE by using RSS.

4.1.2. Based on odd median ranked sets sampling (MRSS,).

Let {Yi(m_-f—l)}.,i =1,...m j=1, r} be median ranked sets sample odd MRSS, of size (k = mr), that we selected from the
2

population with Pdf f(.) and CDF F(.), and then we will use the maximum likelihood estimation MLE for estimating CDF
F(Yyrss,) depending on the MRSS,, note that for each i, {I (Yl.(m_ﬂ)l < YMRSSO),I(Yi(m_H)Z < YMRSSO>, ...,I(Yi(m_ﬂ)r <

2 2 2

YMRSSO)} are independent and identically distributed (iid) each unit distributed Bernoulli distribution with probability of success
F(Yugss, ), and I(.) represent indicator.
Let {YiMRSSO = Z;zll(Yi(mTﬂ)j < YMRSSO),i =1..,m } then variable Y;

IMRSS, distributed binomial with mass parameter m

and success probability F(YMRss,,)-

The likelihood function is determined according to equation (4):
yiMRSSg

" F(YMRSS")) - lL[ (nmr;:lss) (F(YMRSSU)) (1 - F(YMRSSU))M_YWRSSO 4)

j=1

9 (Yinss,

Therefore, the estimator of the probability distribution function is defined according to the following relationship:

A =1 Xie1 Yi(mTH)j o1 Xita Yi(mTH)j _

FMLE(YMRSSO) = o = X = Yugss, (5)
7MR550 is the mean obtained by estimating the CDF based on MLE by using MRSS,,.

4.1.3. Based on even median ranked sets sampling (MRSS,).

i

The MRSS, element set is {Y @) Ym_'_i(m_n)j,i =12, % and j = 1,2,..,r} of size (k = mr), that we selected from the
2 2 2

population with Pdf f(.) and CDF F(.), and then we will use the maximum likelihood estimation MLE for estimating CDF
F (Yyrss,) depending on the MRSS,, depending on the withdrawal method of median ranked sets, sample even note that for each
i

{I (Yi(%)r Y%H(an)l < YMRSSe), ,I(Yi(%)r, Y%H(an)r < YMRSSQ)} are independent and identically distributed (iid)
each unit distributed Bernoulli distribution with a probability of success F(YMRSSB), and I(.) represent indicator.

Let {YiMRsse = 25:11(}’1-(%)1' Y%H(an)l < YMR558>,1' =1, ?} then variable Y, .. distributed binomial with mass

parameter m and success probability F(Yygss, )-
The likelihood function is determined according to equation (6):

r m YimRsse m_,
2 =Y
W (Vs [ F s )) = | | ( : )(F (Yurss.)) (1= F(Yurss,))® "% x (6)
Ly,
j=1 \limrss,
Y%HMRSSe m—ymHMRSS
(Y%”MRsse) (F(YMRSSE)) (1 h F(YMRSSB)) ’ ¢

Therefore, the estimator of the probability distribution function is defined according to the following relationship:

m
=1 { 2 Vi ZZ%H Yi(mT”)j}

ﬁMLE(YMRSSe) = = YMRSSe ™)
YMRSSe is the mean obtained by estimating the CDF based on MLE by using MRSS.,.
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4.2. Estimation of (CDF) using the Method of Moments
4.2.1 Based on RSS:

Stokes and Sager (1988) suggested a new estimator, which is called the method of moments, for estimating the distribution
function F F(Ygss), by using the ranked sets sample, the equation (8) shows us the suggested estimator.
T m
FMOM (YRSS) = Zj:l Zizll(li(i‘i)j = YRSS) ®)
They proved that CDF ranked set sample Frss(Yrss) is an unbiased estimator for F(Ygss) and also has better efficiency than
CDF of simple random sample Fggg(Ysgs).
4.2.2. Based on MRSS,,:

Depending on the description of MRSS,, in the subsection 4.1.2, the distribution

{Yi(m_-l»l)j,i =12,...,mandj=12,. r} for r independent binomial distribution with each mass parameter m and success
2

probability Pygss,, can be obtained in equation (9)

)YiMRsso

MRSS, — I'mRss, o °
(P (1= Pypss,)" MRSS 9)

We take the expectation for equation (9) for the purpose of calculating the distribution parameter estimate Pypss,, Which

g (YiMRss,,|m' PMRss,,) =r (Yi "

MRSS,

represents the CDF F(YMRSSO) and probability of success, based on the method of moments, through equation (10) we will get

the mean:
T m
E (YiMRSSg) = kPurss, = z z Yi(m_“)j (10)
j=1i=1 2
R Z;:l Z‘{il Yl(mTH)] _
Fyom (YMRSSO) = k = YMRSSD (11)

YMRSSO is the mean obtained by estimating the CDF based on MOM by using MRSS,

4.2.3. Based on MRSS,:
Depending on the description of MRSS, in the subsection 4.1.3, the distribution

{Yi(m)j,YmH(m_n)j,i =12, ...,%;andj = 1,2,..,r} for r independent binomial distribution with mass parameter m and
2 2 2

success probability Pygss,, which can be obtained in equation (12)

m YimRsse m
w (YiMRSSe|k’ PMRSSe) =r {(Yimiss )(PMRSSE) (1 - PMRsse) 2 " IMRSSe 4 (12)
e
p Y%“'MRSSB 1 p m_ym*'iMRss
(Y%Hmsse) (Prrss. ) (1= Pugss,) 2 9}

To calculate the distribution parameter estimate Pygss,, Where Pygss, = F(YMRSSE) which is the probability of success and
represents the CDF of the function, based on the method of moments, the expectation of the Pyss, = F(YMRSSE) is defined
according to the following:

m
T 2 m
E (YiMRSSe) = kPygss, = Z Yi(%)j + Z Yi(m+2)]. (13)
¢ 4 2
J=1\ =1 i=o+1
m
T 2 m
. j=1 {Zi=1 Yi(%)j + Zi:%+1 Yi(—m;z)j} _
Fyvom (YMRSSe) = = YMRsse (14)
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Yurss, is the mean obtained by estimating the CDF based on MOM by using MRSS,

4.3. Estimation of (CDF) using local polynomial regression (LPR)
4.3.1. LPR based on RSS:

Estimation of cumulative distribution function CDF using local polynomial regression LPR based on ranked sets sampling RSS,
F; pr(Yrss) can be linearized by using a Tylor series, depending on section (3) equation (2) that we defined LPR with P degree.
Consider a fixed regression model:

F(Yass) = F(Yup,) + o(Yan)ej:i = 1,2,..m; j =12, 1 (15)
o (Yi,;) is the variance of Yz at point Y, ;;, &;; is a residual error with normal distribution with mean zero and variance 0.
- F@ Y) ) F® Y) ,
Fipr(Yrss) = F(Y) + F*2(Y) (Ygss —Y) + ol (Yrss = Y)* + -+ T(YRSS -Y) (16)
. @ '
Where ~ represent the approximate equality, F @ (Y) = a;fP—R(E)RSS) i=12,..,P
RSS

YRss=Y
Where P is the degree of the local polynomial range and Y is an observation from a data neighborhood around Y. If the CDF
of the ranked sets sample F,pg (Yzrss) is unknown, the equation (16) is as follows:

o) F®(Yi;) 2
Fupr(Yanj) = F(Yass) + FP (Yi,) (Yanj — Yass) + T(Y(i,i)j — Yass) + -

FP)(y.. ...
#(Ya,m ~ Yass)' (17)
i=12.m;j=12.r

By estimating the ranked sets sample units F;pg (Y(i_i)j), the equation (17) will be as follows:
~ 2 P
Fipr(Yi07) = Bogss + Pigss(Yanj = Yass) + Bagss (Y = Yass) ™+ + Brgss (Vi) — Yass) (18)
s _FOvang) . _
Where ;. = — = 0,1,2,..,P
Using ordinary least square to estimate the unknown parameter Sxss. Fan and Gijbles (1996) mentioned that the point in the
area of Yy is giving us a higher weight than the other point. Rather, we can estimate the unknown parameters in equation (18)
by using weighted least square depending on the following formula:

ﬁoRSS
. 3 A~ y P ~
Brss = '81’:255 ; Brss = (YRSSTWRSSYRSS) Yiss' WessFrss 19)
ﬂpRSS Px1
Where
P N
1 (Y(1,1)1 - YRSS) (Y(l.l)l - YRSS) F(Y(1,1)1)
. : : : b - ~ :
Yrss =1 1 (Y(m,m)l — Yiss) o (Yonmy1r — Yass) |5 Frss = F(Y(m,m)l)
1 (Yonmyr = Yass) -- (Yommyr = YRSS)P F(¥emmr).y
1 Yipi =Y,
& WRSS = dlag { kRSS <( (LD)j RSS))},i = 1, ...,m,j = 1, e, T (20)
hgss hgss

Since kggs(.) represent kernel function, hygs represent bandwidth that manages the size of the point in the zone of Yggg. Wres
represents diagonal elements matrix of weight, since the estimator of EoRss is the CDF of local polynomial regression in ranked
sets sample, where e, is the vector has 1 in the first entry and somewhere else is zero.

~ A * * -1 . ~ A

Fipr(Ygss) = €1 X Pres = €1 X (YRSSTWRSSYRSS) YRSSTWRSSFRSS = Popss €1 = {100 - 0} (21)
We have concluded in equation (21) that the estimator S, is equal likely to the F,pr (Yrss) Which is the estimator of the CDF
based on LPR with degree P, this indicates that the estimator BORSS is equal to the estimator FLPR(O)(YRSS) which is the estimator
of the CDF based on LPR with degree P = 0 in RSS, with the value of the vector el = {1} in equation (22).
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;:1 Z:’;l kRSS(Y(i,i)j - YRSS)FRSS
To1 dim1 krss(Yaii; - Yass)
We have proved in equation (21) that the estimator j, . is equal likely to the £, pg (Yzss), and also the estimator BORSS is equal
to the FLPR(U(YRSS) which is the estimator of the CDF based on LPR with degree P = 1 in RSS, with the value of vector e; =

{1,0}, in equation (23).

FLPR(O) (Yess) = (22)

So(Yaij» hrss) — S1(Yaij hrss) (Yaiiy; — Yass)

So(Y,00» Prss)S2 (Yo hrss) = S1 (Y j» hrss)
— L

Where S, (Y(i,i)j, hRss) = kpis Xi=1 Z?L1(Y(i,i)j: YRSS) kRSSh(Y(i,i)j: YRSS)

The properties of CDF will be studied based on local polynomial using ranked sets sampling depending on these conditions:

1- The function F®(Y) and o each continuous on [0,1].

2- The kernel kgqs is symmetric about zero and is reinforced on [—1,1].
3- The bandwidth hggs = hggs, itis a satisfactory sequence, hggs = 0 and khggs — o as k — oo.

4- The point Y{; ;); at which the estimate is made satisfactory hpgs < Y;y; < 1 — hggs forall k = k,, where k, is fixed.
In this subsection, we will make a derivative for the bias and MSE of the estimate CDF based on local polynomial.

-~ . v 1o ~
E <FLPR(1) (YRSS)> =E {elT (YRSSTWRSSYRSS) YRSSTWRSSFRSS}

Fiprey, (Yess) = kgds (23)

~ 1
E <FLPR(1) (YRSS)> = Fgss + Ehz(ezs)sFR(;gﬂz (kgss) + O(hl(ezs)skgs) (24)
. s 1 -
Bias (FLPR(l) (YRSS)) = Ehz(ezs)sFR(;gﬂz (kgss) + O(hl(ezs)skRSlS) (25)

=~ -1 -1
MSE (Fupn gy (Yess)) = ef (Viss WassViss) Viss WassV (F (Yass)Wass s (Yiss WassYiss) ex (26)

MSE (Fupgy (Yess)) = (khass) ™ R(Kess)V (F(Yass)) + 0{(khgss)™) 27)

In the applied aspect, in Table 1.1, we use the R-Program to obtain values of the empirical MSE and Bias of CDF based on LPR
by using RSS, with four level sets size (m = 2,3,4,5) and number of cycles (r = 3,5,7). We take degree P = 2 of LPR with
bandwidth 0.8 because they give a good result compared to other bandwidths and degrees and use kernel (normal, epanechnikov)
with three values of probability (Pgss = 0.25,0.50,0.75).

Table 1.1: The empirical mean square error and bias of CDF based on LPR by Using RSS

Kernel / Normal
r=3 m=2,k=6 m=3,k=9 m=4,k=12 m=5k=15
Ppss =0.25 Mse = 0.000107486 Mse = 0.0001035949 Mse = 0.0001014252 Mse = 7.986923e-05
Bias = 0.0004636507 Bias = 0.0004551812 Bias = 0.0004503893 Bias = 0.0003996729
Pres =050  |946986e-05 Bias = 0.0003{ Mse =5.383707e-05 1.66936e-05 Bias = 0.00030%.70322e-05 Bias = 0.00030
Bias = 0.0003281374
Pprss =0.75 Mse = 2.168546e-05 Mse = 2.295053e-05 Mse = 4.179461e-05 Mse = 2.598391e-05
Bias = 0.0002082569 Bias = 0.0002142453 Bias = 0.000289118 Bias = 0.0002279645
r=5 m=2,k=10 m=3,k=15 m=4,k=20 m=5k=25
Pprss =0.25 Mse = 3.894282e-05 Mse = 2.321515e-05 Mse = 3.138624e-05 Mse = 2.607705e-05
Bias = 0.00027908 Bias = 0.0002154769 Bias = 0.0002505444 Bias = 0.0002283727
Pres =050  |158395e-05 Bias = 0.0002(  Mse = 2.049009e-05 1.98626e-05 Bias = 0.00019¢.083776e-05 Bias = 0.0002Q
Bias = 0.0002024356
Ppes =0.75 Mse = 1.459885e-05 Mse = 1.734523e-05 Mse = 1.692903e-05 Mse = 1.845636e-05
Bias = 0.0001708733 Bias = 0.0001862537 Bias = 0.0001840056 Bias = 0.0001921268
r=7 m=2k=14 m=3 k=21 m=4,k=28 m=5 k=35
Pgrss =0.25 Mse = 1.264575e-05 Mse = 1.352716e-05 Mse = 1.15039e-05 Mse = 1.099064e-05
Bias = 0.000159033 Bias = 0.000164482 Bias = 0.0001516832 Bias = 0.0001482609
Ppes =050 |211694e-05 Bias = 0.0001] Mse = 1.238188e-05 .398311e-05 Bias = 0.00016 Mse = 9.6613e-06
Bias = 0.0001573651 bias = 0.0001390058
Ppes =0.75 Mse = 7.667563e-06 Mse = 9.508394e-06 Mse = 1.167593e-05 Mse = 6.628009¢-06
Bias = 0.0001238351 Bias = 0.0001379014 Bias = 0.0001528131 Bias = 0.0001151348
Kernel / Epanechnikov
r=3 m=2,k=6 m=3,k=9 m=4,k=12 m=5k=15
Ppss =0.25 Mse = 0.0001206227 Mse = 8.56113e-05 Mse = 6.935339¢e-05 Mse = 8.86133e-05
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Bias = 0.0004911674

Bias = 0.0004137905

Bias = 0.0003724336

Bias = 0.0004209829

PRSS =0.50

661436e-05 Bias = 0.0003;

Mse = 5.640625e-05
Bias = 0.0003358757

.636432e-05 Bias = 0.00033

.704077e-05 Bias = 0.00033

PRSS =0.75

Mse = 1.99026e-05
Bias = 0.0001995124

Mse = 2.287863e-05
Bias = 0.0002139095

Mse = 3.196004e-05
Bias = 0.0002528242

Mse = 4.15294e-05
Bias = 0.0002881992

r=5

m=2,k=10

m=3,k=15

m=4,k=20

m=5k=25

PRSS =0.25

Mse = 3.369704e-05
Bias = 0.0002596037

Mse = 2.682286¢e-05
Bias = 0.0002316154

Mse = 1.952314e-05
Bias = 0.0001976013

Mse = 2.263933e-05
Bias = 0.0002127878

PRSS =0.50

Mse = 2.034624e-05
Bias = 0.0002017238

Mse = 1.930976e-05
Bias = 0.0001965185

Mse = 1.933795e-05
Bias = 0.0001966619

Mse = 2.062103e-05
Bias = 0.0002030814

PRSS =0.75

Mse = 7.79924e-06
Bias = 0.0001248939

Mse = 1.103365e-05
Bias = 0.0001485506

Mse = 1.969276e-05
Bias = 0.0001984578

Mse = 1.909245e-05
Bias = 0.0001954096

r=7

m=2,k=14

m=3,k=21

m=4,k=28

m=5k=35

PRSS =0.25

Mse = 1.560244e-05
Bias = 0.000176649

Mse = 1.161882e-05
Bias = 0.000152439

Mse = 1.186293e-05
Bias = 0.000154032

Mse = 1.385473e-05
Bias = 0.0001664616

PRSS =0.50

|.03374e-05 bias = 0.00014

Mse = 1.377892e-05
Bias = 0.0001660056

Mse = 1.074807e-05
Bias = 0.0001466156

Mse = 1.121305e-05
Bias = 0.0001497535

PRSS =0.75

Mse = 8.002706e-06

Bias = 0.0001265125

Mse = 6.681595e-06
Bias = 0.0001155993

Mse = 6.970129¢e-06

Bias = 0.0001180689

Mse = 1.073552¢-05
Bias = 0.00014653

From the results of table 1.1, figure 1, and figure 2, we can observe the following:
1- For fixed values Pggs and m, when the number of cycles is increasing r = 3,5 and 7, the values of Mse and Bias are decreasing.
For more evidence, we can see Figure 1 when the blue line gradually curves as the number of cycles increases.

2- For fixed values m and sample size k, when the probability is increasing
Prss = 0.25, 0.50, and 0.75, the blue line gradually curves; see Figure 2, which means that values of Mse and Bias are

decreasing.

3- Kernel epanechnikov gives us a better result than the gaussian kernel; for evidence, the result of empirical Mse and Bias in
epanchnikov are less than gaussian.

4.3.2. LPR based on MRSS,:

Estimation of cumulative distribution function CDF using local polynomial regression LPR based on median ranked sets

sampling odd MRSS,,, we take P degree of local polynomial regression, and using a Tylor series for linearizing Fypg (Yygss,)

as follows:

Consider a fixed regression model:

F(Yurss,) = F (Yi(m_ﬂ)) +0 (Yi(mTﬂ)) g0 = 12,..m;j=12,..1

2

(28)

o (Yi(m_ﬂ)j) is the variance of Yy gss, at point Yl.(m_+1)]., g5 is a residual error with normal distribution with mean zero and
2

2

variance 2.

Fipr (YMRSSO) ~ F(Y) + FO(Y) (YMRSSO -Y)+

. a®
Where FO(Y) =

0YMRssg

Dp (YMRSSO)
@

F® Y) P
—pr Yursso — Y)

YMRSsp=Y

(29) is reformulated as follows:

FA(v)
2!

26

(YMRSSO - Y)z + -

(29)

i =12,..,P ;Y isanobservation from a data neighborhood around Yygss,,, equation
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Furn (1, g ) = PFanss) + P (1 ) (¥, gy, = Vs GO
PO (1 s FO (¥ )
+¢_+1)]<y i =Y )2+---+¢+1)J(Y +1y, — 1) )P
2! (L) T YMRSSo P! () s

i=12,.m;j=12,..r

By estimating the ranked sets, sample units F,pg (Yi(m_-i—l)j) in equation (30) will be as follows:
2

2
Fipr (Yi(mTH)i> ~ Bourssy + Pimrss, <Y"(mT+1)f B YMRSSO) T Paunss, (Yi(mTH)j - YMRSSO) b
P
+ . ﬁPMRSSO <Yl(mT+1)] - YMRSSO)

)

i!

Where ﬁiMRSSO = i=012,..P

ﬁOMRSSO

o [?1 A T -1 T -
ﬁMRsso = | "MRSSo ’ ﬁMRSSo = (YIC/;RSSO Whrss, Y1C1Rsso) YA}RSSO Wursso Fursso (32)

_ﬁpMRSSO p*1

i b ] ]
e B ) P(neg.)
: . ) )
birssg =1 (Vagzgty~omso) o (Vg o) | Fonsso = |F (o), )
i (Y Y ) P ﬁ(y )
+1\ — _ +1
e (g = Yiso) | A
1 <Yi(m_+1)j_YMRSSO>
Whurss, = diag h—kMRSSO zh— ,qi=1.,mj=1,.,r (33)
MRSSg MRSS

kumrss, (-) represents the kernel function of MRSS,, and hygss,, represents the bandwidth that manages the size of the point in
the zone of Yy rss,- Wurss, represents the diagonal element matrix of weight since the estimator of BOMRSSO isthe CDF of local
polynomial regression in median ranked sets sample odd, where e, is the vector with 1 in the first entry and elsewhere is zero.
i 5] * T * -1 * T A A
Fipr (YMRSSO) =e X BMRSSO =e; X (YMRSSO WMRSSO YMRSSO) YMRSSO WMRSSOFMRSSO = ﬂoMRsso (34)
Estimation of the CDF based on LPR with degree P = 0, with the value of vector eI’ = {1}, indicates that the estimator BOMRSS
o

is equally likely to the Fypg (Yargss, ), Which is equal to the estimator Fypg , (Yass,) in equation (35),

T m Qo
j=1 Zi=1 kMRSSo (Yi(mﬂ)j - YMRSSO> FMRSSO
2

(35)

ﬁ'LPR(O) (YMRSSD) =
T1 Die1 knmrsso (YL(mTH) i YMRSSO)
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We have proved in equation (34) that the estimator [?OMRSSO is equally likely to the estimator F, pp (YMRSSO), which is equal to
the estimator FLPR(D(YMRSSO), which is the estimator of the CDF based on LPR with degree P = 1, with the value of the vector

being el = {1,0}, in equation (36).

So (Yi(mTH)j' hMRSSo) =51 (Yi(mTH)j' hMRSSo) <Yl-(mT+1)j - YMRSSO>

Fipry (Yursso) = Ktksso (36)

So (Yi(mTH)j, hMRSSo> S (Yi(mTH)j, hMRSSO) -5 (Yi(mTH)j, hMR550>
L

Where S, (Yi(mTﬂ)j, h) = k;ﬁesso Yi=12i% <Yi(mT+1)j, YMRSSO> kMRSSOh <Yi(mT+1)j’ YMRSS@)

The properties of CDF will be studied based on local polynomial using median ranked sets sampling odd, depending on these

conditions:

1- The function F®(Y) and o each continuous on [0,1].

2- The kernel kygss,, is symmetric about zero and is reinforced on [—1,1].

3- The bandwidth hygss, = hMRSSOk it is a satisfactory sequence, hygss, = 0 and khygss, = © as k — .

4- The point Yi(m_-i-l)j at which the estimate is made satisfactory hypgs, < Yi(m_n)]. <1 — hygss, forall k > ko, where kg is
2 2

fixed.

In this subsection, we will make a derivative for the Bias and MSE of the estimate CDF based on local polynomial.

i * * -1 * '
E (FLPR(l)(YMRSSO)) = E{e]’{‘(YMRSSOTWMRSSOYMRSSO) YMRSSOTWMRSSOFMRSSO}

R 1 .
E <FLPR(1) (YMRSSO )) = FMRSSO + E hﬁ}?SSo FI\SIZR)SSOIMZ (kMRSSO) +0 (hg/fl)?SSO lel'QS.So) (37)
. {a 1 _
Bias (F Lrreyy (Yarsso )) =3 hJ(;I)esso Fz&?sso H2(Kugss,) + 0 (hgfz)esso Kitksso) (38)
I * * -1 *
MSE (F LPR(y) (YMRSSO )) =ef (YMRSSO TWMRSSO YMRSSO) Yirss, TWMRSSO |4 (F (YMRSSO )) (39)

* T (vr* T * -1 7
Whuirsso Ymrss, (YMRSSO WMRSSOYMRSSO) €1

MSE (FLPR(l)(YMRSSO)) = (kMRSSOhMRSSO)_lR(kMRSSO)V (F(YMRSSO)) +0 {(kMRSSOhMRSSO)_l} (40)

In the Table 1.2, we use the R-Program to achieve the result of the empirical mean square error and bias of CDF based on LPR
by using MRSS odd with four levels of set size (m = 3,5,7,9), with three values of probability (Pygss, = 0.25,0.50,0.75), and
with the same number of cycles r, degree of kernel, type of kernel, and bandwidth as in the previous table 1.1.

Table 1.2: The empirical mean square error and bias of CDF based on LPR by Using MRSS ODD

Kernel / Normal

r=3 m=3,k=9 m=5k=15 m=7,k=21 m=9, k=27
P ygss,= 0.25 Mse = 8.512535e-05 Mse = 7.691912e-05 Mse = 8.174425e-05 Mse = 7.924077e-05
Bias = 0.0004126145 Bias = 0.0003922222 Bias = 0.0004043371 Bias = 0.0003980974

Pypss, =050 |865291e-05 Bias = 0.0003] Mse =5.529911e-05  }.341845e-05 Bias = 0.00033.342218e-05 Bias = 0.0003
Bias = 0.0003325631

P ygss, = 0.75 Mse = 2.326374e-05 Mse = 3.806345e-05 Mse = 4.086824e-05 Mse = 3.77983e-05
Bias = 0.0002157023 Bias = 0.000275911 Bias = 0.0002858959 Bias = 0.0002749484
r=5 m=3, k=15 m=5k=25 m=7,k=35 m=9, k=45
Pygss, =025 Mse = 2.637953e-05 Mse = 2.60296e-05 Mse = 2.278614e-05 Mse = 2.114632e-05
Bias = 0.0002296934 Bias = 0.0002281649 Bias = 0.0002134767 Bias = 0.0002056517

Pypss, =050 |524377e-05 Bias = 0.0001| Mse =1.809422e-05 |1.96922e-05 Bias = 0.000191.632715¢-05 Bias = 0.0001
Bias = 0.0001902326
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Pypss, =0.75

Mse = 1.107483e-05
Bias = 0.0001488276

Mse = 1.713709e-05
Bias = 0.0001851329

Mse = 1.3506e-05
Bias = 0.0001643533

Mse = 1.482615e-05
Bias = 0.0001721984

r=7

m=3, k=21

m=5,k=35

m=7,k=49

m=9,k=63

Pypss, =0.25

Mse = 1.56476e-05
Bias = 0.0001769045

Mse = 9.443144e-06
Bias = 0.0001374274

Mse = 1.042319e-05
Bias = 0.0001443828

Mse = 1.071913e-05
Bias = 0.0001464181

Pypss, =050

674636e-06 Bias = 0.0001]

Mse = 9.210139¢-06
Bias = 0.0001357213

.552546e-06 Bias = 0.000137.716423e-06 Bias = 0.0001;

Pypss, = 0.75

Mse = 9.022209¢-06
Bias = 0.0001343295

Mse = 6.555129e-06
Bias = 0.0001145

Mse = 9.568994¢e-06
Bias = 0.0001383401

Mse = 8.611258e-06
Bias = 0.0001312346

Kernel / Epanechnikov

r=3

m=3,k=9

m=5k=15

m=7,k=21

m=9, k=27

Pypss, =025

Mse = 0.0001048237
Bias = 0.0004578727

Mse = 7.279169e-05
Bias = 0.0003815539

Mse = 6.217946e-05
Bias = 0.0003526456

Mse = 6.378918e-05
Bias = 0.0003571811

Pypss, =050

Mse = 5.373519e-05
Bias = 0.0003278267

Mse = 5.708709e-05
Bias = 0.0003378967

Mse = 7.544543e-05
Bias = 0.0003884467

Mse = 5.500072e-05
Bias = 0.0003316647

Pypss, =0.75

Mse = 3.294451e-05
Bias = 0.0002566886

Mse = 3.944943e-05
Bias = 0.0002808894

Mse = 3.64872e-05
Bias = 0.0002701377

Mse = 3.562654e-05
Bias = 0.0002669327

r=5

m=3,k=15

m=5k=25

m=7,k=35

m=9 k=45

Pypss,=0.25

Mse = 2.706822e-05
Bias = 0.0002326724

Mse = 2.142626e-05
Bias = 0.0002070085

Mse = 2.363208e-05
Bias = 0.0002174032

Mse = 1.916575e-05
Bias = 0.0001957843

Pypss, =050

Mse = 2.02618e-05
Bias = 0.0002013047

Mse = 1.732828e-05
Bias = 0.0001861627

Mse = 2.406087e-05
Bias = 0.0002193667

Mse = 1.673458e-05
Bias = 0.0001829458

Pypss, =0.75

Mse = 1.15668e-05
Bias = 0.0001520973

Mse = 1.023598e-05
Bias = 0.0001430803

Mse = 1.64224e-05
Bias = 0.0001812313

Mse = 1.666829e-05
Bias = 0.0001825831

r=7

m=3,k=21

m=5k=35

m=7,k=49

m=9, k=63

Pypss, =025

Mse = 1.297796e-05
Bias = 0.0001611084

Mse = 1.355451e-05
Bias = 0.0001646481

Mse = 1.365714e-05
Bias = 0.0001652703

Mse = 1.144232¢-05
Bias = 0.0001512767)

Pypss, =050

.17379e-05 bias = 0.00015

Mse = 1.000622e-05
Bias = 0.0001414653

Mse = 1.265157e-05
Bias = 0.0001590696

Mse = 1.054311e-05
Bias = 0.000145211)

Pypss, = 0.75

Mse = 9.345159e-06
Bias = 0.0001367125

Mse = 8.477178e-06
Bias = 0.0001302089

Mse = 8.385006e-06
Bias = 0.0001294991

Mse = 1.065344e-05
Bias = 0.0001459688)

The following steps describe table 1.2, Figure 3, and Figure 4:
1- When the number of cycles is increasing r = 3,5 and 7, for fixed values Pygss, and m, the values of Mse and Bias are
decreasing, and also Figure 3 proves that the blue line is curving gradually when we increase the cycles r.
2-In Figure 4, we notice that the blue line continues to curve as the probability increases ( Pygss, = 0.25, 0.50, 0.75), and this
indicates a decrease in the values of Mse and bias for fixed values m and sample size k.
3- Intable 1.2, we notice that the kernel epanechnikov is better than the kernel gaussian. Evidence of this is that the experimental
values in Mse and Bias are lower than what they are in the kernel gaussian.

4.3.3. LPR based on MRSS,:

Estimation of cumulative distribution function CDF using local polynomial regression LPR based on median ranked sets
sampling even MRSS,, we can linearize the CDF, F (Yygss,), by using a Tylor series and with P degree of local polynomial

regression.

The regression fixed model based on median ranked sets sample even:

F(Yurss,) = F (Yi(g) it Y%H(m—“)j) to (Yi(

2

i = 1,2 m i =1,2
i = ,,...2,]— 2, T

Frpr (YMRSSe) ~ F(Y) + FO(Y) (YMRsse - Y) +
F® Y)

a(i)F(YMRSSe)

where FO(Y) = =

0Y MRSSe

(Yrss, = ¥)

F® (1)

2+ Yz )

2 2

2!

(YMRsse - Y)z + -

(39)

(40)

i=12,..,P ;Y is an observation from the data neighborhood around Yygss,; if the

YMRSSe=Y

CDF of ranked sets sample F;pg (Yyrss,) is unknown, the equation (40) will be as follows:
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Furn (Vi) + Vimgzy ) = b
@ _
PO+ P (1 + oo, ) (i + s ) s )
F@>(Y. S Ym )
N i) " (") (y Ly )_Y 2+m
2! () T T myy(mE2); ) T MRS,
®)
RO (V) + Vg ”
* Pl (yi(%)f ), ) ™ Yursse
i =12.,7 ;) =12..,r, where~ {%+%= m}
By estimating the ranked sets sample units F;pg <Y. my, + Ym . mi2 ) the equation (41) will be:
i(5) " g
Furn Y.y + Yo smgzy ) = Bownss, B <(Yi<%>f T iz - YMRSSe) ¥ (“2)
2
B2ugss, ((Yi(%)j + Y%H(’”T“)j) B YMRSSB) Tt Brugss, ((Yi(%)f * Y%"i(mT“)f) a YMRSSE)
F(i)<YL_ m) +Ym miz )
Where B, .o = Q”if+(2 W i—o01.2,..,p
BOMRSSQ
N R o -1 N
Burss, = ﬁlM,RSSe 5 Purss, = (YI;IRSSETWMRSSQYI;IRSSE) YI;IRSSeTWMRSSeFMRSSe (43)
BpMRSSg it
- P
U (Yo ) i) (i Y ) -
: : : .
fins. = (e Ve - Y) (gt g ) - o
. 1 H H ,
Y +Y ) —-Y; _
_ (( 2z " m() MR”E) <(Yg(g)r + Ym(mT“)r) YMRsse> .
e +f%+1<m7“>1>
FMRSSE = F(Y%(%ﬁ + Ym(an)1>
F(Y +Y )
(Y * Ve ) |
(Yi m\ .+¥m (mt2 .>_YMRSSE
Wigrss, = diag ﬁkwsse &) ZJM(R;S i =12 =17 (44)

kurss, () represents the kernel function of MRSS,, and hygss, represents the bandwidth that manages the size of the point in
the zone of Yy gss,- Wurss, represents the diagonal element matrix of weight since the estimator of [?OMRsse is the CDF of local
polynomial regression in median ranked sets sample even, where e; is the vector with 1 in the first entry and elsewhere is zero.
(45)

~ _ ~ _ T -1 T -~ _ PN
F (YMRSSe) = ey X Bygss, = €1 X (YMRSSe WMRsseYMRsse) Yurss,” Wmrss, Fmrss, = ﬁoMRssE
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In equation (45), we get the estimator ﬁoMRSSe, which is equally likely to the £, pg(Yyss, ), which is equal to the F"LPR(O)(YMRSSe)
the estimator of the CDF based on LPR with degree P = 0, with the value of vector el = {1}, in equation (46).

m
i ?:121-2:1 kugss, <Yl.(%)j + Y%+i(m—+2)j - YMRSSe) FMRSSE
FLPR(O) (YMRSSe) = m

2
To1 2 kurss, (Yi(%)j + Y%ﬂ-(mTJrZ)j - YMRsse>

In the equation (47) we prove F"LPR(D(YMRSSE), which is the estimator of the CDF based on LPR with degree P = 1, with the
value of the vector being el = {1,03}, this indicates that the estimation of BOMRSSe is equally likely to the £, pg (YMRSSe), which

is equal to the Fypp ) (Yugss,) in equation (47).

(46)

FLPR(l) (YMRSSE) =
5o (Vi + Vpamgty s ) =51 (Y Vg s ) (2 + Vg~ Yo

2 2 2 2

kukss, (47)

5o (P + Vopmgzy onse) 5 (Vgy + Yooy s ) =51 (1, + Voo o,

Where SL( () +¥Ym, +i(12) hMRSSe)=

2

L
Kikss, Z Z ( ;T Ymﬂ(mTJrZ)j: YMRSSe> Kurss,, <Yi(%)j + Y%H.(mTJrZ)j, YMRSSe) (48)

The properties of CDF WI|| be studied based on local polynomial using median ranked sets sampling even depending on these
conditions:

1- The function F®(Y) and o each continuous on [0,1].

2- The kernel kygss, is symmetric about zero and is reinforced on [—1,1].

3- The bandwidth hyggs, = hugss,,, it is a satisfactory sequence, hygss, = 0 and khyggs, = © as k — .

4- The point (Y. m\ . + Ym ./m+2 . | at which the estimate is made satisfactory.
i) T ()

2

hugss, < Yl.(%)j + Y%ﬂ.(m_n)j < 1 — hygss, forall k > ko, where kj is fixed.

2
In this subsection, we will make a derivative for the bias and MSE of the estimate CDF based on local polynomial.

E (ﬁ' LPR(y) (YMRSSe )) = { 4 (YIJIRSSE ’ Wrss, Ymrss, ) N Yrrss, ’ Whrss, F MRSS, }

E (FLPR(l)(YMRSSe)) FMRSSe +5 hz(;z)esse 1\51?558#2 (Kumrss,) + O(hz(\fz)essek&}asse) (49)

Bias (ﬁLPR(l) (YMRSSe)) 5 hg;})esseFJ\g%seMZ (Kurss,) + 0 (hgjl)essekM}?SSe) (50)
=~ * -1 *

MSE (FLPR(l)(YMRSSe)> =e (YMRSSe WMRSSQYMRSSG) YMRSSE Wygss,V (F (YMRSSQ)) (51)

* T (v« T * -1 r
Whigss, Ymrss, (YMRSSE WMRSSQYMRSSE) €1

~ -1 -1
MSE (FLPR(l)(YMRSSe)) = (kMRSSEhMRSSE) R(kMRSSE)V (F(YMRSSE)) +0 {(kMRSSehMRSSe) } (52)
In Table 1.3, we will solve the empirical mean square error and bias of CDF based on LPR by using MRSS even with four levels
of set size (m = 2,4,6,8), with three levels of probability (Pygss, = 0.25,0.50,0.75) with the same number of cycles r, degree of
kernel, type of kernel, and bandwidth as in the previous tables.

Table 1.3: The empirical mean square error and bias of CDF based on LPR by Using MRSS EVEN
Kernel / Normal

r=3 m=2,k=6 m=4,k=12 m=6,k=18 m=§, k=24

Pppss, = 0.25 Mse = 0.0001086189 Mse = 9.811098e-05 Mse = 6.557998e-05 Mse = 8.739888e-05
Bias = 0.0004660877 Bias = 0.0004429695 Bias = 0.0003621601 Bias = 0.0004180882

Bias = 0.000332053

Pygrss, =0.50 |418607¢-05 Bias = 0.0003] Mse = 5.512962¢-05 664477e-05 Bias = 0.0003(312043e-05 Bias = 0.0003

Pygss, =0.75 Mse = 1.983807e-05 Mse = 2.367623e-05 Mse = 3.517974e-05 Mse =3.618193e-05
Bias = 0.0001991887 Bias = 0.0002176062 Bias = 0.0002652536 Bias = 0.0002690053
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Bias = 0.0001107268

Bias = 0.0001223419

Bias = 0.0001292358

r=5 m=2,k=10 m=4,k=20 m=6,k=30 m=8, k=40
Pygss, =0.25 Mse = 3.73182e-05 Mse = 2.330108e-05 Mse = 2.754449¢-05 Mse = 2.789499¢-05
Bias = 0.0002731966 Bias = 0.0002158753 Bias = 0.0002347104 Bias = 0.000236199
Ppypss, =0.50 | 611155e-05 Bias = 0.0001] Mse = 2.056189¢-05 .56869¢-05 Bias = 0.00017.545758e-05 Bias = 0.0001]
Bias = 0.00020279
Pygss, =0.75 Mse = 1.09177e-05 Mse = 1.606776e-05 Mse = 1.418493e-05 Mse = 1.940943¢-05
Bias = 0.000147768 Bias = 0.0001792639 Bias = 0.0001684336 Bias = 0.000197025
r=7 m=2,k=14 m=4,k=28 m=6,k=42 m= 8§, k=56
Pypss, =0.25 Mse = 1.541827e-05 Mse = 1.022398e-05 Mse = 1.08598e-05 Mse = 1.15695¢e-05
Bias = 0.0001756034 Bias = 0.0001429964 Bias = 0.0001473757 Bias =0.0001521151
Ppypss, =0.50 1078183e-05 Bias =0.00017 Mse = 1.026643¢-05 229568¢-05 Bias = 0.00011829758e-06 Bias = 0.0001
Bias = 0.000143292
Pygss, = 0.75 Mse = 6.130213e-06 Mse = 7.483774e-06 Mse = 8.35094¢-06 Mse = 8.344404¢-06

Bias = 0.0001291852

Kernel / Epanechnikov

Bias = 0.0001192481

Bias = 0.0001308775

r=3 m=2,k=6 m=4,k=12 m=6,k=18 m=§8, k=24
Ppgss, = 0.25 Mse = 0.0001040585 Mse = 0.0001081452 Mse = 7.688896e-05 Mse = 8.177441e-05
Bias = 0.0004561985 Bias = 0.0004650703 Bias = 0.0003921453 Bias = 0.0004044117
P ygss, = 0.50 Mse = 5.506826e-05 Mse = 4.512977e-05 Mse = 4.609768e-05 Mse = 6.321508e-05
Bias = 0.0003318682 Bias = 0.0003004323 Bias = 0.0003036369 Bias = 0.0003555702
Pypss, = 0.75 Mse =2.04245e-05 Mse = 3.123355e-05 Mse = 3.560996e-05 Mse =4.591781e-05
Bias = 0.0002021114 Bias = 0.0002499342 Bias = 0.0002668706 Bias = 0.0003030439

r=3 m=2,k=10 m=4,k=20 m=6,k=30 m=38, k=40
Pygss, = 0.25 Mse =3.372501e-05 Mse = 2.574094e-05 Mse = 2.332808e-05 Mse = 2.738825e-05
Bias = 0.0002597114 Bias = 0.0002268962 Bias = 0.0002160004 Bias = 0.0002340438
Pygss, = 0.50 Mse =2.510962¢-05 Mse = 1.965092¢-05 Mse = 1.50904¢-05 Mse = 1.491986¢-05
Bias = 0.0002240965 Bias = 0.0001982469 Bias = 0.0001737262 Bias = 0.0001727418
Pypgss, =0.75 Mse = 7.975208e-06 Mse 1.677073e-05 Mse = 1.190957e-05 Mse = 1.722819e-05
Bias = 0.000126295 Bias =0.0001831433 Bias = 0.0001543345 Bias = 0.0001856243

r=7 m=2,k=14 m=4,k=28 m=6,k=42 m= 8§, k=56
P ygrss,= 0.25 Mse = 1.558296e-05 Mse = 1.510541e-05 Mse = 9.30583e-06 Mse = 1.232422¢-05
Bias = 0.0001765387 Bias = 0.0001738126 Bias = 0.0001364246 Bias = 0.0001569982
Pypss, = 0.50 Mse = 1.284562e-05 Mse = 9.537822e-06 Mse = 9.276924e-06 Mse = 1.013299¢-05
Bias = 0.0001602849 Bias = 0.0001381146 Bias = 0.0001362125 Bias = 0.0001423586
Pygss, = 0.75 Mse = 7.110055e-06 Mse = 8.564457e-06 Mse = 8.637282e-06 Mse = 8.434095e-06

Bias = 0.0001314327

Bias = 0.0001298776

RE,(CDF) =

distribution when simulation n = 500 and sample size k =

MSE(F(Y))
To generate RSS and MRSS, we assume that the ranking process is done using imperfect ranking mode, with a binomial
m * r in four levels of sets size m = 2,3,4,5, in RSS. And in MRSS
m = 3,5,7,9 for type odd, also m = 2,4,6,8 for type even, cycles r = 3,5,7. With three degrees of probability (0.25, 0.50, 0.75),
we used two types of kernels (normal, epanechnikov). We use bandwidth 0.8 with degree 2 for LPR because they give a good
result compared to other bandwidths and degrees. In Tables 2.1, 2.2, and 2.3, we use R-programing to obtain the result of the
relative efficiency RE.

Table 1.3, Figure 5, and Figure 6, were interpreted as follows:
1- The values of Pyss, and m are immutability, Mse and Bias are decreasing, such as the blue line curving in the figure 5,
this happens when the repetitions are increasing, r = 3,5,7.
2- As the probability Pygss, = 0.25,0.50, and 0.75 increases, the value of both Mse and Bias decreases if the sample size k and
m are stable. Figure 6 proves that through the curvature of the blue line.
3- On the basis of the result empirical Mse and Bias, we confirmed that the kernel epanechnikov is better than the kernel gaussian.

5. SIMULATION STUDY AND CONCLUSION
5.1. MONTE CARLO COMPARISONS

In this part, a comparison is made between the CDF estimator for the three methods (moment, maximum likelihood, and local
polynomial regression) based on the relative efficiency RE, which is defined according to the following relationship:
MSE (Fi(Y))

i =MOM,MLE ;k = RSS,MRSS
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Table 2.1: The Relative Efficiency

RE) Of the Method Of Moment And MLE To LPR based on RSS

Kernel / Normal

r=3 m=2,k=6 m=3,k=9 m=4,k=12 | m=5k=15
MOM & LPR Pgss = 0.25 1.135750702 1.16406889 1.17344999 1.471932307
MLE & LPR Ppgs =0.25 1.137516514 1.162210688 1.174450728 1474069551
MOM & LPR Pgss = 0.50 8.206516713 8.963245957 10.20831334 10.00206242
MLE & LPR Pgss = 0.50 8.208776681 8.952738327 10.19476759 10.00882799
MOM & LPR Pgss =0.75 5063775451 47.27995388 25.63634402 40.74663898
MLE & LPR Pgss =0.75 5.063065298 47.27842886 25.64026797 40.71708223

r=5 m=2,k=10 m=3,k=15 m=4,k=20 m=5,k=25
MOM & LPR Pggs =0.25 3.081517979 5.066695671 3.676639827 4.322041795
MLE & LPR Pggs =0.25 3.089373086 5.06586001 3.67284517 4334577723
MOM & LPR Pgss = 0.50 2225527765 22.94889871 23.22915932 21.62112914
MLE & LPR Pgss = 0.50 2.226000338 22.96821049 23.25431716 21.65576338
MOM & LPR Pggs =0.75 7.401329557 61.04156589 61.22146396 55.01398976
MLE & LPR Pggs =0.75 7.400843217 60.98252949 61.2500539 54.99610974

r=7 m=2k=14 | m=3,k=21 | m=4,k=28 | m=5k=35
MOM & LPR Ppgs =0.25 9.350327185 8.481033713 9.664600701 9.828317550
MLE & LPR Pggs =0.25 9.314370441 8.501444501 9.677066038 9.871335973
MOM & LPR Pgss = 0.50 3.896041410 37.03106475 31.81991703 44.73795452
MLE & LPR Pgss = 0.50 3.899763472 37.01806995 31.86743149 44.7348804
MOM & LPR Pgss =0.75 1.386600932 108.5673353 85.88318018 146.7357995
MLE & LPR Pgss =0.75 1.385961876 108.5636544 85.8482365 146.9243931

Kernel / Epanechikov

r=3 m=2,k=6 m=3,k=9 m=4,k=12 | m=5k=15
MOM & LPR Ppgs =0.25 1.012059090 1.408594426 1.716100684 1.326686852
MLE & LPR Pggs =0.25 1.013632592 1406345891 1.717564203 1.328613199
MOM & LPR Pggs = 0.50 8.620434815 8.554989917 8.456819846 8.24706609
MLE & LPR Pggs = 0.50 8.622808771 8.544960886 8.445598208 8.252644556
MOM & LPR Pggs =0.75 5.517384663 47.42853921 33.52502062 25.49415595
MLE & LPR Pggs =0.75 5.516610895 47.4270094 33.53015203 25.47566302

r=5 m=2,k=10 m=3,k=15 m=4,k=20 m=5,k=25
MOM & LPR Pges =0.25 3.561232678 4.385218429 5.910724402 4.978331956
MLE & LPR Pges =0.25 3.570310627 4.384495166 5.904623949 4.992771429
MOM & LPR Pgss = 0.50 2.360911893 24.35167501 23.85938013 21.84837033
MLE & LPR Pgss = 0.50 2361413214 24.37216724 23.88522051 21.88336858
MOM & LPR Pgss =0.75 1.385402937 95.95917942 52.62949429 53.18112657
MLE & LPR Pggs =0.75 1.385311902 95.86637242 52.65407185 53.16384225

r=7 m=2,k=14 m=3,k=21 m=4,k=28 m =5, k=235
MOM & LPR Ppgs =0.25 7.578423631 9.874006138 9.372102845 7.796579219
MLE & LPR Ppgs =0.25 7.549280754 9.897769309 9.384190921 7.830704748
MOM & LPR Pggs = 0.50 4566728578 33.27649772 41.39732994 38.54676471
MLE & LPR Pggs = 0.50 4571091377 33.26482046 41.45914569 38.54411601
MOM & LPR Pggs =0.75 1.328531874 154.4991877 143.8662039 90.59330149
MLE & LPR Pggs =0.75 1.327919581 154.4939494 143.8076684 90.7097374

Table 2.2: The Relative Efficiency (RE) Of the Method Of Moment And MLE To LPR Of MRSS ODD
Kernel / Normal

r=3 m=3,k=9 m=5k=15 | m=7,k=21 | m=9,k=27
MOM & LPR | Pygss, =0.25 | 1.415389188 1.527881494 1.402094949 1.406503243
MLE & LPR Pyrss,=0.25 | 1.414098151 1.531513881 1.405189967 1.412945634
MOM & LPR | Pygss, =0.50 | 8.226359101 8.515932716 7.231069192 7.052961598
MLE & LPR | Pypss, =0.50 | 8.222205855 8.499512922 7.225271195 7.053201262
MOM & LPR | Pygss,=0.75 | 4.664795944 27.80029136 25.26318726 26.65122506
MLE & LPR | Pypss, =0.75 | 4.662367272 27.79661329 | 25.27047898 26.64191247

r=5 m=3,k=15 | m=5k=25 | m=7,k=35 | m=9,k=45
MOM & LPR | Pypss, =0.25 | 4.458475947 4.336927959 | 4.756751253 4.901259415
MLE & LPR Purss,= 025 | 4.466569344 4.335760058 4.73894657 4.898157221
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MOM & LPR | Pypss, =0.50 | 3.088215710 24.9128672 21.95669351 25.34578294
MLE & LPR | Pygss, =0.50 | 3.088062861 24.93722305 21.95971501 2532617144
MOM & LPR | Pygss,=0.75 | 9.552986366 59.23718671 72.01075818 62.79158109
MLE & LPR | Pygss, =0.75 | 9.559189622 59.21191988 72.07851325 62.82913636
r=7 m=3,k=21 m=5,k=35 m="7,k=49 m=9,k=63
MOM & LPR | Pypss, =0.25 | 7.326612388 1149452979 | 9.720133663 8.919277964
MLE & LPR Pyrss,=0-25 | 1.322835909 11.41768038 9.745375456 8.955212783
MOM & LPR | Pypss, =0.50 | 5287188996 | 47.05310094 | 47.58948973 | 49.52667836
MLE & LPR | Pygss, =0.50 | 5287012619 46.91815183 47.52536847 49.5257712
MOM & LPR | Pygss,=0.75 | 1.145476679 148.3637927 95.61809737 99.81082903
MLE & LPR | Pygss, =0.75 | 1.144674214 148.3842194 95.57852163 99.64525508
Kernel / Epanechikov
r=3 m=3,k=9 m=5k=15 | m=7,k=21 | m=9,k=27
MOM & LPR | Pypss, =025 | 1.149410868 1.614515338 1.843264641 1.747199133
MLE & LPR Pyrss,=0-25 | 1.148362441 1.618353688 1.847333509 1.755202058
MOM & LPR | Pypss, =0.50 | 8.979216413 8.249211862 | 6.078342982 | 8.132878988
MLE & LPR | Pygss, =0.50 | 8.974683071 8.233306339 6.073469261 8.133155348
MOM & LPR | Pygss,=0.75 | 3.294042012 26.82358148 28.29655331 28.27585839
MLE & LPR | Pygss, =0.75 | 3.292327007 26.82003263 28.30472056 28.26597812
r=5 m=3,k=15 m=5,k=25 m=7,k=35 m=9, k=45
MOM & LPR | Pypss, =0.25 | 4.345040051 5268698317 | 4.586477365 5.407750805
MLE & LPR Pyrss,=0.25 | 4.352927529 5.267279497 4.569310023 5.404328033
MOM & LPR | Pypss, =0.50 | 2.323389334 26.0140591 17.9700734 24.7286995
MLE & LPR | Pygss, =0.50 | 2323274339 26.03949151 17.9725463 24.70956546
MOM & LPR | Pygss,=0.75 | 9.146669779 99.17496908 59.22260449 55.85200401
MLE & LPR | Pygss, =0.75 | 9.152609192 99.13266732 59.27832716 55.88540876
r=7 m=3,k=21 m=5,k=35 m=7,k=49 m=9,k=63
MOM & LPR | Pygss, =025 | 8.833738122 8.007998814 7.418449251 8.355552021
MLE & LPR Pyrss,= 0-25 | 8.842005986 7.954459438 7.437713899 8.389215649
MOM & LPR | Pygss, =0.50 | 3.907380366 43.30962142 32.17081358 36.2482038
MLE & LPR | Pygss, =0.50 | 3.907250019 43.18540868 32.12746718 36.24753986
MOM & LPR | Pygss,=0.75 | 1.105891296 114.7249474 109.1196595 80.67786555
MLE & LPR | Pygss, =0.75 | 1.105116564 114.7407427 109.0744956 80.54403085

Table 2.3: The Relative Efficiency (RE)

Kernel / Normal

Of the Method Of Moment And MLE To LPR based on MRSS EVEN

r=3 m=2,k=6 m=4,k=12 | m=6,k=18 | m=8,k=24
MOM & LPR | Pypss, =0.25 | 1.121467811 1.213447261 1.764840428 1.297525781
MLE & LPR | Pypss, =0.25 | 1.124377986 1.211776704 1.770773642 1.297350721
MOM & LPR | Pygss, =0.50 | 9.008062404 8.634465465 9.953317382 7173374769
MLE & LPR | Pypss, =0.50 | 9.009959571 8.638287367 9.958276137 7.185803392
MOM & LPR | Pypss, =0.75 | 5.533058407 45.2334261 29.71497231 28.20200581
MLE & LPR | Pygss, =0.75 | 5.534016162 4528242039 29.74194806 28.18686013

r=5 m=2k=10 | m=4,k=20 | m=6,k=30 [ m=8,k=40
MOM & LPR | Pygss, =0.25 | 3.217770418 4.952221099 4.012744473 3.795039898
MLE & LPR | Pygss, =0.25 | 3225021571 4.94776637 4.016705337 3.786597522
MOM & LPR | Pygss, =0.50 | 2.979935512 2241561938 28.1837648 2735911443
MLE & LPR | Pygss, =0.50 | 2.980518944 22.41636834 28.1842429 27.38291505
MOM & LPR | Pypss, =0.75 | 9.897176145 64.53177045 70.13118147 49.04326917
MLE & LPR | Pygss, =0.75 | 9.894483270 64.54179052 70.10334207 49.09162196

r=7 m=2,k=14 m=4,k=28 m=6, k=42 m =8, k=156
MOM & LPR | Pygss, =0.25 | 7.653310002 10.89775215 9.644330466 8.469671982
MLE & LPR | Pygss, =0.25 | 7.665166066 10.89591333 9.640288035 8.519949004
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MOM & LPR | Pypss, =0.50 | 4.383895869 | 43.43432917 | 34.10624707 | 57.80866613
MLE & LPR | Pypss, =0.50 | 4.379929010 | 43.36149957 | 34.12770176 | 57.71607135
MOM & LPR | Pygss, =0.75 | 1.733270932 133.91933 112.9850412 106.2509198
MLE & LPR | Pygss, =0.75 | 1.734050677 133.9057005 113.0363767 106.5025735
Kernel / Epanechikov

r=3 m=2,k=6 m=4,k=12 m=6,k=18 m=8§, k=24
MOM & LPR | Pypgss, =0.25 | 1.170616528 1.100857921 1505264215 1386770018
MLE & LPR | Pygss, =025 | 1.173654243 1099342366 1.510324759 1.386582918
MOM & LPR | Pypss, =0.50 | 8.863753821 10.54768947 10.07144394 | 7.162634295
MLE & LPR | Pygss, =0.50 | 8.865620595 10.55235823 10.07646155 7.175044309
MOM & LPR | Pypss, =0.75 | 5374192759 | 34.28867356 | 29.35597232 | 22.22237951
MLE & LPR | Pygss, =0.75 | 5375123014 | 34.32581311 2938262217 | 2221044514

r=5 m=2,k=10 | m=4,k=20 | m=6,k=30 | m=8k=40
MOM & LPR | Pygss, =0.25 | 3.560603837 4.48282386 4.738023875 | 3.865256086
MLE & LPR | Pypss, =0.25 | 3.568627556 | 4.478791373 | 4.742700642 | 3.856657508
MOM & LPR | Pygss, =0.50 | 1.912071150 | 23.45475428 | 29.29782511 28.34515203
MLE & LPR | Pygss, =0.50 | 1.912445509 | 23.45553796 | 29.29832211 28.36981044
MOM & LPR | Pypss, =0.75 | 1.354878769 | 61.82682567 | 83.52995952 | 55.25257732
MLE & LPR | Pypss, =0.75 | 1.354510127 61.83642573 83.49680131 55.30705199

r=7 m=2,k=14 m=4,k=28 m=6,k=42 m=8§, k=56
MOM & LPR | Pypss, =0.25 | 7.572425265 | 7.376059306 11.25482628 7.950999739
MLE & LPR | Pypss, =0.25 | 7.584156027 7374814719 11.2501088 7.998197858
MOM & LPR | Pypss, =0.50 | 3.679574828 | 46.75234031 | 45.20458505 | 38.96374121
MLE & LPR | Pypss, =0.50 | 3.676245288 | 46.67394715 452330212 38.9013312
MOM & LPR | Pygss, =0.75 | 1.494407568 117.0210791 109.2393765 105.1210118
MLE & LPR | Pygss, =0.75 | 1495079855 117.0091694 109.2890101 105.3699893

The next five steps are a description and explanation of relative efficiency RE tables :

1- LPR was more efficient than the method of moment and maximum likelihood at the same set size and cycles for estimating
CDF.

2- In different kernels, LPR remains more efficient.

3- By increasing the number of cycles, which is r, the efficiency of LPR will increase.

4- Evidently, using LPR significantly improves the behavior of the method of moment and MLE. It is apparent that all the
proposed procedures based on LPR can be the best choice.

5- The relative efficiency in the case of MRSS odd, even has a higher efficiency result with the LPR method compared to the
RSS.

5.2 CONCLUSION

This article is concerned with estimating the cumulative distribution function CDF based on the local polynomial regression
LPR depending on RSS and MRSS. A new CDF estimator depends on LPR is derived. The resulting proposed estimator is used
to introduce three ways of estimating CDF (the method of moments, the maximum likelihood method, and LPR), based on RSS
and MRSS. The method of moments and the maximum likelihood method based on RSS were suggested by Al-Saleh and Ahmad
(2019). In this study we get the same result of CDF estimate for the method of moments and the maximum likelihood method,
CDF estimator based on LPR can have some advantages over their competitors for fixed or non-fixed samples; on the empirical
side, we use kernel (normal, epanechikov) with bandwidth (0.1, 0.2, ..., 0.9) and three levels of degree of kernel, We have
concluded that kernel epanechikov is a little better than normal, with bandwidth 0.8 giving the best result. Compared to the
others, bandwidth and degree 2 are also like that. We have concluded that CDF of LPR based on MRSS is better than CDF of
LPR based on RSS because the data in MRSS is stable and is less prone to ranking errors for fixed or non-fixed samples.
Depending on the relative efficiency, we get that there is no big difference between both kernels, nonetheless we conclude that
relative efficiency depends on whether the MRSS is better than the RSS and has more efficiency. We recommend using LPR
based on estimators.
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Fig. 1: The mean square error and bias of CDF based on RSS with. P = 0.25.
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Fig. 2: The mean square error and bias of CDF based on RSS with.m = 5,r = 3,k = 15
P=0.25 P=0.5 P=0.75
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Fig. 3: The mean square error and bias of CDF based on MRSS ODD with.m =5,P =0.5.
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Fig. 4: The mean square error and bias of CDF based on MRSS ODD with. m = 9,r = 5,k =45
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