Hilla University College Journal For Medical Science

Volume 3 | Issue 2 Article 6

7-4-2025

Effect of Exclusive Bottle Feeding on Infant's Serum Calcium and Serum Vitamin D3 and its Comparison with other types of Feeding in Diyala Governorate, Iraq

Hailah Othman Habeeb

Department of Pediatrics, College of Medicine, University of Diyala, Diyala, Iraq, Hailah@uodiyala.edu.iq

Saif Hakeem Tofig

Department of Pediatrics, College of Medicine, University of Diyala, Diyala, Iraq, saif@uodiyala.edu.iq

Haider Jwad Dawod

Iraqi Ministry of Health, Diyala Health Department, Al-Batool Teaching Hospital, Haider.jawad82@yahoo.com

Follow this and additional works at: https://hucmsj.hilla-unc.edu.iq/journal

How to Cite This Article

Habeeb, Hailah Othman; Tofiq, Saif Hakeem; and Dawod, Haider Jwad (2025) "Effect of Exclusive Bottle Feeding on Infant's Serum Calcium and Serum Vitamin D3 and its Comparison with other types of Feeding in Diyala Governorate, Iraq," *Hilla University College Journal For Medical Science*: Vol. 3: Iss. 2, Article 6.

DOI: https://doi.org/10.62445/2958-4515.1059

This Original Study is brought to you for free and open access by Hilla University College Journal For Medical Science. It has been accepted for inclusion in Hilla University College Journal For Medical Science by an authorized editor of Hilla University College Journal For Medical Science.

ORIGINAL STUDY

Hilla Vniv Coll J Med Sci

Effect of Exclusive Bottle Feeding on Infant's Serum Calcium and Serum Vitamin D3 and its Comparison with other types of Feeding in Diyala Governorate, Iraq

Hailah Othman Habeeb ^{a,*}, Saif Hakeem Tofiq ^a, Haider Jwad Dawod ^b

Abstract

Background: The mixed feeding means that the infant gets bottle milk and breast milk. Bottle feeding serves as incomplete nutritional source for the first six months of infant's life because bottle feeding not contains all essential nutrients that necessary for the physiological growth and development of infants.

Objectives: The aim of this research is to determine impact of breastfeeding feeding other than formula feeding,, or a mixed feeding, on serum calcium and blood vitamin D3 levels in infants.

Materials and Methods: Fifty patients were enrolled in this study. We collected the sample from the infants and children (first 2 years of life) that attended Al-Batool Teaching Hospital in the period from October 2022 to April 2023.

Results: Fifty patients were enrolled in this study. They were 27 males and 23 females with age ranged from less than one month to two years. There was significant association between type of feeding and risk of hypocalcaemia and decrease level of vitamin D3 in blood. The infants with exclusive bottle feeding more associated with hypocalcaemia and decrease level of vitamin D3 in blood than other type of feeding.

Conclusion: We concluded that there is a strong association between exclusive bottle feeding and risk of decrease serum calcium and level of vitamin D3. The infants with exclusive artificial feeding are more prone to hypocalcaemia and vit D3 deficiency.

Keywords: Calcium, Serum vitamin D3, Type of feeding

1. Introduction

The infants receive only formula milk and no other foods when exclusively bottle fed. Bottle feeding supplies a portion of an infant's nutrients for the first six months of life. The use of formula feed fails to give the essential vitamins and minerals that are required for an infant's physiological growth and development [1, 2]. Because they contain necessary proteins and fatty acids, nutrients that are essential for children's development of cognition and infant brain growth [1, 2]. Compared to bottle milks, breast milk provides

better nutritional and health benefits [3]. By breast-feeding exclusively for the first four months of life and longer, it is possible to reduce the risk of disorders such atopic dermatitis, asthma, and maybe allergic rhinitis in children up to two years old [4]. Infants are protected from diarrhea and acute respiratory illnesses during their first six months of life by exclusively or primarily breastfeeding [5]. The purpose of this study was to ascertain the effects of exclusive bottle feeding on infants' serum calcium and serum vitamin D3, compare it to other forms of feeding

Received 9 March 2025; revised 19 March 2025; accepted 13 April 2025. Available online 4 July 2025

E-mail addresses: Hailah@uodiyala.edu.iq (H. O. Habeeb), saif@uodiyala.edu.iq (S. Hakeem Tofiq), Haider.jawad82@yahoo.com (H. Jwad Dawod).

^a Department of Pediatrics, College of Medicine, University of Diyala, Diyala, Iraq

^b Iraqi Ministry of Health, Diyala Health Department, Al-Batool Teaching Hospital

Corresponding author.

such as exclusively breastfeeding, formula feeding, or mixed feeding.

2. Materials and methods

2.1. Study design and patients

This study was done in Iraq's Diyala Governorate. In this study, fifty healthy, full-term infants were included. All infants had regularly attend Al-Battol Teaching Hospital for medical care and follow-up. Mothers of infants were questioned about if they only breastfed, only bottle-fed, or mixed-fed their infants during their initial 24 months of life. Infants who are exclusively breastfed only receive breast milk, infants who are solely bottle-fed only receive bottle milk, not breast milk, and infants who are mixed-fed receive breast milk, bottle milk and added food. Data collection techniques between October 2022 and April 2023, healthy infants were registered. At the time of child's visit to the hospital, the baby's serum calcium and vitamin D3 values were measured. The serum vitamin D3 levels of infants were evaluated using a 25 OH Quantitative Vitamin D Rapid Test utilizes the principle of Immunochromatography.

2.2. Statistical analysis

For collection and statistical analysis, the Statistical Analysis System- SAS (2018) program was used to detect the effect of difference factors in study parameters. T-teat and Least significant difference –LSD test (Analysis of Variation-ANOVA) was used to significant compare between means. Chi-square test was used to significant compare between percentage (0.05 and 0.01 probability) in this study.

2.3. Ethical approval

The study was conducted in accordance with the ethical principles that have their origin in the Declaration of Helsinki. It was carried out with patients verbal and analytical approval before sample was taken. The study protocol and the subject information and consent form were reviewed and approved by a local ethics committee(College of Medicine/University of Diyala ethical committee) according to the document number 876 (including the number and the date in 1/9/2022) to get this approval.

3. Results

Fifty patients were enrolled in this study. They were 27 male and 23 females with age ranged from less than one month to two years. There was significant association between type of feeding and risk of

hypocalcaemia and decrease level of vitamin D3 in blood. The first group consist of (19) patients with breast feeding of both gender, 11 were males and 8 were females. The second group consist of (23) patients with bottle feeding of both gender, 11 were males and 12 were females. The third group consist of (8) patients with mixed feeding of both gender, 5 were males and 3 were females (Table 1).

According to age and gender distribution, the first group consist of (19) patients with breast feeding of both gender, 11 were males and 8 were females. The second group consist of (23) patients with bottle feeding of both gender, 11 were males and 12 were females. The third group consist of (8) patients with mixed feeding of both gender, 5 were males and 3 were females Tables 2 and 3.

The (S. Ca) showed increase level in breast feeding group with mean (9.21 mg/dl) as compared to bottle feeding with mean (8.93 mg/dl) and mixed feeding with mean(8.97 mg/dl),On the other hand, bottle feeding group shows a decreased level of (S. Ca) as compared to breast feeding and mixed feeding as Fig. 1.

Serum vitamin D3 (S. vit D3): As shows in Table 4, level of (S. vit D3) in breast feeding group with mean(37.77 ng/ml) was increase as compared with bottle feeding with mean (27.87 ng/ml) and mixed feeding groups mean (23.95 ng/ml). In contrast, the mixed feeding group has a lower level of (S. vit D3) than the breast and bottle feeding groups, as seen in (Table 5).

4. Discussion

The current study examined the effects of various infant feeding practices, including exclusive formula feeding (EFF), mixed feeding, and exclusive breast feeding (EBF), on infants' serum calcium and vitamin D amounts through their initial two years in the Diyala Governorate. Participation rates for EBF, mixed feeding, and EFF were 38%, 16%, and 46%, respectively. These rates roughly correspond to research done in Bagdad. The rates of EBF, mixed feeding, and EFF had been found to be 48%, 41%, and 11%, respectively [6].

The serum calcium showed increase level in breast feeding group compared to bottle feeding and mixed feeding were also reported by Martin and Dror DK [7, 8]. On the other hand, bottle feeding group shows a decreased level of serum calcium as compared to breast feeding and mixed feeding were also reported by Challa *et al.* [9]. However, some other researchers said the study's findings showed greater calcium absorption from breast milk than the mixed-fed infants [10].

Table 1. Age and gender distribution of the samples.

Age in months	Male No.	%	Female No.	%	Total No.	%	P-value
<1 months	4	8%	5	10%	9	18%	0.902
1-6 months	10	20%	4	8%	14	28%	0.194
7-12 months	6	12%	5	10%	11	22%	0.897
1–2 years	7	14%	9	18%	16	32%	0.673
Total	27	54%	23	46%	50	100%	0.349
P-value	0.064	7	0.155		0.03	578	_

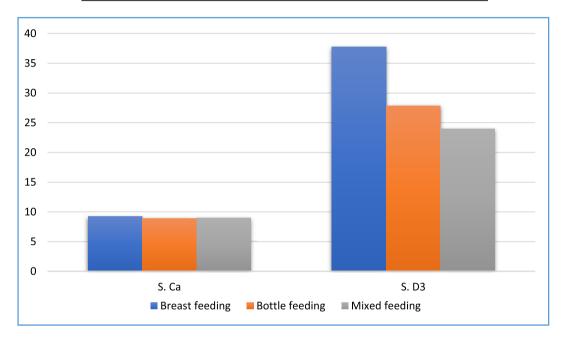


Fig. 1. Bar – charts of the studied mean's values of S. calcium (mg/dl) and S.vit.D3 (ng/ml) in different samples (Breast feeding, Bottle feeding and Mixed feeding).

Table 2. Descriptive statistics (Mean \pm SD) of the studied (S. calcium) in different samples (breast feeding, bottle feeding, and mixed feeding).

Groups	S. Ca (mg/dl)	LSD value (P-value)
Breast feeding		
No.	19	
Mean	9.21	
Std. Deviation	1.033	
Bottle feeding		1.872
No.	23	
Mean	8.93	(0.259)
Std. Deviation	0.978	
Mixed feeding		
No.	8	
Mean	8.97	
Std. Deviation	0.749	

(S. Ca): Serum calcium

Several studies were compatible with this study that children's seizures are typically caused by hypocalcaemia. Compared to exclusively breastfed newborns, artificially fed infants are more likely to develop hypocalcaemia. Lack of breastfeeding and improper artificial feeding are two prominent causes of hypocalcaemia in infants may be to impropri-

ated milk preparation. Recent reports in the UK indicate an increased incidence of hypocalcaemia and vitamin D insufficiency in children and newborns without radiological signs of rickets. Recent data show that hypocalcaemia and vitamin D deficiency are becoming more common in kids and babies who don't have radiological symptoms of rickets [11]. If the serum 25OH vitamin D3 level was less than 10 ng/mL, a vitamin D deficit was determined. The serum vitamin D3 level in the breast-feeding group was higher than that in the bottle-feeding and mixed feeding groups [12]. According to Chandy DD et al., high-dose vitamin D was effective in raising 25(OH)D levels in breastfeeding moms to their highest levels without any evidence of harm. These other researchers disagree with this study. During the first four months, the breast milk's vitamin D3 and calcium levels declined independently of the mother's vitamin D intake and grade. The mother's vitamin D condition improved, while the baby's calcium level remained normal [13]. The exclusively bottle-fed group exhibits a lower level of (S. vitamin D3), which is contrary to some other researchers

Table 3. Descriptive statistics (Mean \pm SD) with std. error of the studied (S. calcium) in different sample	?S
(breast feeding, bottle feeding and mixed feeding) distributed in gender.	

Groups	Gender	No.	Mean (mg/dl)	Stander Deviation	T-test (P-value)
Breast feeding					
S. Ca	Male	11	8.81	1.089	1.055
	Female	8	9.75	0.690	(0.261)
Bottle feeding					
S. Ca	Male	11	9	1.136	0.892
	Female	12	8.85	0.854	(0.477)
Mixed feeding					
S Ca	Male	5	9.28	0.697	0.837
	Female	3	8.46	0.611	(0.307)

S. calcium level in breast feeding infant (male 8.81 mg/dl, female 9.75 mg/dl) highly significant.

Table 4. Descriptive statistics (Mean \pm SD) of the studied (S. Vitamin D3) in different samples (breast feeding, bottle feeding and mixed feeding).

Groups	S. D3 (ng/ml)	LSD value (P-value)
Breast feeding		
No.	19	
Mean	37.77	
Std. Deviation	15.04	
Bottle feeding		
No.	23	
Mean	27.87	20.037
Std. Deviation	13.14	(0.261)
Mixed feeding		
No.	8	
Mean	23.95	
Std. Deviation	12.87	

Table 5. Descriptive statistics (Mean \pm SD) with std. error of the studied (S. Vitamin D3) in different samples (breast feeding, bottle feeding and mixed feeding) distributed in Gender.

Groups	Gender	No.	Mean vit. D3 ng/ml	Stander Deviation vit.D3	T-test (P-value)
Breast feeding					
S. Vit D3	Male	11	31.6	12.87	17.32
	Female	8	46.27	14.25	(0.081)
Bottle feeding					
S. Vit D3	Male	11	33.49	16.15	14.52
	Female	12	22.72	6.91	(0.266)
Mixed feeding					
S. Vit D3	Male	5	28.98	13.30	16.02
	Female	3	15.59	7.64	(0.194)

S. Vitamin D3 in breast feeding infant with mean (male 31.6 ng/ml, female 46.27 ng/ml) highly significant.

who concur with this study, like Choi *et al.* [14]. If a newborn is formula-fed, it cannot be assumed that the infant is receiving an adequate amount of vitamin D. The amount of formula you consume each day should be taken into account [14]. According to some other researchers who disagree with this study, including Hollis, Wagner *et al.* [16]. Healthy lactating women's milk typically isn't considered sufficient to prevent vitamin D deficiency in infants who are exclusively breastfed if sunlight exposure is insufficient [15]. Recent studies have also demonstrated that healthy lactating mothers who take vitamin D supplements of 4000 IU per day and 6400 IU per day can

increase the vitamin D concentration in milk to a level that provides an adequate amount of vitamin D for the breastfed infant, even though neither the mother nor the child received enough sunlight exposure [15, 16].

However, other researchers, such as Wagner and Greer, were incompatible with this study, since the majority of studies on the vitamin D concentration in human milk were published in North America and Europe more than two decades ago. The biological activity values of the vitamin D metabolite (25(OH)D) and the vitamin D in human milk were used to communicate the vitamin D content in the

milk as anti-rachitic activity (ARA) [10, 15]. In average, the mean ARA of human milk in healthy nursing mothers ranges from 10 to 80 IU/L with or without supplementing the existing recommended vitamin D intake. If human milk is the only source of vitamin D, these data point to poor vitamin D consumption in breast-fed infants compared to bottle-fed infants with the recommended intake of 400 IU/d of vitamin D [17, 18]. The main limitations for the study was the small size of the sample, and that we collected the data from only Al-Batool Teaching Hospital, Diyala Governorate, Iraq.

5. Conclusion

According to study results it is concluded there is a strong association between exclusive bottle feeding and risk of decrease serum calcium and level of vitamin D3. The infants with exclusive artificial feeding are more prone to hypocalcaemia & vit D3 deficiency.

Recommendation

We recommend to encouraging the mothers on exclusive breast feeding and avoiding the exclusive bottle feeding.

Ethical consideration

This study was done according to ethical standards for research involving the participants. All participants provided full information consent prior to participation .The Written informed consent was obtained from each participant that involved in research.

Funding

This research was done independently, no any influence from the funding agency. No funds from institute.

Authors' contributions

Hailah Othman Habeeb: Selection of the title, writing the paper, method arrangement, data collection and analysis. Dr. Saif Hakeem Tofiq: Data collection, review and editing of the paper, statistical analysis and review of the result. Haider Jwad Dawod: contribution to statistical analysis and the methodology design, and final review of the paper.

Conflict of interest

Nill.

References

- McHugh K, Martinez RM, Alper J. Proceedings of a workshop. In: Advancing maternal health equity and reducing maternal morbidity and mortality: Proceedings of a workshop. US: National Academies Press; 2021.
- Ezeofor IO, Garcia AL, Ibeziako SN, Mutoro AN, Wright CM. Health staff understanding, application, and interpretation of growth charts in Nigeria. Matern Child Nutr. 2017 Oct;13(4):e12402. doi: 10.1111/mcn.12402. Epub 2016 Dec 27. PMID: 28025865; PMCID: PMC6865963.
- 3. Kovler ML, Hackam DJ. Generating an artificial intestine for the treatment of short bowel syndrome. Gastroenterol Clin North Am [Internet]. 2019;48(4):585–605. Available from: http://dx.doi.org/10.1016/j.gtc.2019.08.011.
- 4. Güngör D, Nadaud P, Dreibelbis C, LaPergola C, Terry N, Wong YP, et al. Shorter Versus Longer Durations of Any Human Milk Feeding and Food Allergies, Allergic Rhinitis, Atopic Dermatitis, and Asthma: A Systematic Review [Internet]. Alexandria (VA): USDA Nutrition Evidence Systematic Review; 2019 Apr. PMID: 35593772.
- Raheem RA, Binns CW, Chih HJ. Protective effects of breast-feeding against acute respiratory tract infections and diarrhoea: Findings of a cohort study. J Paediatr Child Health [Internet]. 2017;53(3):271–6. Available from: http://dx.doi.org/10.1111/jpc.13480.
- Alkashaf KH, Mohammed SI. Impact of Clinical Pharmacist Intervention on Chemotherapy Knowledge, Attitude, and Practice among Breast Cancer Women. J Fac Med Baghdad [Internet]. 2024 Apr. 1 [cited 2025 Mar. 19];66(1):103–9. Available from: https://igjmc.uobaghdad.edu.iq/index.php/19JFacMedBaghdad36/article/view/2221.
- Martin CR, Ling P-R, Blackburn GL. Review of infant feeding: Key features of breast milk and infant formula. Nutrients [Internet]. 2016;8(5):279. Available from: http://dx.doi.org/10.3390/nu8050279.
- Dror DK, Allen LH. Overview of nutrients in human milk. Adv Nutr [Internet]. 2018;9 (suppl_1):278S-294S. Available from: http://dx.doi.org/10.1093/advances/ nmy022.
- Challa A, Ntourntoufi A, Cholevas V, Bitsori M, Galanakis E, Andronikou S. Breastfeeding and vitamin D status in Greece during the first 6 months of life. Eur J Pediatr. 2005 Dec;164(12):724–9. doi: 10.1007/s00431-005-1757-1. Epub 2005 Sep 6. PMID: 16143866.
- Vandenplas Y, Zakharova I, Dmitrieva Y. Oligosaccharides in infant formula: More evidence to validate the role of prebiotics. Br J Nutr. 2015 May 14;113(9):1339–44. doi: 10.1017/ S0007114515000823. PMID: 25989994.
- Cukalovic M, Krdzic-Milovanovic J, Odalovic A, Jaksic D. Incidence of rickets clinical symptoms and relation between clinical and laboratory findings in infants. Prax Medica [Internet]. 2014;43(3):87–90. Available from: http://dx.doi.org/10. 5937/pramed1403087c.
- Martin VJ, Shreffler WG, Yuan Q. Presumed Allergic Proctocolitis Resolves with Probiotic Monotherapy: A Report of 4 Cases. Am J Case Rep. 2016 Aug 29;17:621–4. doi: 10.12659/ ajcr.898490. PMID: 27568925; PMCID: PMC5004981.
- Chandy DD, Kare J, Singh SN, Agarwal A, Das V, Singh U, et al. Effect of vitamin D supplementation, directly or via breast milk for term infants, on serum 25 hydroxyvitamin D and related biochemistry, and propensity to infection: a randomized placebo-controlled trial. Br J Nutr [Internet]. 2016;116(1):52–8. Available from: http://dx.doi.org/10.1017/S0007114516001756.
- Choi YJ, Kim MK, Jeong SJ. Vitamin D deficiency in infants aged 1 to 6 months. Korean J Pediatr [Internet]. 2013;56(5):205. Available from: http://dx.doi.org/10.3345/kjp.2013.56.4.205.
- 15. Hans KB, Jana T. Micronutrients in the life cycle: Requirements and sufficient supply. NFS J. 2018;11:1–11.
- 16. Wagner CL, Hulsey TC, Ebeling M, Shary JR, Asghari G, Howard CR, et al. Safety aspects of a randomized clinical trial of maternal and infant vitamin D supplementation by feeding type through 7 months postpartum. Breastfeed Med. 2020

- Dec;15(12):765–775. doi: 10.1089/bfm.2020.0056. Epub 2020 Sep 11. PMID: 32915638; PMCID: PMC7757584.
- 17. Bacchetta J, Edouard T, Laverny G, Bernardor J, Bertholet-Thomas A, Castanet M, *et al.* Vitamin D and calcium intakes in general pediatric populations: A french expert consensus paper. Arch Pediatr [Internet]. 2022;29(4):312–25. Available from: http://dx.doi.org/10.1016/j.arcped.2022.02.008.
- 18. Hatfield DP, Sweeney KP, Lau J, Lichtenstein AH.
 Critical assessment of high-circulation print newspaper coverage of the institute of medicine report dietary reference intakes for calcium and vitamin D. Public Health Nutr [Internet]. 2014;17(8):1868–76.
 Available from: http://dx.doi.org/10.1017/S1368980013002073.