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Abstract 

The stochastic finite element technique is one of the best tools for computational stochastic 

mechanics (SFEM). Static and dynamic stochastic mechanical issues can be addressed 

using the traditional deterministic finite element (FE) approach., geometric, and/or loading 

aspects using SFEM, a stochastic framework extension. The substantial care that SFEM 

has got over the past 10 years is partly due to the dramatic growth in computer power that 

has enabled efficient treatment of large-scale challenges possible. This study aims to 

present a the reviews of historical and recent improvements  in the SFEM area, along with 

defining future directions and certain open concerns that the computational mechanics 

community will need to solve in the future. Using random finite elements (RFEM), by 

combining the finite element approach with spatially variable random field ground models, 

a reliability-based geotechnical methodology that considers weakest path failure reasons as 

well as spatial variability is created. The main benefit of RFEM is the capacity to 

accurately represent spatial heterogeneity in ground parameters, as well as the advantage to 

follow the weakest  in  the soil and mass, and allow site information to be used throughout 

the design process. 
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1-Introduction 

Geotechnical engineering is one of the most important fields of civil engineering in general. It 

is the primary science of soil studies. Where the interrelationship between soil and 

foundations is studied. Soil properties are studied and classified, and important laboratory 

experiments that measure ideal criteria between soil and foundations are determined. The 

constant pursuit of researchers in order to determine the performance of structures and 

provide all the data necessary to make designs that simulate reality makes studies and 

research and a continuous escalation in order to reach the best. There are many studies and 

research on the reliability of evaluating the methods of geotechnical design. In order to study 

the problems facing designers and engineers and to be able to reach the best analysis between 

design and RBD tools. 

The design based on reliability is the most important and most accurate engineering approach 

today. Where the possibilities expected to occur during the design or the tangible physical 

condition of the materials for which it is designed are taken into account. It is also more 

compatible with the code and conforms to the required limits. Reliability studies help 

specialists and scholars to perform accurate design calculations. The reliability-based design 
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aims to study the behavior of complex materials and analyze the principles of uncertainty 

resulting from many different laboratory experiments. 

2-Literature Review 

The researchers prepared a Reliability-Based Design (RBD) diagram with the aim of 

separating the geotechnical design part from the analysis part and thus making it easier to 

perform a reliability-based design by the laboratories. In this paper, many problems that occur 

in reliability-based design have been studied. Uncertainty is one of the major problems facing 

design. With this study, researchers were able to move to a higher degree in the  geotechnical 

engineering zone. 

The study proved that the necessary statistical information must be available to study all the 

previously mentioned parts. These factors helped to obtain accurate real values, accuracy in 

the values of the equations, and the correctness of their calculations. The R language was used 

to make calculations and statistical analyzes. Which helped in accuracy and save a lot of time 

and effort. [1] 

The researchers studied the role of reliability analysis in decision-making. Whereas 

uncertainty and its clear impact on reliability were studied. Many studies have been conducted 

to find out the appropriate approach to studying the role of uncertainty. It has been approved 

to give examples of marine geotechnical design in a comprehensive way for improving the 

design and work to become familiar with everything related to the subject. What is clear is 

that there are many sources of uncertainty.  

But reducing it helps improve reliability. The analyses showed that the problems facing the 

reliability analysis are as follows: 

 field measurement software 

 Site exploration plans 

 Update site characteristics and performance estimates with new data 

 Provide guidelines for creating reliability-based design codes 

 Comparing the reliability of different structures or design alternatives 

More research has helped to highlight the benefits that accrue from the use of reliability 

methods. [2] 

Geotechnical engineering is affected by two important factors, risk, and uncertainty. 

Reliability-based optimization is one of the design methods, taking into account the above 

two things in order to obtain an economical design at a smaller  cost. This was evident 

through this study, which seeks to use Reliability-based optimization in order to reliably 

control the cost. This integration was done using MATLAB, fmincon in order to get the 

requirements of the geotechnical design and the results proved to be accurate. The results also 

showed that the success of the method of combining reliability assessment and cost 

minimization. [3] 

As mentioned earlier in the geotechnical design, the principle of uncertainty and risks must be 

taken into account. Therefore, it is necessary to resort to different methods for a 

comprehensive study of the matter. One of these techniques is the Finite Element Model 
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(FEM) in order to study the variable factors and their relationship to reliability. The 

combination of PLAXIS 2D and Probabilistic tool-kit (PTK) was also studied. 

 All this for the purpose of analysing reliability and indicators indicating it in an easy way and 

using different technical programs to study the matter from different sides. The results proved 

that these studies and techniques helped to design the geotechnical structures well. These 

techniques help to combine more than one failure mechanism into the same model. The use of 

PTK helped to collect all the reliability methods with different possibilities. This technique is 

simple and smooth for everyone who deals with it. [4] 

The problems and obstacles facing the geological design are still a pure study and analysis 

that researchers seek to solve and make them accurately reflect the reality. Structure’s 

reliability analysis is the password or the black box that contains all the details with which the 

improvement takes place. A two-pronged study was conducted. The first axis is a study of the 

challenges facing the improvement of the geotechnical designs of the old traditional 

structures. Where uncertainty has been carefully studied and its impact on geotechnical 

designs, with a study of its statistics. The second axis is a study of the challenges facing 

structural designs in geotechnical engineering in general. Where it was sought to develop the 

design by re-evaluating it for reliability through additional notes that are added upon review. 

All for the purpose of obtaining more flexible designs while developing the concept of 

performance design.  

This study proved that with the availability of a large database, important geological 

information can be extracted to solve many problems, and this has been tested. A step has also 

been taken to switch from static reliability analysis to dynamic reliability analysis based on 

the amount of data available. Further studies of the PBD are recommended for the importance 

of facilities management with the importance of knowledge of societal requirements and 

continuous evaluation of the performance of structures with great care for good design. [5] 

 

 

Figure 1. Brief of the contributions for the uncertainty sources to geotechnical structures [5] 
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3-Methods 

3.1-The finite element method 

The finite element technique makes it simple to simulate issues with spatially varying 

attributes, which is one of its many advantages. For instance, a particular soil deposit may be 

composed of layers with various levels of permeability, in which rows of elements may be 

given different features. By analysing issues where each factor  in the mesh has a special  

feature  depending on some underlying statistical distribution, the RFEM pushes this capacity 

to its maximum limit. Smith and Griffiths provide a comprehensive description of the finite 

element method used in the RFEM[6]. 

To correctly portray the ground, random fields are employed, allowing the properties of the 

ground to fluctuate spatially as they do in nature. The normal distribution is used in the easiest 

random field models. This is due to how straightforward it is to simulate and use the multi-

variate  normal distribution. A normal random field has a mean µ , a variance σ
2
 , a correlation 

structure, and a variance of 2. When a trend has been discovered at the location being 

modelled, it is appropriate to allow the mean to fluctuate spatially ,μ (x). 

 ,the variance could also change spatially, σ
2
(x), albeit this is rarely used because it would 

take a very thorough site examination to even fairly estimate the variance trend. 

Typically, this variance is regarded as stationary, or steady across time. The correlation 

formation of random field models is the most challenging to comprehend and measure. Points 

near to one another will have similar traits, whereas points far apart could have rather 

different qualities. This is the purpose of a correlation structure: to give the random field some 

"persistence." Since real soils often also have a tendency to be in similar features at 

neighbouring locations and less comparable properties farther away, this characteristic of 

random fields is what makes it a actual  soil form . The most difficult  model  of random field 

models to be understood  and measured is their correlation formation . The purpose of a 

correlation formation  is to give the random field some "persistence"; points that are close to 

one another will have similar features, whereas those that are far apart may have quite distinct 

characteristics. This feature of random criteria  is what makes it a realistic soil mode because 

real soils typically have similar properties at local areas and less comparable qualities at 

increasing separations. Even with a big data set, it is unfortunately exceedingly challenging to 

predict the correlation structure of a soil. Because of this, correlation structures utilised in 

practise are frequently relatively straightforward and nearly never require more than one 

parameter. The Markov correlation function is one of the most basic and popular correlation 

structures, 

ρ(τ) =  
  | |

  (1) 

This displays the correlation coefficient for two sites that are geographically apart. The only 

parameter is the length of correlation which often  directs  to  the scale of volatility. Beyond 

these two locations in the field, it is about the distance between them, and they are mostly 

uncorrelated (which distributes normally , also means large independence). By collecting data 

at a sequence of n evenly spaced locations along a line and fitting Eq. 1 to the observed 

correlation function, it is possible to effectively determine the (radial) correlation length. 
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 ̂  
 

          ̂ 
∑        ̂      

   
        ̂ (2) 

Once the theoretical nature of the random field has been established, the subsequent stage in 

RFEM is the modelling of versions of the arbitrary field . The Local Average Sub (LAS) 

approach is used to construct constructions of the local averages of the random field. [7], with 

each local average being obtained across an area that is the identical  size as the finite 

elements it is subsequently mapped to. The authors have chosen to use the finite element 

approach in combination with their method despite the fact that there are several possible 

simulation methodologies accessible (see, for example, Fenton, 1994). Combining finite 

element analysis with local averages of ground characteristics has a number of important 

benefits. 

1. Bounded factors are essentially continuous approximations of the material they show, 

with different assumptions being made to simplify the internal strain field. As an 

illustration, if loads or displacements are applied at the nodes and the material properties 

inside the element remain consistent, the form functions of a 4-node quadrilateral 

element will be correct. The arbitrary field's average value over the element domain 

should be provided as a constant attribute. 

2. According to statistical theory, the statistics of local averages vary as the size of the 

averaging domain does (mean and variance). Adopting a local average random field is 

similarly compatible with the finite element technique since both the FE and LAS 

models' representations progress smoothly toward the point-wise changing random field 

as the element (averaging domain) grows smaller. 

3. In any case, the bulk of ground attributes are measured using regional average. For 

particular, the flow through a particular volume of permeable material is usually always 

measured in order to assess hydraulic conductivity. This surely represents an average of 

some kind. At the atomic level, hydraulic conductivity is not measurable. These physical 

measures show a decrease in variation with sample volume, just like the local averages 

of a random field. As a result, there is agreement between regional averages and actual 

measurements of ground characteristics. The fundamental concept of Local Average 

Subdivision is depicted in Figure 2 (for more details). [8]. The method randomly creates 

a local average for the all  field before going on to the next iteration. Z01 with the must 

of statistics for an average of that dimension. Then, the field is spirited into equal pieces, 

and the local averages and Z11 are repeated in a way that guarantees they have the 

proper average statistics, are correctly connected to one another, and average to the 

value 

 

 

 

 

 



 54 - 02ص:  (،0202) 1 العدد، 6 المجلد  •مجلة دجلة  

ISSN: 2222-6583 

Z0
1
 Repeating the process will cause the field's size to steadily shrink until the required 

resolution is attained. 

 

 

Figure 2. Top-down LAS construction of a local average random process [8] 

 

To assess probabilities and statistics of the responding for Monte Carlo representation  

generally requires creating a realisation of the spatially varying ground parameters at random, 

using finite elements to analyse the geotechnical system's response, and then repeatedly doing 

so. How many realisations must be made before probability may be estimated , such the 

probability of failure pf , to an acceptable level of precision, is a crucial concern that emerges. 

By realising that each realisation is a Bernoulli random variable that either succeeds or fails, 

this question may be answered quite simply. The likelihood estimate's standard deviation, 

σf   ≅ √
    

 
  (3) 

Generally speaking, if the confidence max level allowable error on pf is 

e = 1 - ∝  (4) 

The number which is required for  realizations to reach the accurate value is ,   

n = pfqf(
 
 ∝

 
 

⁄
 ) (5) 

3.2-Ground-water modelling 

 Laplace's equation is used to model continuous groundwater flow in this instance,  

∇ [K∇υ] = 0 (6) 

The use of the Method of Fragments [9] is growing. Conventional approaches can account for 

anisotropic characteristics and stratification, but they are deterministic in that they assume 

uniform (everywhere the same) soil permeability. 

A more sensible way to modelling clay is to assume that the permeability of the clay under a 

pattern, as shown in Figure 3, is random—that is, that the soil is a domain that is "random," 

with an actually imply, standard deviation, and some sort of correlation formation   Although 

higher joint moments are theoretically feasible, only the first two joint moments (average and 

co structure) are routinely computed efficiently. [10] 
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Figure 3: Problem with the boundary value of confined seepage. The hashed boundaries and 

two vertical walls are taken to be impenetrable [10] 

Analytical solutions to the stochastic flow problem shown in Figure 3 are not even remotely 

feasible (or would be useless due to the necessary simplifying assumption). The RFEM 

outlined above makes it simple to determine the probabilities connected to flow, uplift, and 

exit gradients. The simulated field of permeabilities is mapped using the finite element mesh., 

and the boundary restrictions for the potential and stream functions are specified. In a finite 

element setting, the nodal potential values across the mesh are determined completing a series 

of linear "equilibrium" formulas  derived from the governing elliptic equation for steady flow 

(Laplace). 

4-Stochastic Flow Models 

4.1-Uncertainty Model 

4.1.1-Gaussian stochastic process and field simulation techniques 

 Because it is straightforward and there are few relevant experimental data, the gaussian 

considerations is widely used in engineering systems even if the huge of the unknown 

variables have non-Gaussian characteristics (– for example, substances, dimensional 

properties, wind, and seismic stresses). The central boundary theorem naturally causes 

gaussian random fields to appear in applications because when information on the second-

order moments is all that is provided, they represent the model of maximum entropy [11].  

The two most frequently used techniques for simulating  stochastic treatment  and domains  

are the spectral representation approach and the  (KL) expansion [12]. A thorough approach to 

developing techniques for simulating Gaussian random fields, that includes simulating of the  

spectral  and also  K-L expansion, were  proposed [13]. 

4.1.2-Method of spectral representation  

Trigonometric functions with nonlinear phase angles and amplitudes are used to depict the 

stochastic field spectrally in the general case. Since it produces sample functions with ergodic 

mean values and autocorrelations, the version with just random phase angles is used in the 

majority of cases [14]. As a result, the amplitudes are deterministic and totally reliant on the 

spectra of the stochastic field: The amplitudes are then predictable and solely depend on the 

stochastic field's predetermined power spectrum.: 

  ̂   ∑                
       

     (7) 
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Where : 

An √2Sff    ∆  , ∆k = nk  and n = 0,1,2,……., N-1 

A0 = 0 or Sff ( k = 0 ) = 0 

Ku is the active region 

∆k→ 0 as N → ∞ 

 n ∈[ 0 , 2π] 

The characteristics of each sample function provided by Eq. (7) are as follows [15]: 

1. A Gauss stochastic domain is t. asymptotically  as N → ∞ 

2. t has the same mean value and autocorrelation as the associated objectives N → ∞ 

3. In the case of  A0 = 0 or Sff(k  = 0) = 0, it can be presented that  𝐢  is periodic with 

period T0 = 2π/∆k . 

The idea of the evolutionary power spectrum works  as the foundation for the representing  

for non-stochastic area  [16]. By  Using the  Fourier transform , the computing costing  of 

creating homogeneous Gaussian model functions digitally can be significantly decreased 

(FFT). The use of spectral representation is advantageous in the approximation of non-

Gaussian domains. There are different methods that make use of the translation idea to present 

model functions of the underlying Gaussian domain [17]. Additionally, the stochastic finite 

element method has been successfully applied to real-world problems using spectral 

representation inside the context of Monte Carlo simulation (MCS). [18] 

4.1.3-The K-L Method   

Since the auto covariance formula  serves as the kernel (covariance decomposition) in the K-L 

expansion is a particular case of the orthogonal series expansion and is a second order 

Fredholm integral formula. [19] 

  ̂       ̅    ∑         
 
                                    (8) 

∫ ff                       n (x2)                     (9) 

Where:  

f(x) is field mean and = 0 most of time . 

∫ ff          are the auto covariance function's  eigenvalues and Eigen functions of  

    an   n . 

N represents  the K-L terms number .  

The K-L expansions provides a coherent modelling framework for both homogeneous and 

heterogeneous stochastic domains, not withstanding certain difficulties with the uniformity of 

the sample functions that were created [19]. According to  the fact that only a small number of 

terms, which correspond to the N larger eigenvalues, may adequately reflect the majority of 

the field's random fluctuations, Strongly connected stochastic fields may be represented using 

it particularly well.. ( shown in Figure 4 ) . 
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Figure 4. Entropy decay for the size of the change in the K-L expand for θ shown [20] 

Although theoretically important, K-L expansion is typically not used in practise because of 

how challenging it is to solve the Fredholm integral formula . Since the only known analytic 

solutions to this integral equation are the auto covariance function and simple geometries, 

real-world problems involving complex domains necessitate a particular numerical strategy. 

The essential equations for the dense matrices generated by these numerical techniques [21] 

are often quite expensive to compute. By using just N (20) terms in Eqs. (7) and (8), it is 

demonstrated how the K-L growth and spectral representation differ from one another. This 

shows that the K-L growth may make it simpler to generate strongly linked random domains 

with a smooth auto covariance function (Figure 5). But when more words are retained, 

spectral approximation performs better. Because of the central limit theorem, the spectral 

representation technique typically requires a lowest amount of 128 terms for N to guarantee 

some degree of convergence to gaussianity.. Finally, the K-L series' specimen functions' 

uniformity and monotonicity are contested, and its processing efficiency is inferior to that of 

spectral approximation. 

 

Figure 5. As a function of N retained terms, K-L growth to the target range and completion of 

the harmonic approach are shown in Equations (7) and (8).) [22]. 
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4.1.4-Method of Stochastic finite element (SFEM) 

It is may be see the difference  between the K-L expand  and the spectral approximation  by 

using the few terms N (20) in Eqs. (7) and (8). This shows that the K-L expansion may make 

it simpler to simulate efficiently  correlated stochastic domains  with a soft  auto covariance  

(Figure 5). But when more terms are retained, spectral representation performs better. 

Regularly calls for the harmonic modeling technique. It requires a minimum of 128 elements 

for N in order to ensure some range of convergence to Gaussianity using the central limit 

theorem. The last thing can be mentioned here , the K-L series' sample functions' 

homogeneity and ergodicity are contested, and its computing efficiency is inferior to that of 

spectral representation [23]. 

The perturbation technique, which is based on a Taylor series growth of the response vector, 

and the sinusoidal stochastic finite element approach , in which each response quantity is 

represented using a series of random Hermite polynomials, are the two main implementations 

of SFEM in the literature. For these two versions, another choice is Modeling Tool [24]. A 

determinate issue is solved (many times) using the MCS method, and the solution 

heterogeneity is computed using straightforward statistical connections. MCS is frequently 

used in the literature as a reference technique to assess the correctness of other approaches 

due to its robustness and simplicity, and it is occasionally paired with the two SFEM variants. 

The generation of the stochastic matrices (first for each individual component, then for the 

entire system), the partial differential of the random domains that represent the ambiguous 

system properties, and ultimately the estimation of response variability (response 

statistics).These acts' computational components are detailed in the sections that follow: 

 

Discretization Of Stochastic Field And Process: The stochastic process is discretized as the 

first fundamental step in SFEM. The methods/fields that represent the hazy mechanical and 

qualities of a geometric system. The process of discretizing a continuous stochastic field 

involves replacing it with a non-uniform  vector generated  of a finite number of non-uniform  

variables :  

      ̂    {   } (10) 

Two broad categories of discretization techniques can be distinguished in the literature [48] : 

1. The values of the stochastic domains  at certain locations in the system are the sole final 

random variables when using point discretization techniques. 

2. Finite difference techniques of the average kind, in which the probabilities are 

represented as (valued) integrals of the stochastic field over all numerical techniques. 

The interpolation, midpoint, projection, integration, and techniques make up the 

majority of the first group's contributors. 

The Construction of the Random Finite Element Matrix: The random matrix, which has the 

following form in the case of random huge changes in Tensile properties caused by a zero 

mean, uniform stochastic ground f(x, y, z) (e), is created using the variational random 

domains for each finite element: 

K(e) =   
   

  ∆     (11) 
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Where , =   
   

 an  ∆     are the stochastic finite element matrix's mean (deterministic) and 

fluctuating elements. 

5-Other Methods 

5.1-The Turning Bands Method (TBM) 

To imitate random areas  in two or more dimensions, the TBM places a succession of 1D area 

along lines that span the area . Understanding of the 1D autocorrelation function R1(ζ) is 

required for the formulation of TBM (n). If this function is known, one or more effective 1D 

algorithms can be used to generate the line fields [22]. The geometry of the multivariate 

association Rn(ζ) is reflected over the ensemble thanks to the selection of the autocorrelation 

function R1(ζ) as shown in Figure (6) . 

By comparing how closely the target autocorrelation function specified by the user and the 

produced example features and the related example autocorrelation function coincide , such 

time-series production success is commonly evaluated.. 

 

 

Figure 6. (a) An example of an ARMA model-generated non-stationary process function (b) 

The generated sample was used to determine the goal's (non-discert line) and sexample's 

(harmonic line) autocorrelation formulas [22] 

5.2-The Autoregressive Moving average Method (ARMA) 

The creation of specific coefficients linking a Gaussian white noise process with the process 

to be replicated is made possible by the use of recursive formulations in the ARMA-AR 

frames, allowing for the synthesis of fixed and quasi random variables. [25]. 

5.3-The Optimal linear Estimation Method ( OLE)  

The OLE approach, which was first presented in [26], is also known as the Kriging 

approximation . The stagnation on linearly functional approach is used in this situation. . A 

linear function of dimensional  values,  
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f = f(x1),..., f(xn), defines the approximated field f(x) in the inclusion  of OLE as follows: 

f(x) = ∝(x)  + ∑        
 
   fn =  ∝(x)  + bT(x)f (12) 

where :  

∝(x) and         are defined by the minimum value of each point x with error Var [f(x) - 

∆f(x)]  

5.4-The Expansion   linearly  Estimation Method (ELOE) 

The defect for a specific number of maintained words is ascertained using the EOLE 

technique, an extend of OLE [7]. Furthermore, the K-L point-wise variation failure 

approximation is less than the EOLE failure within the normalisation domain but bigger at the 

frontiers for a given order of expansion. However, the K-L technique has the lowest mean 

defect throughout the whole domain.. 

6-Non-Stochastic Flow  

Designed to simulate non-Gaussian system dynamics and domains has received a lot of 

interest recently in stochastic mechanics. This is due to the non-Gaussian probabilistic 

elements of a variety of parameters that are present in engineering problems that arise in the 

real world, including material, structural properties, soil characteristics, winds, waves, and 

earthquake stresses. For stochastic systems devoid of spectral distributions, upper limits  on 

the responding  difference  can be estimated using non-Gaussian domains [27]. It is now 

widely accepted that simulating up skewing narrow-banding random processes and areas  can 

be used to test the effectiveness of current simulation methods [28]. 

6.1-Simulation Methods of Non- Stochastic Flow 

Simulation approximations  for non-Gaussian random domains processes  fall into two main 

types . There are two different kinds of sample functions: those that aim to produce specimen 

functions that are compatible with all currently known probabilistic information, as well as 

those that attempt to generate sample functions, for example, that match a target random 

field's required spectral density power function  and lower-order statistics (differences, 

standard error, variance, and kurtosis) [29]. The first group of strategies is suited for 

modelling wind and wave loads and will yield accurate results for the random response by 

constructing non-Gaussian example functions in line with specified lower-order moments. 

[29]. 

However, example functions with only the specified smaller  moments are insufficient for 

solving issues where correct distribution tail characterisation is crucial (for example, soil 

liquefaction [30]). This is because a non-Gaussian field that is exclusively defined by its 

smaller -order moments may not be uniquely realised according to the marginal probability 

distribution of those realisations. According to studies, the chance of soil liquefaction greatly 

depends on the tails of the cumulative random variable of the randomly selected field data 

used in the study.. According to [30], inverse relation estimations will produce noticeably 

different amounts of observed soil liquefaction, even when their lower order moments are 

comparable.. 
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6.1.1-Techniques for deformation in similarity 

Changing  domains The techniques in the 2
nd

 type  are more difficult since they aim to 

provide sample functions that are compatible with all available probabilistic data, including 

the random field's  and negative estimation . gerate sample functions that are compatible with 

all available probabilistic information, specifically the stochastic dynamical field's SDF and 

the marginal probability distribution [31]. 

All of these methods rely on a nonlinear memoryless transformation accordinf to the formula : 

f(x) = F-1 υ[g(x)]  (13) 

6.1.2-Extensions to the Translation Field Methods  

These Methods are used at the case with the following conditions [32]:  

1-an iterative process where the underlying Gaussian stochastic field of g's SDF is repeatedly 

updated g(x) 

2-random  field f(x) with the specified F and S(k)
T

ff is generated via an extended empirical 

uniform  to non-Gaussian mapping. 

The Equation is used to Extension as follow :  

S  
          

   
   

    

 
  

   
    

 Sff
      (14) 

This technique yields unexpectedly good results for fields with broad-banded SDFs that are 

slightly non-Gaussian. Deodatis and Micaletti point out that there is a bounded with regards to 

the modelling of steeply skewing random  fields [33]. The non-gaussian example formulas  

that are produced in this scenario have the works  as SDF, but their random  probability 

density function (PDF) deviates highly  from the needed one (Figure 7). This restriction 

results from the unique format of Eq's updating formula (13). The main issue is that, for 

reasons that are fully explained in, the underlying gaussian area is no longer uniform  and 

homogenous after the first fame. 

Another  attempt with an algorithm  with the same structure as Yamazaki and Shinozuka's was 

proposed by Deodatis and Micaletti [34], but with the following improvements: 

S  
         [ 

   
   

    

 
  

   
    

]

∝

Sff
      (15) 

The authors came to the conclusion that a result = 0.3 provides the best outcomes in terms of 

uniformity  after conducting considerable numerical experiments. 

1. random  random extended empirical mapping,  

f(x) = F-1. F*[g(x)] (16) 

2. Frequency shifting is used to get around some convergence problems that appear 

around  k= 0.    
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Figure 7. Using the Yamazaki- Shinozuka algorithm [34] 

6.1.3-Random Media Simulation  

An 1D binary  simulating a 2-phase  functionally graded composite matter  was effectively 

implemented using a changing  example  for  not a stationary, non-gaussian random treatment  

that was proposed in [35]. However, because the criteria of positively determinations  is 

frequently not met, translation models are frequently insufficient to adequately characterise 

the micro-struct features of non uniform  media [36].           

Koutsourelakis and Deodatis [37] recently presented an alternate methodology for the 

simulating of double  random areas  according to their stipe auto correlation function. 

Essentially, it is composed of two elements. An algorithm for getting examples  of a binary 

field from a nonlinear transforming with memory of a uniform  field is introduced in the first 

section. The underlying uniform domain's probabilistic properties are determined using an 

iterative process in the second stage, resulting in a binary area  with a predetermined auto 

correlation function. The approach can be used in a variety of contexts and has a low 

computing cost. 

6.1.4-Polynomial Chaos Expansion Method 

To create sample functions of quasi-non-stationary random variables in accordance with their 

suggested (quasi) insignificant PDF and correlation function, Sakamoto and Ghanem [38] 

provided an alternate methodology. This uses traditional polynomial complexity (PC) 

decomposition to overattribute the non-Gaussian process at certain places. 

      ∑      
 
       (17) 

By utilising a more all-encompassing PC framework termed Askey chaos, Xiu and 

Karniadakis [39] proposed an ideal description of different  distributing  patterns. They 

specifically offered a new approach to Wiener's polynomial chaos and Galerkin projections 

for the solution of uniform  differential framework . This framework uses the  optimal  as an 
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attempt to basis from the Askey family of orthogonal polynomials to represent stochastic 

processes , that causes the system's dimensions to be reduced and the error to exponentially 

converge: 

      ∑        
 
     (18) 

Where , { }j=0 
p
 P is the value of the number of generalised PC expansion terms, and signifies 

a collection of (non-Gaussian) random variables. 

7-Other Methods For Non-Stochastic Flow 

A novel spectral depiction model has recently been created for the simulating of a class of 

non-Gaussian processes [40]. The 2nd moment characteristics and other second - order 

moments of any quasi process may be fit by the model, which is based on the spectral 

reproduction theorem for weakly stable processes. The model may be applied to simulations 

by Monte Carlo and analytical studies to determine how linear and nonlinear systems react to 

quasi noise. It consists of a superposition of harmonics with independent, randomly varying 

amplitudes [41].  

Elishakoff L. [42] proposed a conditional simulating  approach for quasi  stochastic field. It 

was a conditional stochastic field expansion of Yamazaki's [43] unconditional simulation 

method. Their approach consists on doing sample simulations in the Gaussian stochastic field 

after converting  random variables into uniform  ones without taking into account correlation. 

Then, calculations are repeated until the correlation constants  between samples that are 

converted to a specific random area  converges to the desired value. Numerical simulations 

are the only technique utilised to validate this tactic. An improved simulating  of the 

Elishakoff  technique is offered by Hoshiya [44] for the simulation with limited  translation 

stochastic domains . This technique has an efficient   formulation , theoretically. 

8-Conclusion 

The article's goals were to offer an analysis of recent and ongoing breakthroughs in the 

SFEM, REEM, and other domains, to recommend future directions, and to address certain 

open issues that the engineering community should consider going forward:: 

1. A list of precise and effective simulation methods has been provided for Gaussian and 

some quasi nonlinearities and fields, including severely slanted quasi scalar processes. 

For the dependability evaluation of uncertain physical systems using MCS, the 

procedures based on the interpretation zone idea hold great promise since they combine 

accuracy and processing efficiency with a variety of traits (analytical calculation of 

crossing rates and extreme value distributions). It has also been noted how crucial it is to 

provide effective methods for modelling ou pas vector processes and fields. 

2. The perturbation technique, MCS and its modifications, and SSFEM—the three most 

important alternative SFE analysis formulations—have all been thoroughly examined 

and summarised. In-depth discussion has also been presented  to the topics of the 

producing of the uniform finite element matrices  and the discretization of the uniform  

fields reflecting the uncertain system features. For significant time savings in computing 
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for large-scale applications, the ability to combine two different meshes with a broad 

method of the random field realisation onto the grid looks to be crucial. 

3. Applying SFEM successfully to situations requiring temporal dependency, stochastic 

inverse issues, and nonlinear issues is still a challenge. MCS is the only method that can 

be used universally to solve SFE issues of this complexity without incurring prohibitive 

processing costs. SSFEM is a capable replacement in some circumstances with space for 

improvement. 

4. To boost SFEM's acceptance by the scientific community, the theoretical underpinning 

must be strengthened by in-depth evidence of convergence properties and error 

estimation studies. 

5. The previously mentioned non uniform Finite Element Method provides such a means. 

The combination of random area modelling and the finite technique decreases model 

defect  by many correctly mimicking the ground's different  sorts  and by allowing 

defect to occur where it "wants to" naturally. There are several alternative probabilistic 

methods. Additionally, the tool is easily adapted to look into how site emplaning  plans 

impact  as generated  dependability, which improves the potential to develop reliability-

based geotechnical design standards. 

6. Understanding the earth's spatial variability is one of the key challenges in assessing a 

geotechnical system's dependability. To precisely measure the characteristics of the 

spatial variability, site sampling is required over a somewhat big area (such as the 

correlation length). Fortunately, it appears that the worst-case scenario of spatial 

variability is commonly present and can be used to generate cautious designs. It is still 

unknown how much it would cost to construct geotechnical systems using this "worst 

case" correlation length, and the price might be higher or lower than the cost of the 

additional study required to estimate the correlation length. It will take a lot of time to 

decide this issue. 

7. By creating dependable and efficient solution approaches appropriate for a parallel 

treatment  surrounding  properly make up  to order  the particular problem at hand, 

SFEM's potential will be even further boosted. The potential of SFEM will be further 

increased by the improvement of reliable and effective solution methodologies 

appropriate for a co-linear  processing environment suitably configured to address the 

specific issue at hand. 

8. It is also critical to develop user-friendly, specialised SFEM software that can cooperate 

with powerful external codes and resolve enormous stochastic problems in a reasonable 

amount of time.. 

9. The figures presented above still represent the "average location," making them quite 

generic. They are important because they educate the geotechnical community examines 

the fundamental probabilistic behaviour of geotechnical systems, in particular how 

spatial variability influences the likelihood of failure. Future studies should concentrate 

on site-specific behaviour: Sites frequently include numerous layers, are devoid of 

isotropic correlation patterns, and may not be properly modelled by a single spatially 
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varying random field. Conceptually, it is simple to model a specific site using the above-

discussed methods, but not all issues have the required computer models constructed. 

These improvements still need to be made, but they are progressing. 
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