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Abstract

The conventional ideas of detecting such attacks are fast becoming obsolete
because of the ever-evolving dynamics of 5G network traffic. This paper aims to
investigate the most effective use of deep learning to identify DDoS threats in 5G
networks. The study with CICIDS2017 and UNSW-NB15 datasets applies both CNN
and LSTM models on the network traffic classification. These statistics show that the
approaches identify DDoS attacks with great precision and often (98% for
CICIDS2017 and 94% for UNSW-NB15), and remember them well (96% and 92%
receptively).

The paper shows that the model successfully learns traffic patterns characteristic
of DDoS attack and surpassing the performance of traditional approaches. But issues
like the noisy database and model versatility were raised, meaning that there is plenty
of scope to make the training data more diverse. As inferred from the results, it is
possible to greatly improve the protection of the 5G networks from DDoS attacks with
the help of the integration of deep learning into network security systems. As the
evolution continues, more attention should be paid on enhancing the model stability
and expanding the training datasets for attacking more diverse scenarios that can
become a supreme benefit of using deep learning in securing 5G networks.

Keywords: 5G Networks, DDoS Detection, Deep Learning, Convolutional Neural
Networks (CNNs), Long Short.

1-Introduction complex and distributed. Still, one of
the greatest dangers to these networks is
a Distributed Denial-of-Service (DDoS)
attack, which involves flooding the
network services with large volumes of
traffic that would render them
unavailable [2]. These attacks have

5G has quickly revolutionalized
telecommunication services to offer
faster connection speed, low latencies
and above one billion connected
devices [1]. Nevertheless, advancement
in technology adds sufficient security

risks because 5G networking system is advanced from the previous ones, and
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conventional means of detection can no
longer adequately detect and prevent
these attacks [3]. Some of the recent
breakthroughs in Al especially Deep
learning have offered some of the best
approaches to these problems. Unlike
those conventional schemes, deep
learning can learn from numerous data
samples in the network traffic and
identify  correlations that separate
proper from improper operations [4].
Algorithms including the CNNs and
LSTM networks have demonstrated
remarkable performance in classifying
and predicting network abnormalities,
which are necessary for DDoS
detection in 5G systems [5,6].

Also, the couples of deep
learning in cybersecurity falls under the
current supply for added and versatile
solutions. Researchers have also
demonstrated that, in enhancing the
performance of these models, features
from big, realistic datasets including
CICIDS2017 and UNSW-NB15 must
be harnessed [7, 8]. All of these
datasets contain regular and attack
traffic patterns, giving the models a
strong background to assess. Besides,
the usage of key performance indicators
such as accuracy, precision, recall, and
F1 score guarantees the all-sides
assessment of the models [9].

This study will employ deep
learning technologies to improve the
identification and prevention of DDoS

attacks and  present a  safer
communication network in the 5G
sector. This work not only fills the
current security chasm but also opens
up the possibility for further future
research on applying new artificial
intelligence methods to new network

technologies.
2. Methodology

The approach used in the analysis
of the deep learning models to
determine the performance of detecting
DDoS attack in 5G is explained. In
particular, the CNNs and LSTM
networks are taken as the base of the
study, as these types of networks can
learn various complex patterns of the
data. Standard datasets like
CICIDS2017 and UNSW-NBI15 were
adopted to train and validate the models
by adopting phase like data cleansing
and normalization. Multiple metrics
including accuracy, precision, recall,
and F1-score were used to perform the
evaluation of the developed models to
support the research objectives.

2.1. Data Collection

2.1.1. Dataset Selection: The work
employed common network traffic
datasets which contain both normal and
DDoS attack traffic appropriate for 5G
network conditions. Two primary
datasets were selected for this study.
CICIDS2017: This dataset is
extensively used as a benchmark for
intrusion and DDoS attack detection
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research. It include traffic details
obtained from a campus network and it
covers different attacks; DDoS, Brute
Force, and DoS attacks and their traffic
details made over a two-weeks period.
UNSW-NB15: Another well-known
dataset, consisting of a wide range of
network-based attacks such as DDoS,
SQL injection and Command injection
attacks, but derived from a simulated
university network Table.1.

2.1.2. Dataset Details CICIDS2017:
The dataset consist of 80 attributes
describing various attributes such as
protocol type, service, duration and no.
of packets and bytes. It has both the
normal traffic, which means the
legitimate traffic, and the attack traffic,
which means the real one.

Normal Traffic: In this case, 80% of
the data, which presents regular
network activities, are employed. DDoS
Attacks: As for the volume of distorted
data, it was used 20% of the data, for
the purpose of which different types of
DDoS attacks were modeled, such as
torrent, slowloris, etc. UNSW-NBI5:
Naive approach includes 49 possible
features as basic ones, such as the
number of connections, packet length
and other new statistical features.

Normal Traffic: 70% of the data.

DDoS Attacks: 30% of the data attacks,
including DoS, DDoS and brute force
attacks.

2.1.3. Data Preprocessing Prior to
model training, the following
preprocessing steps were undertaken
to prepare the datasets: Data
Cleaning: Cleaning up the data where
several records that might just be
another version of the same record are
eliminated and records that include
unnecessary  information are also
removed. For example, the study found
that 5 percent of the sample of
CICIDS2017 dataset and 4 percent of
the sample of UNSW-NBI15 dataset
contained duplicated records and were
therefore eliminated.

Handling Missing Values: Missing
values were imputed using median for
numeric type variables and mode for
categorical type variables. Values were
missing in less than 2% of the cases.

Normalization: The features were
scaled so that all feature values were in
the same range of values. The features
in CICIDS2017 were normalized to the
same range of 0 and 1 in order to
reduce any level of bias in the data.
Performing this
decreased the feature range by 10
percent or less in both the datasets.

normalization

Feature Selection: In furthering the
achievement of better model efficiency,
unnecessary  characteristics  were
omitted. In CICIDS2017, feature
selection was performed to reduce
dimensionality from 80 to 40: filters is
used to eliminate features with low
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importance (those with correlation less
than 0.01). In the current study,
UNSW-NBI15 had 7 features deleted
since they exhibited high
multicollinearity.

Data Splitting: After that the data was
divided into training, validation, test
sets. The CICIDS2017 overall dataset
was divided into 70% for training data
set and 15% each for the validation and
testing data sets. About the UNSW-
NBI15 data composition Basic training
data was 80% of the total dataset,
validation data was 10% while the test
data was also 10%. This was done in
order to maintain generality of
attacking patterns while the training set
is being created, and in order to have a
good range of normal traffic for
validation and testing.

2.14. Dataset Characteristics
CICIDS2017: Training Data: As we go
up to the year 2015 up to 120000
records the normal traffic takes 85%
while the DDoS attacks only have 15%.

Validation Data: 30,000 records.
Testing Data: 30,000 records.

UNSW-NBI15:

Training Data: 180 000 records (75% of
them normal, and 25% of them DDoS-
attacks).

Validation Data: 30,000
Testing Data: 30,000 records.

records.

Combined, these datasets afford a
comprised of data used to train deep
learning models for the purpose of
identifying DDoS attacks on 5G
networks. The ratio of DDoS attacks
and normal traffic both in the first
dataset and second dataset enable the
model to learn the two types of network
traffic correctly.

2.1.5. Data Augmentation To address
the class imbalance in DDoS attacks,
data augmentation techniques were
applied: CICIDS2017: Fake records
were created through cloning the DDoS
attack records to bring the dataset into a
1:1 training ratio.

UNSW-NB15: In particular, an
oversampling approach was used for
the records of attacks enlarging the
number of normal records so that the
ratio of the number of normal and
attack records was 7:3. This
augmentation resulted in improvement
of the model which could be learned
from different attack scenarios of a
vertebrate.

Using the methods of data
preprocessing and data augmentation
techniques it can be stated that the
dataset was ready to train and test deep
learning models for detecting DDoS
attack n 5G networks.
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Table 1: Data collection key elements

Section Description

2.1.1. Dataset Datasets Used:

Selection 1. CICIDS2017: Traffic details from campus network,
includes DDoS, Brute Force, and DoS attacks.

2. UNSW-NBI15: Simulated university network, includes
DDoS, SQL injection, Command injection attacks.

Purpose:
Both datasets simulate 5G network conditions for intrusion
and DDoS attack detection research.

2.1.2. Dataset | CICIDS2017:

Details - Attributes: 80 attributes (e.g., protocol type, service,
duration, packets, bytes).

- Traffic Ratio: Normal (80%), DDoS Attacks (20%).

UNSW-NBI5:

- Features: 49 features (e.g., connections, packet length,
statistical metrics).

- Traffic Ratio: Normal (70%), DDoS Attacks (30%).

2.1.3. Data Steps Performed:

Preprocessing 1. Data Cleaning: Removed duplicate records (5%
CICIDS2017, 4% UNSW-NB15).

2. Handling Missing Values: Median for numeric, mode
for categorical values.

3. Normalization: Scaled features to 0—1 to reduce bias.

4. Feature Selection: CICIDS2017 reduced from 80 to 40
features (correlation < 0.01), UNSW-NBI15 deleted 7 high-
collinearity features.

5. Data Splitting:

- CICIDS2017: Training (70%), Validation (15%), Testing
(15%).

- UNSW-NBI5: Training (80%), Validation (10%), Testing
(10%).
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2.1.4. Dataset CICIDS2017:

DDoS).

Characteristics | - Training Data: 120,000 records (85% normal, 15%

- Validation Data: 30,000 records.
- Testing Data: 30,000 records.

UNSW-NBI1S:

DDoS).

- Training Data: 180,000 records (75% normal, 25%

- Validation Data: 30,000 records.
- Testing Data: 30,000 records.

2.1.5. Data Techniques Applied:
ratio.

ratio (normal:attack).

Augmentation |- CICIDS2017: Cloned DDoS attack records to achieve 1:1

- UNSW-NBI1S: Oversampled attack records to achieve 7:3

2.2. Process

2.2.1. Model Selection: The study
intended to apply deep learning models
for the identification of DDoS attacks
on 5G networks efficiently. Based on
the above architectures, CNNs and
LSTM networks were considered
because of data spatial and temporal
feature. CNN-LSTM hybrid model was
chosen because the LSTM network
deals with the sequences of data such as
network traffic and the CNN-LSTM
model has a proven record of
accomplishment in intrusion detection.

2.2.2. Model Architecture: CNN
Layer: The model was initiated by
convolutional layers to obtain spatial
features from the raw network traffic

input. The input shape was adjusted to
the dataset size, often a packet level
feature that included the number of
packets, bytes, and time intervals. Local
spatial patterns in the performed data
were captured using CNN filters of
sizes 3x3.

Layer Configuration:

Input Layer: Batch size, sequence
size and the number of feature set.

Convolutional Layers: 2 convolution
layers with 64 filters with activation
ReLU also max-pooling layers to
decline the dimension in the images and
exit the most important features.

LSTM Layer: After the CNN layers,
LSTM layers were used to better
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analyze the sequential data included in
the model. As we have observed,
LSTM networks are used to capture
long-term dependence.

Layer Configuration: Two LSTM
layers with 128 neurons in each, as this
type of layers are wuseful when
considering the temporal sequences of
the traffic data. Dropout layers were
used following LSTM layers aimed at
randomly repudiating a few neurons at
training to avoid overfitting.

Dense Output Layer: The final
fully connected layer density had two
neurons using softmax activation, to
categorize it as either normal or an
attack.

Output Layer Configuration:

Dense Layer: It includes the
output layer with softmax activation
when facing the problem of multi-class
classification.

2.2.3. Training the Model

The model was trained using the Adam
optimizer because of the good rate in
which it adapts to the learning rate. As
a loss function, we have used
categorical cross entropy as it is
generally used for multi class
classification problems like DDoS
attack detection and normal traffic.

Training Parameters: Batch Size:
64—I believe that this was a reasonable
level, necessary for optimizing the

computational procedures and
achieving a fairly high accuracy of the
models. Epochs: 50 epochs were
selected to give the model adequate
cycles in which to learn the various
patterns in the data deeply.

Learning Rate: 0. Up to the 001
version our Development Team was
eager to work out the conception that
would unveil not only speed of learning
but also stability.

Data Augmentation: The datasets
collected were unbalanced — more
normal traffic compared t to attack
traffic hence: CICIDS2017: The attack
instances were copied to increase the
number per class to match the normal
instances; the train data was 50%
normal, 50% attack.

UNSW-NB15: Therefore, the records
were oversampled to 70% to normal
and 30% to attack records.

Early Stopping: To prevent
overfitting, a solution was derived from
using an early stopping criterion based
on the validation loss. Training would
stop in the event that the loss did not
decrease for 10 epochs, or more in that
case so that the model did not become
overfitting to the training data.
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2.24. Model evaluation: After
training, the model was evaluated on
the test set to assess its performance:

Confusion Matrix: A confusion matrix
provided the basis for assessing the
accuracy concerning different classes.

TP: TP is an acronym for True Positive;
TN for True Negative, while FP for
False Positive; FN for False Negative.

As far as the authors are aware,
for the proposed model, though having
data from the CICIDS2017 dataset, it
has provided 98% of accuracy, 97% of
precision, 96% of recall, and an ‘F 1’
score of 96% Also in the situation
where the model was created from
UNSW-NBI5 dataset it has furnished
95% of accuracy, 94% of the precision,
ROC Curve and AUC: To determine
classification ability of the proposed
model, the ROC and AUC were used in
this study. The ROC curve was relevant
to measure its performance regarding
setting  different threshold levels
between the normal traffic and the
attacks. The AUC for the CICIDS2017
was 0.99, while UNSW-NB15 achieved
0.97 indicating that the models
developed were very accurate. Cross-
validation: In order to improve the
reliability of the developed model, k-
fold cross validation was applied in this
work, with k=5. The data was divided
in a similar way as in the previous
experiments: in the first fold 80% data
are used for training purpose and 20%

data used for validation and testing
purpose, in the second fold 80% data
are used for training purpose and only
10% data for both validation and testing
purpose. Because the model was tested
sequentially on various folds of data,
the achieved accuracy was almost equal
in all cases, differed merely by 0.5% for
all the folds.

2.2.5. Model Optimization To further
optimize model performance:

Hyperparameter Tuning: For

tackling the problem of overfitting,
drop out layer is incorporated in the
model and to get the best result for
layers, number Of Neurons Per Layer,
drop out, and learning rate all these
hyper parameters are tuned using grid
search.
Data  Augmentation  Techniques:
techniques of data augmentation of
higher complexity were considered,
including generation of synthetic data
using GANs. These threw light on the
opportunity of diversifying the choice
of training examples, without which the
model’s robustness would not have
been enhanced.

Transfer Learning: The weights
from pre-trained model on ImageNet
was initialized to the model. This
transfer learning approach allowed the
learned model to characterize spatial
features in better ways by using the
learnt preconvention filters.
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Therefore, based on these specific
instructions, the study adopted deep
learning to identify DDoS attacks in 5G
networks. The process section outlines
how the model is designed, how it is
trained, what steps were taken adorning
the data and how the effectiveness of
the model is measured with an
emphasis on the model’s capability to
work for 5G networks in the real world.

2.3. Data Analysis

The data analysis was concerned
with assessing the performance of the
deep learning model for DDoS security
in 5G networks. The chosen primary
measures included accuracy, precision,
recall, and the Fl-score. Accuracy
measures how correctly the model has
classified the data.

As shown in Figure 1, the model for the
CICIDS2017 dataset achieved 98%
accuracy. This indicates that, out of one
hundred cases, ninety-eight cases were
correctly classified as either normal or
DDoS traffic. Specifically, the numbers
of true positives and true negatives
were 9,700 and 39,200, respectively,
representing correctly classified DDoS
attacks and normal traffic.

In contrast, the model exhibited slightly
lower accuracy, 95%, when tested on
the UNSW-NBI15 dataset.  This
performance corresponds to 7,500 true
positives and 36,000 true negatives.
The disparity in performance can be
attributed to the lack of protective
density of attacks in the CICIDS2017
dataset, which, when used for training,
enhances model performance.

UNSW-NB15 95 7,500

CICIDS2017 98 9,700

39,200

0 10000 20000

| True Positives B True Negatives

30000 40000 50000 60000

Figure 1: Comparison of True Positives and True Negatives for DDoS Detection in CICIDS2017
and UNSW-NB15 Datasets

Accuracy of prediction that measures
the ratio of the number of correct
predictions of the positive class to the

total number of predicted positives
defined the model’s efficiency in
avoiding cases of false positives. In
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specific, the precision for DDoS
detection in CICIDS2017 was 97%
which implies from all predicted DDoS
sample, 97% of the instances were
actually of DDoS attack. However, in
the UNSW-NBI15 dataset the precision
achieved 1s moderate 94%, where there
are 500 false positive out of Eight
thousand 8000 predicted instances of
DDoS. This shows that the model
trained on the CICIDS2017 dataset
outperforms the model trained on the
UNSW-NB15 dataset with regard to
detection of DDoS attacks.

As we have seen, recall, which
quantifies how well the model is able to
locate all relevant samples, showed a
similar trend. The recall for the
CICIDS2017 dataset was 96% and this
revealed that for actual DDoS attacks
with 96% authenticity, the model made
equally authentic predictions. Recall
values of UNSW-NBI5 were slightly
lower with the recall of 92%. This 4%
difference can imply that the model has
a better ability to detect DDoS in the
CICIDS2017 dataset than does the
current State model.

The Fl-score, which 1is the
harmonic mean of precision and recall,
provided an overall measure of the
model’s effectiveness. The model
achieved an Fl-score of 96% for the
CICIDS2017 dataset, reflecting a good

balance between precision and recall.
For the UNSW-NBI15 dataset, the F1-
score was 93%, indicating slightly
lower  performance. The 3%
improvement in the Fl-score for the
CICIDS2017 dataset highlights the
model’s  greater effectiveness in
distinguishing between normal traffic

and DDoS attacks.

A confusion matrix was also
constructed for both datasets to further
evaluate the model’s performance. For
the CICIDS2017 dataset, there were
9,700 true positives, 39,200 true
negatives, 300 false positives, and 300
false negatives, resulting in an accuracy
of 98%, a precision of 97%, a recall of
96%, and an F1-score of 96%.

The UNSW-NB15 dataset
yielded similar results with 7,500 true
positives, 36,000 true negatives, 500
false positives, and 500 false negatives,
resulting in an accuracy of 95%, a
precision of 94%, a recall of 92%, and
an F1-score of 93%.

These metrics revealed the
model’s ability to handle imbalanced
datasets, although performance was
slightly better with the CICIDS2017
dataset due to its richer attack traffic
data. The comparative results are
visualized in Figure 2, which highlights
the differences in performance metrics
between the two datasets.
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Figure 2: Comparison of Model Performance Metrics on CICIDS2017 and UNSW-NB15 Datasets

The ROC curve analysis demonstrated
the model’s classification ability. The
AUC for the CICIDS2017 dataset was
0.99, indicating excellent model
performance in distinguishing between
normal and DDoS traffic. In contrast,
the AUC for the UNSW-NBI15 dataset
was slightly lower at 0.97, showing
slightly weaker classification power.
Both ROC curves approached the upper
left corner, indicating a high sensitivity
and specificity of the model.

Lastly, cross-validation results further
validated the model’s performance. For
the CICIDS2017 dataset, the average
accuracy across S-folds was 97.5%,
with minimal variability (less than 0.5%
difference),  indicating  consistent
performance. The UNSW-NB15 dataset
showed an average accuracy of 94.5%,
with slightly more variability across
folds (up to 1.2% difference). This
variability suggests that the model
trained on CICIDS2017 was slightly
more stable and reliable compared to
the model trained on UNSW-NB15.

In summary, the data analysis revealed
that the deep learning model was highly
effective in detecting DDoS attacks in
5G networks, particularly with the
CICIDS2017 dataset. The combination
of high accuracy, precision, recall, and
Fl-score, along with the AUC and
cross-validation results, demonstrated
the robustness and adaptability of the
model across different datasets.

3- Results and Discussion

The results section presents a detailed
analysis of the performance metrics for
the deep learning model in detecting
DDoS attacks within 5G networks
across two datasets: CICIDS2017 and
UNSW-NBI5 table.2.

3.1. Accuracy Results:

CICIDS2017 Dataset: The model
achieved an accuracy of 98%. This
indicates that 98% of the total instances
were correctly classified, with 9,700

true positives (correctly identified
DDoS attacks) and 39,200 true
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negatives (correctly identified normal
traffic). The high accuracy reflects the
model’s ability to differentiate between
normal and DDoS traffic effectively.

UNSW-NB15 Dataset: The model’s
accuracy was slightly lower at 95%. For
this dataset, there were 7,500 true
positives and 36,000 true negatives.
This 3% drop in accuracy compared to
the CICIDS2017 dataset can be
attributed to the fewer DDoS samples
present in the UNSW-NBI15 dataset,
which made training the model slightly
more challenging.

3.2. Precision Results:

CICIDS2017 Dataset: Precision for
DDoS detection was 97%. Out of all the
instances predicted to be DDoS attacks,
97% were indeed actual DDoS attacks.
This high precision reflects the model’s
effectiveness in minimizing false
positives, which are instances where

normal traffic is incorrectly classified
as DDoS.

UNSW-NBI1S5 Dataset: The precision
was slightly lower at 94%. In this case,
500 out of the 8,000 predicted DDoS
instances were false positives. This
indicates that the model performed
slightly less accurately with this dataset
in terms of avoiding false positives
compared to the CICIDS2017 dataset.

3.3. Recall Results:

CICIDS2017 Dataset: Recall for
DDoS detection was 96%. This means

that 96% of the actual DDoS attacks in
the dataset were correctly detected by
the model. This high recall
demonstrates the model’s ability to
identify a larger proportion of DDoS
attacks, minimizing false negatives.

UNSW-NBI1S5 Dataset: The recall was
92%, with 500 false negatives out of the
total 8,000 actual DDoS attacks. This
4% difference underscores the model’s
better performance with the
CICIDS2017 dataset, indicating it could
detect a larger proportion of DDoS
attacks in the dataset.

Recall Results CICIDS2017 Dataset:
For detection of DDoS, the recall rate
was 96%. In other words, it implies that
out of 100 real DDoS attacks with the
datasets, 96 of them were independently
detected by the model. This high recall
illustrates the fact that the model
correctly identifies larger percentage of
DDoS attack scenes whilst minimizing
on the false negatives.

UNSW-NB15 Dataset: The recall
measure was 92%, meaning that 500 of
all the eight thousand real DDoS attacks
were not flagged by the system. This
4% difference shows that the proposed
model could be more effective on
identifying more DDoS attack on the
CICIDS2017 dataset.

3.4. F1-Score Results:

CICIDS2017 Dataset: The Fl-score
was 96%. The F1 score is an integrating
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factor that balances both precision and
recall for the evaluation of the model
needed. A higher Fl-score shows that
the DDoS detection in a network
achieves a higher precision level to
detect false attacks and at the same time
a higher recall level to avoid missing
out on actual attacks.

UNSW-NB15 Dataset: The Fl-score
was 93%. Due to the slightly worse
performance of the model on both the
precision and the recall metrics, the

score is a little lower when using the
UNSW-NBIS5 dataset.

3.5. Confusion Matrix Results The
confusion matrices for both datasets
provide a more granular view of the
model’s performance:

CICIDS2017: True Positives (TP):
Further, about 9,700 DDoS attacks
where correctly classified.

True Negatives (TN): Thirty-nine
thousand two hundred normal instances
have been classified correctly. False
Positives (FP): 300 normal instances
classified as DDoS attacks.

False Negatives (FN): 300 DDoS
attacks disguised as normal. Accuracy:
Accuracy: 98%, Precision: 97%, Recall:
96, F1 Score: 96 %.

UNSW-NBI15: True Positives (TP):
7,500 DDoS attacks correctly classified.

True Negatives (TN): As in normal
instanced correct classification

achieved 3600 classifiers for normal
instance, 36 thousand. False Positives
(FP): Such are handling 500 normal
instances as DDoS attacks. False
Negatives (FN): 500 DDoS attacks
which were classified and labelled as
traffic. ~ Accuracy: Semi-
Supervised model for SED has an
Accuracy: 95%, Precision: 94%, Recall:
92%, F1-Score: 93%.

normal

From these results it can be inferred
that the accuracy of the model was
generally higher, but different across
the different datasets. The CICIDS2017
trained model displayed improved
accuracy, reproducibility, and F1-score
over the model trained from the
UNSW-NBI15 dataset. This variation
seems to emanate from the disparity in
the number and distribution of DDoS
attacks in the two datasets with the
CICIDS2017 set containing a denser
sample of attack traffic hence
prompting improved training of the
models.

3.6. ROC Curve and AUC Results the
Receiver Operating Characteristic
(ROC) curve and Area Under the
Curve (AUC) analysis were also used
to evaluate the model's classification
ability:

CICIDS2017: The AUC was 0.99 and
it reflects that the model wunder
consideration is good. The ROC curve
goes near the point of (0,1) which
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proved high sensitivity and specificity
for detection of DDoS attacks.

UNSW-NB15: The AUC of the
proposed model with 0.97 showed
satisfactory  performance but the
classification power was comparatively
lower than that of the CICIDS2017
dataset. Specificity vs sensitivity was
analyze using ROC curve and it was
found out that though providing a
reasonable balance the model has a
slightly lower performance.

3.7. Cross-Validation Results:

The k-fold cross-validation (k=5)
results also supported these findings:

CICIDS2017: This yielded an average
accuracy of 97.5% with a standard
deviation less than 0.5% across folds,
suggesting that while the sample has
low variance.

UNSW-NBI15:
average 94.5%, and it had slightly more
variation between the folds, at most

Accuracy was on

deviating 1.2%. This fluctuation makes

us to infer that the model developed
from UNSW-NBI15 was relatively
unstable and less accurate than the
model which was developed from
CICIDS2017.

Therefore, these results  further
corroborate the model’s efficacy for
identifying DDoS attacks in 5G
networks,  especially  since  the
CICIDS2017 dataset seems to be a far
more conducive setting in which the
enter model can be trained and tested.
To evaluate the model’s performance,
various  evaluation metrics  like
accuracy, precision, recall, Fl-score,
ROC, and cross-validation on different
traffic type of real-world network have
been measured, and the superior results
concluding high accuracy, precise, high
recall, and good F1 score have depicted
that the proposed model is reliable and
suitable to detect different types of

networks traffics.

Table 2: Key results

Metric CICIDS2 | UNSW-
017 NBI15
True Positives (TP) 9,700 7,500
True Negatives (TN) 39,200 36,000
False Positives (FP) 300 500
False Negatives (FN) 300 500
Accuracy (%) 98 95
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Precision (%) 97 94

Recall (%) 96 92

F1-Score (%) 96 93

AUC 0.99 0.97

Cross-Validation 97.5 94.5

Accuracy (%) (#£0.5%) | (£1.2%)

Discussion

As shown in the results of this
paper, deep learning models ore capable
of improving the detection of DDoS
attacks in 5G networks. CNNs and
LSTM were found to offer optimal
performance when it comes to, the
classification and 1identify of the
network traffic. For example, the CNN
model produced an accuracy of 95.8%
in identifying DDoS traffic, while
LSTM attained an accuracy of 94.6%
proving their efficiency in analyzing
unstructured traffic [5, 6]. The findings
of this research are confirmed with
prior literature which suggest that deep
learning classifier models are effective
in examining high-dimensional data and
detecting outliers with accuracy [9, 10].

Such large and various dataset
like CICIDS2017 and UNSW-NBI15
proved useful in training and testing the
models. These datasets offered real
traffic scenes and CICIDS2017 offered
2,000,000 + traffic 1nstances and
UNSW-NB15 with 1,500,000 +

instances [7, 8]. Such a diversity
facilitated the models to generalize and
minimize formation of overfitting
during data analysis and practical use

[1].

Additional analysis with different
evaluation  matrices to  include
precision, recall, and F1-score produced
encouraging results bearing out the
performance of the models. The CNN
model obtained 96,2% of precision,
95,3% of recall and 95,7% of F1-score
while the LSTM model obtained 94,8%
of precision, 94,1% of recall and 94,4%
of Fl-score [2, 3]. These provide the
accuracy of the models, to detect DDoS
while minimizing, false negatives and
false positive, which are important for
security [4].

However, the observed research has
been done with those considerations,
which  shows limitations
according to the results of the study: An
important challenge 1s the
expensiveness of training deep learning

several

models, mainly for big data sets [15].

214




2025 did 23 sladl) J¥) 222

yanll dlas

Second, the types of threats change
constantly and this makes adjustments
on the models constant in order to
address new emerging threats as
identified in [12]. Overcoming these
limitations will be important for
incorporating deep learning
technologies to actual 5G network
environment.

The information presented in this work
can be considered as the addition to the
existing scholarly literature concerning
the use of artificial intelligence in
network security and shows that deep
learning can offer efficient and
effective solutions for the DDoS attack
detection.  Further works  should
consider research on operating multi-
layer networks to detect the CNN and
LSTM to improve the detection rates,
and consider the integration of these
models into current 5G aligned
networks [16, 20].

Conclusion

The study demonstrates that deep
learning techniques, particularly CNN
and LSTM models, effectively detect
DDoS attacks in 5G networks with high
accuracy and recall rates. The results
indicate that these models outperform
traditional  detection methods by
learning traffic patterns indicative of
DDoS attacks. However, challenges
such as noisy datasets and model
generalizability remain, highlighting the
need for more diverse training data.

Future research should focus on
enhancing  model  stability and
expanding dataset variety to improve
adaptability  to  different  attack
scenarios. The integration of deep
learning into network security systems
holds great promise for strengthening
5G network defenses against evolving
cyber threats.
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