Review Article

Access this article online

Website: https://journals.lww.com/ijhm DOI: 10.4103/ijh.ijh 84 24

A comprehensive systematic review and meta-analysis of the prevalence of anemia in Africa

Abdirasak Sharif Ali Mude, Yahye Ahmed Nageye¹, Kizito Eneye Bello²

Abstract:

The incidence of anemia in Africa is still of major epidemiological significance. This study aims to determine the prevalence of anemia in Africa through a systematic review and meta-analysis of the published studies. We conducted a comprehensive search across five electronic databases (Web of Science, PubMed, ScienceDirect, Scopus, and Google Scholar) using specific keywords to address the prevalence of anemia following the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. A meta-analysis was performed on our eligible studies using the random-effects model. Our search returned 101 eligible articles involving 79,572 anemia cases in 14 African nations. The overall pooled prevalence of anemia in Africa was 29.2% (95% confidence interval: 25.2%–33.7% I2 = 99.28%). Subgroup analyses revealed variations in the prevalence across different countries, study designs, maturity status of participants, and publication years. Notably, Egypt and South Africa exhibited high prevalence of 19.3%. The maturity status also influenced prevalence rates, with children indicating a higher prevalence (58.8%) compared to adults (21%). The study highlights the significant burden of anemia in Africa; the findings underscore the need for targeted public health interventions and improved standard of living to manage and control anemia in the region.

Keywords:

Africa, anemia, epidemiology, meta-analysis, prevalence, Preferred Reporting Items for Systematic Reviews and Meta-analyses, systematic review

Introduction

A nemia, a disorder defined by a deficiency of red blood cells or hemoglobin, continues to be a widespread public health issue worldwide,^[1] especially in Africa.^[2] This hematological condition presents in different forms, with iron-deficiency anemia being the most common.^[2] Anemia's prevalence in Africa can be ascribed to a complex interplay of causes, encompassing hunger, infectious diseases such as malaria and HIV, and genetic abnormalities like sickle cell disease.^[3] Gaining a comprehensive understanding of the frequency of anemia throughout the continent is essential for

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms. formulating specific interventions and health strategies to reduce its effects.^[4]

Anemia in Africa has a complex etiology that varies by region. Iron, vitamin B12, and folate deficiencies are the main causes of dietary deficiencies.^[5] Iron deficiency is the main cause of anemia, and it is made worse by inadequate food intake as well as elevated physiological demands brought on by growth spurts and pregnancy.^[6,7] In addition, the elevated incidence of anemia is mostly attributed to the presence of infectious illnesses unique to the area, including schistosomiasis, malaria, and HIV/AIDS. For instance, red blood cell breakdown and buildup brought on by malaria result in the development of anemia.^[8] Furthermore, the erythropoiesis

How to cite this article: Mude AS, Nageye YA, Bello KE. A comprehensive systematic review and meta-analysis of the prevalence of anemia in Africa. Iraqi J Hematol 2025;14:11-25.

Departments of Microbiology and Laboratory Sciences, ¹Medicine and Surgery, Faculty of Medicine and Health Sciences, SIMAD University, ²Department of Microbiology, Prince Abubakar Audu (Kogi State University), Anyigba, Kogi State, Nigeria

Address for correspondence:

Dr. Abdirasak Sharif Ali Mude, Faculty of Medicine and Health Sciences, SIMAD University, Mogadishu, Somalia. E-mail: arshamyare@ gmail.com

Submission: 01-08-2024 Revised: 22-09-2024 Accepted: 22-09-2024 Published: 13-12-2024

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

and iron metabolism processes may be impeded by the chronic inflammation brought on by these diseases.^[9]

Socioeconomic factors significantly contribute to the prevalence of anemia in Africa.^[10,11] The problem persists due to factors such as poverty, restricted healthcare access, inadequate sanitation, and low educational achievement. In rural and underserved metropolitan regions, the healthcare infrastructure frequently lacks the necessary resources, resulting in delays in diagnosing and treating medical conditions.^[10] In addition, the prevalence of anemia can be influenced by cultural norms and dietary habits, particularly among groups that primarily consume plant-based diets that are deficient in easily absorbable iron.^[11]

An analysis of anemia's demographic distribution indicates that some susceptible populations, including children under the age of five, pregnant women, and women of reproductive age, are disproportionately impacted.^[12] Anemia can cause significant developmental and cognitive problems in children, and it also raises the chances of maternal and perinatal morbidity and mortality in pregnant women.^[12] According to the World Health Organization, around 66% of pregnant women in Africa suffer from anemia, highlighting the immediate requirement for comprehensive public health interventions.^[6]

Although anemia is widespread and has significant consequences, there is a lack of comprehensive and consistent data on its impact in many regions of Africa.^[3] The disagreement arises from differences in study techniques, diagnostic criteria, and population demographics. Performing a systematic review and meta-analysis is crucial to compile available data, gaining a more comprehensive understanding of the prevalence of anemia, and pinpointing areas where current research is lacking.^[3]

This systematic review seeks to consolidate existing data on the prevalence of anemia in Africa. This review will provide a thorough evaluation of the prevalence and impact of anemia by using strict criteria for inclusion and reliable statistical techniques. An in-depth analysis is crucial for providing information to policymakers, healthcare professionals, and stakeholders who are responsible for creating and executing effective programs to reduce anemia.

Methods

Data search, eligibility, and extraction

Prior to conducting this review, a preliminary search was conducted on two review databases, PROSPERO and DARE, to avoid redundancy and ensure the uniqueness of the study, preventing any overlap with prior publications or ongoing investigations. This review adheres strictly to the synthesis requirements outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.^[13] A comprehensive search was carried out on five prominent global electronic databases (PubMed, Google Scholar, Scopus, ScienceDirect, and Web of Science) to find literature pertaining to the prevalence of anemia in Africa. The search terms used to retrieve manuscripts reporting the prevalence of anemia in Africa included the key terms "Anemia" OR "anemia" OR "anaemia" AND "prevalence" OR "occurrence" OR "epidemiology" OR "incidence" AND specific country names such as Algeria, Angola, Benin, Botswana, Burkina Faso, Burundi, Cape Verde, Central African Republic, Chad, Comoros, Democratic Republic of the Congo, Djibouti, Egypt, Equatorial Guinea, Eritrea, Eswatini, Ethiopia, Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, Ivory Coast, Kenya, Lesotho, Liberia, Libya, Madagascar, Malawi, Mali, Mauritania, Mauritius, Morocco, Mozambique, Namibia, Niger, Nigeria, Rwanda, Sao Tome and Principe, Senegal, Seychelles, Sierra Leone, Somalia, South Africa, South Sudan, Sudan, Tanzania, Togo, Tunisia, Uganda, Zambia, Zimbabwe, as well as "Africa" OR "Sub-Saharan Africa."

This review encompassed cross-sectional studies, prospective cohorts, and retrospective study. For the research to be considered, the samples or data needed to be acquired from at least one country in Africa. We have excluded works that meet the following criteria: (1) being reviews, (2) being editorials, (3) lacking a clearly defined origin, (4) containing redundant or duplicate data, (5) not being done within Africa, and (6) having an unavailable full text. Three authors (BKE, ASA., and YA) individually evaluated the title, abstract, and full text of the research, adhering to predetermined criteria for inclusion. Disputes were resolved through the attainment of a consensus among the authors. The titles, abstracts, and full texts of the eligible studies were carefully examined based on the relevant categories (title, abstract, and full text). A structured table was employed to collect relevant data, including the names of authors, the year of publication, the prevalence of anemia, and the study designs. Supplementary File 1 provides further information on the search methodology.

Statistical analysis and quality assessment

In all the studies we examined, we used a single-arm random-effects model to calculate the pooled prevalence of anemia in Africa. We efficiently synthesized the data by employing the meta-analysis technique developed by DerSimonian and Laird, which was implemented into the OpenMeta and Comprehensive Meta-analysis Software.^[14] To assess the existence of publication bias, a funnel plot was utilized.^[15] The Cochran's Q test was used to measure the differences in estimates among various subgroups, while the heterogeneity index was evaluated using the Cochran Q test and I^2 values. A low, moderate, and high level of heterogeneity corresponded to I^2 values of 25%, 50%, and 75%, respectively.^[16]

The methodological quality of the studies that were included was thoroughly assessed using the Joanna Briggs Institute critical assessment standards for prevalence data. The examination yielded a comprehensive quality score ranging from 0 to 18, with a score of "2" assigned for "yes" and "0" designated for "no." Studies with scores ranging from 14 to 18 were considered to have satisfactory quality. Supplementary Table 1 provides a comprehensive evaluation of the quality of the studies that were included.

Results

Selection of the study

A comprehensive search on five electronic databases was carried out and discovered a total of 6619 records. After removing duplicate articles, there remained a total of 1702 articles that were screened based on their titles and abstracts. A grand number of 1216 items were eliminated from consideration based on the specific exclusion criteria. Afterward, the entirety of the remaining articles was assessed to ascertain their appropriateness. An additional 385 studies were excluded from the study because they contained duplicated data, did not provide sufficient information on anemia infection in Africa, or had unclear reporting of prevalence numbers. Ultimately, 101 publications met the requirements and were included in the qualitative synthesis and meta-analysis. Figure 1 presents a thorough summary of the process used to choose the study.

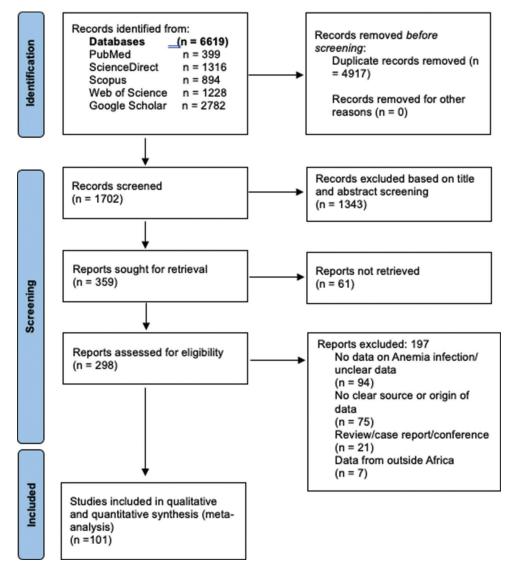


Figure 1: Summary of the studies selection and screening process

The systematic review and meta-analysis on the prevalence of anemia in Africa included a wide array of studies retrieved from 14 different countries in Africa. The research covers a range of years, with publication dates spanning from as early as 2004 to the most recent in 2023. The geographic distribution encompasses a diverse array of countries, such as Ethiopia, Tanzania, Uganda, Sudan, Nigeria, Papua New Guinea, Congo, Togo, Egypt, Rwanda, Guinea Bissau, Malawi, Gambia, and South Africa. Ethiopia is notable for having the greatest number of studies (n = 75/101).

A considerable proportion of the research employed a cross-sectional design (n = 90/101) out of the four different studies observed in the included manuscript (cross-sectional, prospective, and retrospective study designs), which was the predominant methodological approach utilized, accounting for approximately 89% of the included studies. However, there were also studies utilizing cohort (n = 2/101), retrospective (n = 7/101), and prospective designs (n = 2/101), demonstrating a wide range of methodologies used to examine the prevalence of anemia. Most of the research primarily concentrated on adult populations, while a significant proportion also investigated children, thereby emphasizing the issue of anemia across several age cohorts, as represented in Table 1.

The sample size in these studies shows significant variation. For example, Widiyanti *et al.* (2017) did a study in Papua New Guinea that studied a relatively small sample of 90 adults. In contrast, Wolde *et al.* (1993) conducted a much bigger survey in Ethiopia with a sample size of 14,740 persons. There was considerable fluctuation in the number of confirmed instances of anemia. For instance, Khalid *et al.* (2020) conducted a study in Sudan where they found 1520 positive cases out of 4271 individuals investigated. In contrast, investigations conducted by Tamir *et al.* (2018) and Alamdo *et al.* (2015) in Ethiopia reported just 7 and 6 positive cases, respectively.

Studies specifically focused on children also revealed important inferences. In Ethiopia, Gebrehaweria *et al.* (2020) conducted a comprehensive investigation involving 2554 children, revealing an astonishing 1857 instances of anemia, in contrast to Abera's (2018) study in Ethiopia, which analyzed a sample of 410 youngsters and identified 165 cases with positive results. Multiple research investigations undertaken in Ethiopia by authors such as Alemayehub *et al.* (2019), Alem *et al.* (2013), and Alemu *et al.* (2020), among others, have provided a significant amount of data for the overall analysis. The abundance of research conducted in Ethiopia highlights the country's strong emphasis on addressing the issue of anemia in the context of public health. Additional noteworthy research includes the study conducted by Nagu *et al.* (2014) in Tanzania, which observed a substantial number of positive cases (1067 out of 1245). Similarly, the study conducted by van Lettow *et al.* (2004) in Malawi also revealed a high prevalence, with 270 positive cases out of 319 individuals investigated, as represented in Table 1.

Anemia was highly prevalent in Africa, with an overall pooled estimate of 29.2% with a confidence interval (CI) ranging from 22.5% to 33.7%. Figure 2 shows that the prevalence of Anemia in Africa was determined to be substantial, with a pooled prevalence rate of P < 0.001. In addition, there was a significant level of heterogeneity, indicated by an I^2 value of 99.28%. Nevertheless, the studies that were included in the analysis showed a publication bias, as seen by the significant Egger's P value of 0.010 and the asymmetrical distribution of the studies in relation to the standard error, as depicted in Figure 3.

The subgroup meta-analysis, as presented in Table 2, offers a complete assessment of the impact of several factors, including as country, study design, maturity status of participants, and year of publication, on the prevalence of anemia in Africa. The prevalence rates of anemia vary significantly when considering statistics relevant to each country. Egypt has the highest rate of anemia, with a frequency of 99.5% (CI: 92.6-100), indicating that anemia is virtually universally present among its population. In comparison, Ethiopia, which has conducted a significant number of research (75), exhibits a considerably lower prevalence rate of 19.3% (CI: 15.8–23.4). This emphasizes a clear disparity in the burden of anemia between different locations. The significant heterogeneity ($I^2 > 90\%$) seen in many countries, including Tanzania ($I^2 = 99.31\%$) and Nigeria ($I^2 = 93.87\%$), highlights the considerable variation in the prevalence of anemia within these nations.

Studies with a cross-sectional design had the highest pooled prevalence in comparison with other study designs as represented in Figure 4.

An analysis of the participants' maturity status revealed a notable discrepancy in the prevalence of anemia between adults and children. The prevalence rate in adults, as indicated by 75 research, is 21% (CI: 17.6–24.8), whereas children, examined in 26 studies, show a significantly higher prevalence rate of 58.8% (CI: 53.6–63.8). The notable disparity suggests that children are more susceptible to anemia, potentially due to factors including inadequate nutrition and increased metabolic requirements. The substantial heterogeneity ($I^2 > 98\%$) seen in both subgroups indicates significant variations in

Name of author	Year of publication	Country	Total examined	Positive cases	Study designs	Adult/ children
Widiyanti <i>et al.</i> ^[17]	2017	Papua new gunnie	90	50	Cross-sectional	Adult
Msemo et al. ^[10]	2018	Tanzania	1248	458	Cross-sectional	Adult
Bongomin ^[18]	2021	Uganda	263	37	Cross-sectional	Adult
Tamir <i>et al.</i> ^[19]	2018	Ethiopia	394	7	Cohort	Adult
Alamdo et al. ^[20]	2015	Ethiopia	411	6	Cross-sectional	Adult
Woldeamanuel and Wondimu ^[21]	2018	Ethiopia	255	8	Cross-sectional	Adult
Beyene et al. ^[22]	2017	Ethiopia	528	8	Cross-sectional	Adult
Melese et al. ^[23]	2017	Ethiopia	377	8	Cross-sectional	Adult
Alem ^[24]	2013	Ethiopia	384	8	Cross-sectional	Adult
Deressa <i>et al.</i> ^[8]	2018	Ethiopia	320	8	Cross-sectional	Adult
Fiseha <i>et al.</i> ^[25]	2017	Ethiopia	373	8	Cohort	Adult
Tesfaye and Enawgaw ^[26]	2014	Ethiopia	349	8	Cross-sectional	Adult
Gedefaw et al. ^[27]	2013	Ethiopia	234	6	Cross-sectional	Adult
Milkias <i>et al</i> . ^[28]	2014	Ethiopia	616	5	Cross-sectional	Adult
Assefa et al.[29]	2015	Ethiopia	1061	8	Cross-sectional	Adult
Enawgaw et al. ^[30]	2014	Ethiopia	319	5	Cross-sectional	Adult
Daka et al. ^[31]	2013	Ethiopia	384	7	Cross-sectional	Adult
Ferede and Wondimeneh ^[32]	2013	Ethiopia	400	5	Cross-sectional	Adult
Dessalegn et al.[33]	2016	Ethiopia	425	8	Cross-sectional	Adult
Sahle <i>et al.</i> ^[34]	2017	Ethiopia	172	8	Cross-sectional	Adult
Wubetu and Mebratu ^[35]	2018	Ethiopia	376	5	Cross-sectional	Adult
Gelde et al. ^[36]	2015	Ethiopia	305	8	Cross-sectional	Adult
Hadgu <i>et al.</i> ^[37]	2013	Ethiopia	376	8	Cross-sectional	Adult
Alemayehu <i>et al</i> . ^[38]	2019	Ethiopia	993	650	Cross-sectional	Children
Woldie et al. ^[39]	2015	Ethiopia	366	231	Cross-sectional	Children
Tegegne <i>et al</i> . ^[40]	2022	Ethiopia	787	369	Cross-sectional	Children
Gebrehaweria Gebremeskel and Lemma Tirore ^[41]	2020	Ethiopia	2554	1857	Cross-sectional	Children
Sorsa <i>et al</i> . ^[42]	2021	Ethiopia	917	407	Cross-sectional	Children
Molla et al.[43]	2020	Ethiopia	577	242	Cross-sectional	Children
Malako <i>et al</i> . ^[44]	2018	Ethiopia	522	255	Cross-sectional	Children
Malako et al. ^[45]	2019	Ethiopia	477	248	Cross-sectional	Children
Roba <i>et al</i> . ^[46]	2016	Ethiopia	216	116	Cross-sectional	Children
Heinrichs et al. ^[47]	2021	Ethiopia	1290	918	Cross-sectional	Children
Heinrichs et al. ^[47]	2020	Ethiopia	2790	1809	Cross-sectional	Children
Heinrichs et al. ^[47]	2020	Ethiopia	3064	2204	Cross-sectional	Children
Abebaw et al.[48]	2020	Ethiopia	424	103	Cross-sectional	Adult
Bireda <i>et al</i> . ^[49]	2022	Ethiopia	476	128	Cross-sectional	Adult
Abebe et al. ^[50]	2022	Ethiopia	484	136	Cross-sectional	Adult
Bambo <i>et al</i> . ^[51]	2023	Ethiopia	282	132	Cross-sectional	Adult
Elmugabil and Adam ^[52]	2023	Sudan	208	92	Cross-sectional	Adult
Elmardi <i>et al.</i> ^[53]	2020	Sudan	4271	1520	Cross-sectional	Adult
Regasa and Haidar ^[54]	2019	Ethiopia	454	122	Cross-sectional	Adult
Teji <i>et al</i> . ^[55]	2016	Ethiopia	600	192	Cross-sectional	Adult
Seyoum <i>et al.</i> ^[56]	2019	Ethiopia	257	22	Cross-sectional	Adult
Gonete et al. ^[57]	2018	Ethiopia	462	118	Cross-sectional	Adult
Mengistu <i>et al.</i> ^[58]	2019	Ethiopia	443	49	Cross-sectional	Adult
Engidaw <i>et al.</i> ^[59]	2018	Ethiopia	456	100	Cross-sectional	Adult
Demelash and Murutse ^[60]	2015	Ethiopia	594	125	Cross-sectional	Adult
Tura <i>et al.</i> ^[61]	2020	Ethiopia	551	232	Cross-sectional	Adult
Alemu and Gebremedhin ^[62]	2020	Ethiopia	407	62	Cross-sectional	Adult
Gebreyesus <i>et al.</i> ^[63]	2019	Ethiopia	1323	384	Cross-sectional	Adult
Wolde-Gebriel <i>et al.</i> ^[64]	1993	Ethiopia	14740	2742	Cross-sectional	Adult
Mekasha and Zerfu ^[65]	2009	Ethiopia	707	41	Cross-sectional	Adult
Herrador et al.[66]	2014	Ethiopia	764	236	Cross-sectional	Adult

Tab	le	1:	Co	ntd.
I UN	· •		~~	

Name of author	Year of publication	Country	Total examined	Positive cases	Study designs	Adult/ children
Alelign <i>et al.</i> ^[67]	2015	Ethiopia	384	41	Cross-sectional	Adult
Mahmud <i>et al</i> . ^[68]	2013	Ethiopia	525	58	Cross-sectional	Adult
Assefa et al.[69]	2014	Ethiopia	404	152	Cross-sectional	Adult
Mesfin et al. ^[70]	2015	Ethiopia	1755	476	Cross-sectional	Adult
Teji <i>et al.</i> ^[71]	2016	Ethiopia	547	175	Cross-sectional	Adult
Desalegn Wolide et al.[72]	2014	Ethiopia	586	256	Cross-sectional	Adult
Gutema et al. ^[73]	2014	Ethiopia	355	84	Cross-sectional	Adult
Adem et al. ^[74]	2015	Ethiopia	338	77	Cross-sectional	Adult
Tesfaye et al. ^[75]	2015	Ethiopia	405	62	Cross-sectional	Adult
Chane ^[76]	2016	Ethiopia	517	112	Cross-sectional	Adult
Tandu-Umba and Mbangama ^[77]	2015	Congo	412	202	Cross-sectional	Adult
Addis Alene and Mohamed Dohe ^[12]	2014	Ethiopia	581	330	Cross-sectional	Adult
Kefiyalew et al. ^[78]	2014	Ethiopia	637	125	Cross-sectional	Adult
Alemu and Umeta ^[79]	2015	Ethiopia	1212	267	Cross-sectional	Adult
Obse <i>et al</i> . ^[80]	2013	Ethiopia	1678	737	Cross-sectional	Adult
Nega <i>et al.</i> ^[81]	2015	Ethiopia	354	123	Cross-sectional	Adult
Yihunie Akalu <i>et al.</i> ^[82]	2020	Ethiopia	837	333	Cross-sectional	Children
Ajakaye and Ibukunoluwa ^[83]	2020	Nigeria	103	52	Cross-sectional	Children
Getawa <i>et al.</i> ^[84]	2020	Ethiopia	251	134	Cross-sectional	Children
Adelman <i>et al</i> . ^[85]	2019	Uganda	627	451	Retrospective	Children
Tekile <i>et al.</i> ^[86]	2019	Ethiopia	6354	4003	Retrospective	Children
Girum <i>et al.</i> ^[87]	2017	Ethiopia	545	68	Retrospective	Children
Padovese ^[88]	2014	Ethiopia	410	165	Cross-sectional	Children
Cheong et al. ^[89]	1996	Uganda	400	296	Retrospective	Children
Roba <i>et al.</i> ^[46]	2016	Ethiopia	215	166	Cross-sectional	Children
Ughasoro <i>et al.</i> ^[90]	2015	Nigeria	209	100	Cross-sectional	Children
da Silva-Junior ^[91]	2019	Ethiopia	193	119	Retrospective	Children
Nambiema <i>et al.</i> ^[11]	2019	Togo	213	172	Retrospective	Children
Thorne <i>et al.</i> ^[92]	2013	Guinea Bissau	440	353	Cross-sectional	Children
Mbabazi ^[93]	2013	Rwanda	113	78	Cross-sectional	Children
Abaker and Mohammed ^[94]	2016	Sudan	40	34	Cross-sectional	Adult
Isanaka <i>et al.</i> ^[95]	2012	Tanzania	684	438	Cross-sectional	Adult
Abdelkareem <i>et al.</i> ^[96]	2012	Egypt	100	100	Cross-sectional	Adult
Atomsa <i>et al.</i> ^[97]	2019	Ethiopia	100	40	Cross-sectional	Adult
Gunda <i>et al.</i> ^[98]	2014	Tanzania	701	358		Adult
	2018	Malawi			Retrospective	
van Lettow <i>et al.</i> ^[99]			500	427	Cross-sectional	Adult
Abay et al. ^[100]	2018	Ethiopia	100	53	Cross-sectional	Adult
Bashir <i>et al.</i> ^[101]	2015	Sudan	100	44	Cross-sectional	Adult
Yang <i>et al.</i> ^[102]	2022	Congo	200	139	prospective	Adult
Pessoa <i>et al.</i> ^[103]	2016	Nigeria	80	71	Cross-sectional	Adult
Minchella <i>et al.</i> ^[4]	2015	Gambia	39	26	Cross-sectional	Adult
Kerkhoff <i>et al.</i> ^[104]	2016	South Africa	153	131	Cross-sectional	Adult
Kahase <i>et al.</i> ^[105]	2020	Ethiopia	40	10	Cross-sectional	Adult
Hella <i>et al.</i> ^[106]	2018	Tanzania	102	74	Cross-sectional	Adult
Yesuf ^[107]	2017	Ethiopia	44	30	Cross-sectional	Adult
Nagu <i>et al.</i> ^[108]	2014	Tanzania	1245	1067	Prospective	Adult
Islam et al.[109]	2017	Malawi	319	270	Cross-sectional	Adult

study outcomes, likely attributable to diverse techniques and demographic characteristics, as represented in Table 2.

The methodology, which considers the year of publication, also reveals varying prevalence of anemia across

time. Prior to 2005, studies indicate a prevalence rate of 52.8% (CI: 4.7–96.2). However, the broad CI and substantial heterogeneity ($I^2 = 99.76\%$) suggest that the data is inconsistent. During the period from 2005 to 2010, a solitary investigation indicates a significantly reduced occurrence rate of 5.8% (CI: 4.3–7.8). Nevertheless, the

Mude, et al.: A comprehensive systematic review and meta-analysis of the prevalence of anemia in Africa

Studies	Estimat	te (95% (c.I.)	Ev/Trt			
Widivanti et al 2017	0.556 /	0.452, 0	6551	50/90			-
Omari et al 2018		0.341, 0		458/1248			
Bongomi 2021	0.141 (0.104, 0	.188)	37/263			
Tamir et al 2018		0.008, 0		7/394	•		
Alamdo et al 2015		0.007, 0 0.016, 0		6/411	•		
Woldeamanuel et al 2018 Bevene et al 2017		0.016, 0		8/255 8/528			
Melese et al 2017		0.011, 0		8/377	-		
Alem et al 2013		0.010, 0		8/384	-		
Deressa et al 2016		0.013, 0		8/320	-		
Fiesha et al 2013		0.011, 0		8/373	-		
		0.012, 0		8/349	₽- ₽-		
Gedefaw et al 2013 Wolde et al 2015		0.012, 0 0.003, 0		6/234 5/616	-		
Assefa et al 2015		0.004, 0			ā		
Bamlaku et al 2014	0.016 (0.007, 0	.037)	5/319	-		
Daka et al 2013		0.009, 0		7/384			
Ferede et al 2013 Geleta et al 2016		0.005, 0 0.009, 0		5/400 8/425	•		
Salhe et al 2017		0.023, 0		8/172			
Muluken et al 2018		0.006, 0		5/376			
Gelde et al 2015	0.026 (0.013, 0	.052)	8/305	-		
Hadgu et al 2013		0.011, 0		8/376	-		
		0.624, 0		650/993			
Woldie et al 2015 Tegegne et al 2022		0.580, 0 0.434, 0		231/366 369/787			
Gebrehaweria et al 2022				1857/2554			- +
Sorsa et al 2021	0.444 (0.412, 0	. 476)	407/917			
Molla et al 2020		0.380, 0		242/577			
Malako et al 2018		0.446, 0		255/522			_ e _
Malako et al. 2019 Roba et al 2016		0.475, 0 0.470, 0		248/477 116/216			_
Heinrichs et al 2020		0.686, 0		918/1290			
Heinrichs et. al 2020	0.648 (0.630, 0	.666)	1809/2790			-
Heinrichs et al. 2020	0.719 (0.703, 0	.735)	2204/3064			•
Abebaw 2020		0.204, 0		103/424			
Asima 2022 Gizawu 2022		0.231, 0 0.243, 0		128/476 136/484			-
Gizawu 2022 Getachew 2023		0.243, 0 0.411, 0		136/484 132/282		-	_ _
Abdelmageed and Ishaq 2023		0.376, 0		92/208			- _
Khalid et al 2020	0.356 (0.342, 0	.370)	1520/4271			-
Regassa et al 2019		0.230, 0		122/454			-
Teji et al 2016 Seyoum et al 2019		0.284, 0 0.057, 0		192/600 22/257		T	-
Gonete et al 2018		0.218, 0		118/462	-		
Megistu et al 2019		0.085, 0		49/443			
Engidaw et al 2018		0.184, 0		100/456			
Demelash et al 2019		0.180, 0		125/594		•	
Tura et al 2020 Alemu et al 2020		0.380, 0 0.121, 0		232/551 62/407			
		0.121, 0		384/1323		-	-
Wolde et al 1993	0.186 (0.180, 0	.192)	2742/14740			
Mekasha et al 2009	0.058 (0.043, 0	.078)	41/707			
Herrador et al 2014	0.309 (0.277, 0	.343)	236/764	_	+	-
Alelign et al 2015 Mahmud et al 2013		0.080, 0 0.086, 0		41/384 58/525			
Assefa et al. 2013		0.086, 0		58/525 152/404	-		_
Mesfin et al 2015		0.251, 0		476/1755			
Teji et al. 2016	0.320 (0.282, 0	.360)	175/547		+	e —
Desalegn et al 2014		0.397, 0		256/586		_	
Gutem et al 2014 Adem et al 2015		0.195, 0 0.186, 0		84/355 77/338		-	
Adem et al 2015 Tesfaye et al. 2015		0.186, 0 0.121, 0		62/405			
Chane et al 2016	0.217 (0.183, 0	.254)	112/517	-		
Barthelemy and Andy 2015	0.490 (0.442, 0	.539)	202/412			— —
Akene and Dolhe 2014		0.527, 0		330/581		_	
Abrilha et al 2014 Alemu and umeta 2015		0.167, 0 0.198, 0		125/637 267/1212	-	-	
Alemu and umeta 2015 kedir et al 2013		0.198, 0 0.416, 0		267/1212 737/1678		-	
Nega et al 2015		0.300, 0		123/354		-	_
Akalu et al 2020	0.398 (0.365, 0	.431)	333/837			
Ajakaye and Ibukunoluwa 2020		0.409, 0		52/103			_
Getawa et al 2020 Adelman et al 2019		0.472, 0 0.683, 0		134/251 451/627			
Tekile et al 2019		0.683, 0		451/62/ 4003/6354			
Girum et al 2019		0.100, 0		68/545			
Abera 2018	0.402 (0.356, 0	.451)	165/410			_ - -
Barungi et al. 2017		0.695, 0		296/400			
Roba et al. 2016 Ughasoro et al 2015		0.711, 0 0.412, 0		166/215 100/209			- _
Ahmed 2014		0.546, 0		119/193			-
Nambiema et al 2014	0.808 (0.749, 0	.855)	172/213			_
Thorne et al 2013	0.802 (0.762, 0	.837)	353/440			
Mbabazi and Kanyamuhunga 2017 Mohammed 2016				78/113 34/40			
Mohammed 2016 Isanaka et al 2012		0.704, 0 0.604, 0		34/40 438/684			
Abdelkareem et al 2012		0.926, 1		438/684			-
Atomsa et al 2014		0.285, 0		40/108		+	_
Gunda et al 2014	0.511 (0.474, 0	.548)	358/701			
van Lettow 2005		0.820, 0		427/500			
Abayetal 2018 Bashiretal 2015		0.432, 0		53/100 44/100			
Bashir et al 2015 Mulenga et al 2017		0.346, 0 0.628, 0		44/100 139/200			
Erhabor et al 2020	0.888 (0.798, 0	.940)	71/80			
Minchella et al 2015		0.507, 0		26/39			-
Kerkhof et al 2016	0.856 (0.791, 0	.903)	131/153			+ _
Kahase et al 2020		0.140, 0		10/40			
		0.631, 0		74/102 30/44			
Hella et al 2018	0 600 "		.002)				
Hella et al 2018 Yesuf 2017	0.682 (.875)	1067/1245			
Hella et al 2018 Yesuf 2017 Nagu et al 2014	0.857 (0.836, 0 0.803, 0		1067/1245 270/319			
Hella et al 2018 Yesuf 2017 Nagu et al 2014 van Lettow et al 2004	0.857 (0.846 (0.836, 0 0.803, 0	.882)	270/319			
Hella et al 2018 Yesuf 2017 Nagu et al 2014	0.857 (0.846 (0.836, 0 0.803, 0	.882)	270/319		~	* -+
Hella et al 2018 Yesuf 2017 Nagu et al 2014 van Lettow et al 2004	0.857 (0.846 (0.836, 0 0.803, 0	.882)	270/319 29608/78271	0	0.25	>

Figure 2: A forest plot showing the pooled prevalence of anemia in Africa

following time periods, specifically 2011–2015 and 2016– 2020, exhibit higher prevalence rates of 22% (CI: 16.4–28.8) and 34.9% (CI: 29.5–40.8), respectively, accompanied by significant heterogeneity ($I^2 > 98\%$), suggesting diverse research findings. The prevalence of anemia remained constant at 34.9% (CI: 27.0–43.7) for research published from 2021 to 2024, indicating a consistent and noteworthy burden of anemia in recent years, as represented in Table 2. The corresponding forest plots for the pooled prevalence of anemia in Africa in relation to country, maturity status, and year of publication are presented in the Supplementary Figures 1-3.

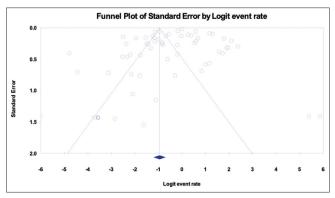


Figure 3: A funnel plot showing no publication bias of anemia in Asia (Egger's P = 0.00914)

Figure 5 illustrates the prevalence of anemia in several African countries, highlighting significant regional differences that are important to understand the disease's epidemiological effects. Egypt is depicted as having the most vivid shade in Northern Africa, signifying the highest frequency range of 91.8% to 99.5%. This is in line with the results of the subgroup meta-analysis, which demonstrate that Egypt has a 99.5% prevalence of anemia, a critical public health concern requiring immediate attention.

East African nations, such as Tanzania, Uganda, and Rwanda, have a significant prevalence of anemia. Specifically, the incidence ranges from 53.6% to 61.2% in Tanzania, 45.9% to 53.6% in Uganda, and 61.2% to 68.9% in Rwanda [Figure 5]. The meta-analysis confirms these results, indicating that the prevalence rates in Tanzania and Uganda are 63.7% and 51.7%, respectively. The high frequency of anemia in these places highlights the substantial burden of this condition, which can be related to causes such as inadequacies in nutrition, infectious illnesses, and poor healthcare access. Despite having the highest number of papers included in the meta-analysis, Ethiopia is depicted with a lighter hue, indicating a lower prevalence range of 15.3-23%. The prevalence identified in the subgroup analysis is 19.3%, indicating a comparatively lesser burden of anemia in this region compared to others.

Table 2: Subgroup meta-analysis of the prevalence of anemia in Africa in relation to country, type of study designs, maturity status of participants and year of publication

Parameter	Number of	Prevalence	CI (%)	Q	P	Heter	ogeneity
	studies					DF	Р
Country							
Papua Guinea	1	55.6	45.2-65.5	-	-	-	-
Tanzania	5	63.7	42.4-80.8	579.94	99.31	4	<0.001
Uganda	3	51.7	20.6-81.5	214.63	99.07	2	<0.001
Ethiopia	75	19.3	15.8–23.4	1142.45	99.35	74	<0.001
Sudan	4	49.3	37.0-61.6	35.95	91.66	3	<0.001
Congo	2	59.5	38.7-77.4	22.34	95.52	1	<0.001
Nigeria	3	64.7	41.1-82.8	32.65	93.87	2	<0.001
Togo	1	80.8	74.9-85.5	-	-	-	-
Guinea Bissau	1	80.2	76.2-83.7	-	-	-	-
Rwanda	1	69.0	59.9-76.9	-	-	-	-
Egypt	1	99.5	92.6-100	-	-	-	-
Malawi	2	85.1	82.5-87.4	0.09	0.0	1	0.766
Gambia	1	66.7	50.7-79.6	-	-	-	-
South Africa	1	85.6	79.1–90.3	-	-	-	-
Maturity							
Adult	75	21.0	17.6-24.8	6297.61	98.82	74	<0.001
Children	26	58.8	53.6-63.8	1442.31	98.27	25	<0.001
Year of publication							
<2005	2	52.8	4.7-96.2	412.43	99.76	1	<0.001
2005-2010	1	5.8	4.3-7.8	-	-	-	-
2011-2015	40	22.0	16.4-28.8	3696.46	98.94	39	<0.001
2016-2020	51	34.9	29.5-40.8	5542.83	99.1	50	<0.001
2021-2024	7	34.9	27.0-43.7	152.36	96.06	6	<0.001

CI=Confidence interval

Studies	Estimate (9	5% C.I.)	Ev/Trt		
Nidiyanti et al	0.556 (0.452		50/90		_
Dmari et al	0.367 (0.341		458/1248		-=-
Bongomi	0.141 (0.104		37/263		
Alamdo et al Noldeamanuel et al	0.015 (0.007		6/411 8/255	B-	
ivoldeamanuel et al Bevene et al	0.031 (0.016				
velese et al	0.021 (0.011				
Nem et al	0.021 (0.010		8/384	- -	
Deressa et al	0.025 (0.013	, 0.049)	8/320	•	
esfaye et al	0.023 (0.012		8/349	•	
Sedefaw et al	0.026 (0.012		6/234	-	
Volde et al Issefa et al	0.008 (0.003				
lamlaku et al	0.016 (0.004		5/319		
Daka et al	0.018 (0.009		7/384		
erede et al	0.012 (0.005		5/400		
Geleta et al	0.019 (0.009	, 0.037)	8/425	B -	
alhe et al	0.047 (0.023		8/172		
fuluken et al	0.013 (0.006		5/376	•	
Selde et al	0.026 (0.013		8/305	-	
adgu et al	0.021 (0.011		8/376	•	_
lemayehub et al	0.655 (0.624				
voldie et al	0.631 (0.580				
egegne et al Sebrehaweria et al	0.727 (0.709				
orsa et al	0.444 (0.412				
folia et al	0.419 (0.380	, 0.460)			
falako et al	0.489 (0.446	, 0.531)	255/522		
falako et al.	0.520 (0.475	, 0.564)	248/477		
oba et al	0.537 (0.470				_
einrichs et al	0.712 (0.686				
einrichs et. al einrichs et al.	0.648 (0.630 0.719 (0.703				
einrichs et al. bebaw	0.719 (0.703 0.243 (0.204		2204/3064 103/424		-
sima	0.243 (0.204	, 0.311		_	
sima izawu	0.281 (0.243	, 0.323)	136/484	_	
ietachew	0.468 (0.411				
bdelmageed and Ishaq	0.442 (0.376	, 0.510)	92/208		_
halid et al	0.356 (0.342	, 0.370)	1520/4271		-
egassa et al	0.269 (0.230		122/454		⊢
eji et al	0.320 (0.284		192/600	_	+
eyoum et al sonete et al	0.086 (0.057		22/257 118/462		
legistu et al	0.255 (0.218		49/443		
ingidaw et al	0.111 (0.085 0.219 (0.184		49/443		
emelash et al	0.210 (0.180		125/594		
ura et al	0.421 (0.380				_ _
lemu et al	0.152 (0.121	, 0.191)	62/407		
ebreyesus et al	0.290 (0.266	, 0.315)	384/1323	-	-
Volde et al	0.186 (0.180	, 0.192)	2742/14740		
lekasha et al	0.058 (0.043	, 0.078)	41/707	-	
errador et al	0.309 (0.277		236/764		
lelign et al	0.107 (0.080		41/384		
fahmud et al	0.110 (0.086		58/525		
lssefa et al. resfin et al	0.376 (0.330		152/404 476/1755	-	
lesfin et al eji et al.	0.271 (0.251 0.320 (0.282		476/1755 175/547	-	
ejietai. Desalegn et al	0.320 (0.282				
Sutem et al	0.237 (0.195				-
dem et al	0.228 (0.195			_	
esfaye et al.	0.153 (0.121	, 0.192)	62/405		
hane et al	0.217 (0.183	, 0.254)	112/517		
arthelemy and Andy	0.490 (0.442		202/412		
kene and Dolhe	0.568 (0.527		330/581		
brilha et al	0.196 (0.167				
lemu and umeta	0.220 (0.198		267/1212		
edir et al	0.439 (0.416		737/1678 123/354		*
lega et al kalu et al	0.347 (0.300		123/354 333/837		
kalu et al jakaye and Ibukunoluwa	0.398 (0.365 0.505 (0.409		333/837 52/103		
jakaye and ibukunoluwa jetawa et al	0.534 (0.409				
bera	0.402 (0.356				_ _
oba et al.	0.772 (0.711	, 0.823)	166/215		
ghasoro et al	0.478 (0.412	, 0.546)	100/209		_
horne et al	0.802 (0.762	, 0.837)	353/440		
Ibabazi and Kanyamuhunga	0.690 (0.599		78/113		_
lohammed	0.850 (0.704		34/40		
anaka et al	0.640 (0.604		438/684		
bdelkareem et al tomsa et al	0.995 (0.926		100/100 40/108		=
tomsa et al an Lettow	0.370 (0.285		40/108		
an Lettow bay et al	0.530 (0.432		53/100		
ashir et al	0.440 (0.346		44/100		_
	0.888 (0.798		71/80		
maboretal	0.667 (0.507	, 0.796)	26/39		-
linchella et al		, 0.903)	131/153		- _
finchella et al erkhof et al			10/40		
tinchella et al ierkhof et al iahase et al	0.250 (0.140				
finchella et al erkhof et al ahase et al ella et al	0.250 (0.140	, 0.803)	74/102		-
linchella et al erkhof et al ahase et al ella et al esuf	0.250 (0.140 0.725 (0.631 0.682 (0.532	, 0.803) , 0.802)	74/102 30/44		
linchella et al erkhof et al ahase et al ella et al esuf an Lettow et al	0.250 (0.140 0.725 (0.631 0.682 (0.532 0.846 (0.803	, 0.803) , 0.802) , 0.882)	74/102 30/44 270/319		
linchella et al erkhof et al ahase et al ella et al esuf an Lettow et al	0.250 (0.140 0.725 (0.631 0.682 (0.532 0.846 (0.803	, 0.803) , 0.802) , 0.882)	74/102 30/44 270/319		
linchella et al erkhof et al ahase et al ella et al esuf an Lettow et al aubgroup Cross-sectional (I^2=99.19 % , P=0.000)	0.250 (0.140 0.725 (0.631 0.682 (0.532 0.846 (0.803	, 0.803) , 0.802) , 0.882) , 0.319)	74/102 30/44 270/319 22920/67026		
linchella et al exhofe et al ella et al est et al subgroup Cross-sectional (1*2=99.19 %, P=0.000) amire et al	0.250 (0.140 0.725 (0.631 0.682 (0.532 0.846 (0.803 0.275 (0.235	, 0.803) , 0.802) , 0.882) , 0.319)	74/102 30/44 270/319		
linchella et al erkhof et al ahase et al ella et al esof un Lettov et al ubgroup Cross-sectional (l^2=99.19 %, P=0.000) amir et al esha et al	0.250 (0.140 0.725 (0.631 0.682 (0.532 0.846 (0.803 0.275 (0.235 0.018 (0.008	, 0.803) , 0.802) , 0.882) , 0.319) , 0.037) , 0.042)	74/102 30/44 270/319 22920/67026 7/394	•	
linchella et al erkhof et al ahase et al ella et al esof un Lettov et al ubgroup Cross-sectional (l^2=99.19 %, P=0.000) amir et al esha et al	0.250 (0.140 0.725 (0.631 0.682 (0.532 0.846 (0.803 0.275 (0.235 0.018 (0.008 0.021 (0.011	, 0.803) , 0.802) , 0.882) , 0.319) , 0.037) , 0.042)	74/102 30/44 270/319 22920/67026 7/394 8/373	∎- ∎-	
linchella et al erkhof et al ahase et al esuf an Lettow et al ubgroup Cross-sectional (I^2=99.19 %, P=0.000) amir et al lesha et al bugroup Cohort (I^2=0 %, P=0.713) delman et al	0.250 (0.140 0.725 (0.631 0.682 (0.532 0.846 (0.803 0.275 (0.235 0.018 (0.008 0.021 (0.011 0.020 (0.012 0.719 (0.683	, 0.803) , 0.802) , 0.882) , 0.319) , 0.037) , 0.042) , 0.032) , 0.753)	74/102 30/44 270/319 22920/67026 7/394 8/373 15/767 451/627	∎- ∎-	
linchella et al erkhof et al elka et al ella et al sest ubgroup Cross-sectional (l^2=99.19 %, P=0.000) amir et al lesha et al ubgroup Cohort (l^2=0 %, P=0.713) delman et al ekelle et al	0.250 (0.140 0.725 (0.631 0.682 (0.532 0.846 (0.803 0.275 (0.235 0.018 (0.008 0.021 (0.011 0.020 (0.012 0.719 (0.683 0.630 (0.618	, 0.803) , 0.802) , 0.882) , 0.319) , 0.037) , 0.042) , 0.032) , 0.753) , 0.642)	74/102 30/44 270/319 22920/67026 7/394 8/373 15/767 451/627 4003/6354	∎- ∎-	
Inchella et al enchof et al ahase et al esuf an Lettow et al ubgroup Cross-sectional (I^2=99.19 %, P=0.000) amir et al lesha et al bugroup Cohort (I^2=0 %, P=0.713) delman et al ekile et al	0.250 (0.140 0.725 (0.631 0.682 (0.532 0.846 (0.803 0.275 (0.235 0.018 (0.008 0.021 (0.011 0.020 (0.012 0.719 (0.683 0.630 (0.618 0.125 (0.100	, 0.803) , 0.802) , 0.882) , 0.319) , 0.037) , 0.042) , 0.032) , 0.753) , 0.642) , 0.155)	74/102 30/44 270/319 22920/67026 7/394 8/373 15/767 451/627 4003/6354 68/545	∎- ∎-	
Inchella et al erkhof et al ahase et al ella et al sesf an Lettow et al tubgroup Cross-sectional (l^2=99.19 %, P=0.000) amir et al lesha et al tubgroup Cohort (l^2=0 %, P=0.713) delman et al ekle et al aringi et al.	0.250 (0.140 0.725 (0.631 0.682 (0.532 0.846 (0.803 0.275 (0.235 0.018 (0.008 0.021 (0.011 0.020 (0.012 0.719 (0.683 0.630 (0.618 0.125 (0.100 0.740 (0.695	, 0.803) , 0.802) , 0.882) , 0.319) , 0.037) , 0.042) , 0.032) , 0.753) , 0.642) , 0.155) , 0.781)	74/102 30/44 270/319 22920/67026 7/394 8/373 15/767 451/627 4003/6354 68/545 296/400	∎- ∎-	
Ininchella et al Grichof et al chrose et al feala et al feau an Lettov et al subgroup Cross-sectional (I^2=99.19 %, P=0.000) amir et al liesha et al bugroup Cohort (I^2=0 %, P=0.713) delman et al ekile et al sirum et al anungi et al.	0.250 (0.140 0.725 (0.613 0.682 (0.532 0.846 (0.803 0.275 (0.235 0.018 (0.008 0.021 (0.011 0.020 (0.012 0.719 (0.683 0.630 (0.618 0.125 (0.100 0.740 (0.695	, 0.803) , 0.802) , 0.882) , 0.319) , 0.042) , 0.032) , 0.032) , 0.032) , 0.753) , 0.642) , 0.751) , 0.781) , 0.682)	74/102 30/44 270/319 22920/67026 7/394 8/373 15/767 451/627 4003/6354 68/545 296/400 119/193	∎- ∎-	
Inchella et al inchella et al chase et al lella et al senf an Lettov et al tubgroup Cross-sectional (I*2=99.19 %, P=0.000) amir et al liesha et al subgroup Cohort (I*2=0 %, P=0.713) delman et al ekile et al anngi et al. hmed ambiema et al	0.250 (0.140 0.725 (0.613) 0.682 (0.532 0.846 (0.803 0.275 (0.235 0.018 (0.008 0.021 (0.011 0.020 (0.012 0.719 (0.663 0.125 (0.100 0.740 (0.655 0.617 (0.546	, 0.803) , 0.802) , 0.882) , 0.319) , 0.037) , 0.042) , 0.032) , 0.642) , 0.642) , 0.753) , 0.642) , 0.751) , 0.761) , 0.682) , 0.855)	74/102 30/44 270/319 22920/67026 7/394 8/373 15/767 451/627 4003/6354 68/545 296/400 119/193 172/213	∎- ∎-	
Ininchella et al Grithof et al Anase et al Jeans et al Jeans et al Jeans et al Jeans et al Jeans et al Jeans et al Jarungi et al	0.250 (0.140 0.725 (0.631 0.682 (0.532 0.846 (0.803 0.275 (0.235 0.018 (0.006 0.021 (0.011 0.020 (0.012 0.719 (0.683 0.630 (0.618 0.125 (0.100 0.740 (0.685 0.617 (0.546 0.808 (0.749	, 0.803) , 0.802) , 0.882) , 0.319) , 0.037) , 0.042) , 0.032) , 0.642) , 0.753) , 0.642) , 0.751) , 0.751) , 0.781) , 0.682) , 0.855) , 0.548)	74/102 30/44 270/319 22920/67026 7/394 8/373 15/767 451/627 4003/6354 66/545 296/400 119/193 172/213 358/701	∎- ∎-	
Ininchella et al Grithof et al Anase et al Jeans et al Jeans et al Jeans et al Jeans et al Jeans et al Jeans et al Jarungi et al	0.250 (0.140 0.725 (0.613) 0.682 (0.532 0.846 (0.803 0.275 (0.235 0.018 (0.008 0.021 (0.011 0.020 (0.012 0.719 (0.663 0.125 (0.100 0.740 (0.655 0.617 (0.546	, 0.803) , 0.802) , 0.882) , 0.319) , 0.037) , 0.042) , 0.032) , 0.642) , 0.753) , 0.642) , 0.751) , 0.751) , 0.781) , 0.682) , 0.855) , 0.548)	74/102 30/44 270/319 22920/67026 7/394 8/373 15/767 451/627 4003/6354 66/545 296/400 119/193 172/213 358/701	∎- ∎-	
Ininchella et al Ininchella et al Anasse et al Iesito et al Sentor et al Iubgroup Cross-sectional (l^2=99.19 %, P=0.000) amir et al Iesiha et al Iubgroup Cohort (l^2=0 %, P=0.713) Idelman et al Isirum et al Ianungi et al. Ihmed Iambiema et al Iubgroup Retrospective (l^2=98.72 %, P=0.000)	0.250 (0.140 0.725 (0.631 0.682 (0.532 0.846 (0.803 0.275 (0.235 0.018 (0.008 0.021 (0.011 0.020 (0.012 0.719 (0.683 0.125 (0.100 0.125 (0.100 0.740 (0.695 0.617 (0.546 0.808 (0.749 0.511 (0.474 0.589 (0.453	, 0.803) , 0.802) , 0.802) , 0.882) , 0.319) , 0.037) , 0.042) , 0.032) , 0.753) , 0.642) , 0.755) , 0.781) , 0.682) , 0.855) , 0.548) , 0.712)	74/102 30/44 270/319 22920/67026 7/394 8/373 15/767 4003/6354 68/545 296/400 119/193 172/213 358/701 5467/9033	∎- ∎-	
<pre>//inchella et al /inchella et al /ekhof et al /ekhof et al /ekhof et al /ubgroup Cross-sectional (l^2=99.19 %, P=0.000) 'amir et al /ekhof et al /anungi et al /anungi et al /anungi et al /anungi et al /anungi et al /anungi et al</pre>	0.250 (0.140 0.725 (0.631 0.682 (0.532 0.846 (0.803 0.275 (0.235 0.018 (0.008 0.021 (0.011 0.020 (0.012 0.719 (0.633 0.630 (0.618 0.125 (0.100 0.740 (0.655 0.617 (0.546 0.808 (0.748 0.511 (0.474 0.559 (0.628	, 0.803) , 0.802) , 0.802) , 0.882) , 0.319) , 0.037) , 0.042) , 0.032) , 0.753) , 0.642) , 0.753) , 0.761) , 0.855) , 0.548) , 0.712) , 0.755)	74/102 30/44 270/319 22920/67026 7/394 8/373 15/767 451/627 4003/6354 68/545 296/400 119/193 172/213 358/701 5467/9033 139/200	∎- ∎-	
Minchella et al Grinchella et al Galasse et al Jelia et al Yesuf an Lettov et al Subgroup Cross-sectional (l^2=99.19 %, P=0.000) Tamir et al Subgroup Cohort (l^2=0 %, P=0.713) Kdelman et al Subgroup Cohort (l^2=0 %, P=0.713) Kdelman et al Sanungi et al Sanungi et al Sunda et al Subgroup Retrospective (l^2=98.72 %, P=0.000) Atulenga et al Bay et al	0.250 (0.140 0.725 (0.631 0.682 (0.532 0.846 (0.803 0.275 (0.235 0.018 (0.008 0.021 (0.011 0.020 (0.012 0.719 (0.683 0.125 (0.100 0.125 (0.100 0.740 (0.695 0.617 (0.546 0.808 (0.749 0.511 (0.474 0.589 (0.453	, 0.803) , 0.802) , 0.882) , 0.319) , 0.037) , 0.042) , 0.032) , 0.032) , 0.032) , 0.622) , 0.781) , 0.855) , 0.548) , 0.548) , 0.555) , 0.875)	74/102 30/44 270/319 22920/67026 7/394 8/373 15/767 451/627 4003/6354 68/545 296/400 119/193 172/213 358/701 5467/9033 139/200 1067/1245	∎- ∎-	
Minchella et al Grinchella et al Galase et al Jelia et al Yesuf an Lettov et al Subgroup Cross-sectional (l^2=99.19 %, P=0.000) Tamir et al Jischa et al Subgroup Cohort (l^2=0 %, P=0.713) Udelman et al Sunda et al Sunda et al Sunda et al Subgroup Retrospective (l^2=98.72 %, P=0.000) Atulenga et al Subgroup prospective (l^2=96.78 %, P=0.000)	0.250 (0.140 0.722 (0.631 0.682 (0.632 0.846 (0.603 0.275 (0.283 0.018 (0.000 0.021 (0.011 0.020 (0.012 0.719 (0.683 0.630 (0.610 0.125 (0.103 0.740 (0.683 0.630 (0.610 0.510 (0.541 0.568 (0.453 0.645 (0.628 0.657 (0.535 0.799 (0.599	, 0.803) , 0.802) , 0.882) , 0.319) , 0.032) , 0.032) , 0.032) , 0.032) , 0.632) , 0.753) , 0.642) , 0.155) , 0.761) , 0.6825) , 0.548) , 0.712) , 0.755) , 0.875) , 0.906)	74/102 30/44 270/319 22920/67026 7/394 8/373 15/767 403/5634 66/545 296/400 119/193 172/213 356/7/01 5467/903 1067/1245 1296/1445	∎- ∎-	
<pre>finchella et al inchella et al achase et al ella et al esuf an Lettov et al ubgroup Cross-sectional (l^2=99.19 % , P=0.000) amir et al lesha et al subgroup Cohort (l^2=0 % , P=0.713) delman et al ekelle et al annigi et al annigi et al sunda et al ubgroup Retrospective (l^2=98.72 % , P=0.000) fulença et al agu et al agu et al agu et al</pre>	0.250 (0.140 0.725 (0.613) 0.682 (0.532 0.846 (0.803 0.275 (0.235 0.275 (0.235 0.275 (0.235 0.018 (0.000 0.021 (0.011 0.020 (0.012 0.719 (0.683 0.630 (0.618 0.125 (0.100 0.740 (0.695 0.617 (0.546 0.511 (0.474 0.599 (0.453 0.655 (0.628	, 0.803) , 0.802) , 0.882) , 0.319) , 0.032) , 0.032) , 0.032) , 0.032) , 0.632) , 0.753) , 0.642) , 0.155) , 0.761) , 0.6825) , 0.548) , 0.712) , 0.755) , 0.875) , 0.906)	74/102 30/44 270/319 22920/67026 7/394 8/373 15/767 403/5434 66/545 296/400 119/193 172/213 356/7/01 5467/903 1067/1245 1296/1445	∎- ∎-	
Crinbor et al Minchella et al Minchella et al Minchella et al Means et al Hella et al Fear ami et al Subgroup Cross-sectional (I^2=99.19 %, P=0.000) Adeiman et al Subgroup Cohort (I^2=0 %, P=0.713) Adeiman et al Sirum et al Janungi et al Janungi et al Junda et al Subgroup Retrospective (I^2=98.72 %, P=0.000) Mulenga et al Jaubgroup prospective (I^2=96.78 %, P=0.000) Dverall (I^2=99.28 %, P=0.000)	0.250 (0.140 0.722 (0.631 0.682 (0.632 0.846 (0.603 0.275 (0.283 0.018 (0.000 0.021 (0.011 0.020 (0.012 0.719 (0.683 0.630 (0.610 0.125 (0.103 0.740 (0.683 0.630 (0.610 0.510 (0.541 0.568 (0.453 0.645 (0.628 0.657 (0.535 0.799 (0.599	, 0.803) , 0.802) , 0.882) , 0.319) , 0.032) , 0.032) , 0.032) , 0.032) , 0.632) , 0.753) , 0.642) , 0.155) , 0.761) , 0.6825) , 0.548) , 0.712) , 0.755) , 0.875) , 0.906)	74/102 30/44 270/319 22920/67026 7/394 8/373 15/767 403/5434 66/545 296/400 119/193 172/213 356/7/01 5467/903 1067/1245 1296/1445	∎- ∎-	

Figure 4: Subgroup meta-analysis of the prevalence of anemia in Africa in relation to the type of study designs

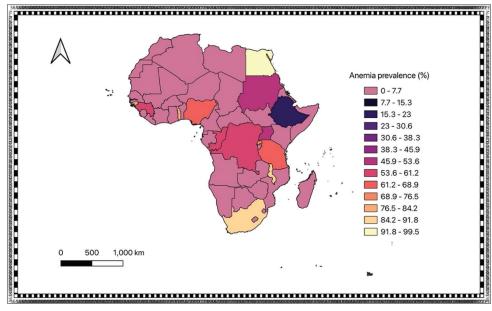


Figure 5: A spatial distribution map showing prevalence of anemia in Africa

West African countries such as Nigeria and Guinea-Bissau are depicted with shaded areas representing prevalence ranges of 68.9-76.5% and 76.5-84.2%, respectively. The meta-analysis confirms these findings, indicating a significant prevalence of anemia in Nigeria (64.7%) and Guinea-Bissau (80.2%). Togo's prevalence rate of 80.8% is within the high range of 76.5-84.2%, as indicated in the meta-analysis. The elevated rates may be indicative of fundamental problems such as poverty, food insecurity, and insufficient healthcare services. Malawi and South Africa, both located in Southern Africa, exhibit a significant prevalence range of 76.5-84.2% and 84.2-91.8%, respectively. Both results align with the findings of the meta-analysis, which indicate that Malawi has a prevalence of 85.1% and South Africa has 85.6%. This highlights the significant burden of anemia in both locations, as seen in Figure 5.

Discussion

Anemia continues to be a significant public health concern throughout Africa, as indicated by this meta-analysis data, which reveals a combined prevalence rate of 29.2%. The forecast highlights the extensive influence of anemia throughout the continent.^[1] The exact cause of the high frequency of Anemia in Africa remains uncertain, however it may be linked to the low quality of life in many African nations, as their diets often lack proper nutrition.^[110] The results of this research align with the findings of previous studies.^[72,110] Insufficient availability of diagnostic techniques and facilities in many major cities throughout Africa may contribute to the high prevalence of Anemia in the region, along with its accompanying health complications. The outcomes of this investigation are consistent with the reports of others.^[20] The statistical significance of the combined prevalence of anemia in this study emphasizes the immediate requirement for comprehensive and efficient public health efforts to tackle this crucial problem.^[20]

The study exhibited significant levels of heterogeneity. The large variability indicates notable disparities in the prevalence of anemia among studies, possibly attributed to varying diagnostic techniques, demographic variances, and regional factors.^[18] The wide range of differences makes it difficult to create a standardized plan for managing anemia. This emphasizes the need for strategies that are customized to each region in Africa, considering the distinct conditions of different places. Publication bias indicates that studies with significant or favorable findings are more likely to be published.^[15]

The subgroup meta-analysis reveals substantial disparities in the prevalence of anemia, which are impacted by factors such as the country of study, the age of participants, and the year of publication. This underscores the intricate nature of anemia as a public health issue. Egypt has an extremely high incidence rate of 99.5%, while Ethiopia claims a lower rate of 19.3%. This difference highlights the necessity for implementing policies tailored to each country to effectively address anemia. The presence of heterogeneity among countries, specifically Tanzania and Nigeria, with I^2 values surpassing 90%, indicates that factors such as disparities in nutrition, access to health care, and socioeconomic conditions play a role in these variations. These findings align with previous studies.^[10,106]

The cross-sectional studies in this review showed the highest combined incidence of anemia. This high prevalence is likely due to the systematic research conducted in both hospital and non-hospital settings. The findings of this investigation are consistent with the reports of other studies.

The significant disparity between the frequency of anemia in adults (21%) and children (58.8%) is particularly alarming. The disparity suggests that children are more susceptible to anemia due to their heightened nutritional requirements and increased vulnerability to infections. Previous research confirms this, highlighting that iron deficiency, a significant factor in causing anemia, is more common among children in low-resource environments.^[72] The significant diversity ($I^2 > 98\%$) within these subgroups also indicates the variation in study techniques and demographic characteristics, which affects prevalence estimates.^[110] The prevalence data exhibits temporal fluctuations when analyzed. Prior to 2005, there was a significant range of uncertainty and a high degree of variation, indicating irregularities in the available data. The decrease in prevalence between 2005 and 2010 can be linked to specific public health efforts or enhancements in data accuracy during this time. Nevertheless, the continuing rise from 2011 to 2020 underscores the enduring difficulties in managing anemia, despite worldwide health initiatives. This pattern indicates that although there has been some progress, there are still severe deficiencies in the management of anemia. Prior research indicates the necessity for more targeted and enduring endeavors, notwithstanding progress in worldwide health measures.^[1,2]

Egypt stands out in Northern Africa with the highest level of shading, indicating a concerning prevalence range of 91.8% to 99.5%. This finding is supported by the meta-analysis. The significant occurrence of this problem indicates the presence of serious underlying problems, such as inadequate nutrition and inefficient healthcare systems.^[72]

In East Africa, the prevalence rates of Tanzania range from 53.6% to 61.2%, Uganda from 45.9% to 53.6%, and Rwanda from 61.2% to 68.9%. The meta-analysis confirms these statistics, showing that Tanzania has a prevalence rate of 63.7% and Uganda has a prevalence rate of 51.7%. Rwanda's prevalence rate is within the higher range indicated on the map. The burden encompasses challenges such as insufficient nourishment, elevated rates of illness, and restricted availability of health care.^[111]

In addition, West African countries demonstrate elevated prevalence rates. The incidence rates in Nigeria range from 68.9% to 76.5%, in Guinea-Bissau from 76.5%

to 84.2%, and in Togo it is 80.8%. The meta-analysis validates these percentages, with Nigeria at 64.7% and Guinea-Bissau at 80.2%. The heightened rates underscore enduring issues such as poverty, food insecurity, and insufficient healthcare services.^[83] In Southern Africa, the prevalence rates are very high. Specifically, Malawi has a prevalence rate ranging from 76.5% to 84.2%, while South Africa has a prevalence rate ranging from 76.5% to 84.2%, while South Africa has a prevalence rate ranging from 84.2% to 91.8%. The meta-analysis reveals that the prevalence rates for these nations are 85.1% and 85.6%, respectively. The data presented suggests a substantial prevalence of anemia, which may be attributed to factors such as inadequate nutrition and long-term illnesses. Addressing these concerns would necessitate the implementation of comprehensive healthcare initiatives.^[69]

Strength and limitations

The review follows the PRISMA standards and conducts a comprehensive search of different databases to ensure the inclusion of a wide range of studies. Using a systematic methodology for data extraction and the establishment of specific criteria for inclusion, the review effectively reduces bias and improves the dependability of its conclusions. By employing a single-arm random-effects model and employing numerous statistical tests such as funnel plots and subgroup analyses, the meta-analysis gains strength and enables a nuanced comprehension of anemia incidence in many locations and populations in Africa. The analysis uncovers substantial variability (I² values reaching 99.28%) and publication bias, which may distort the findings and impact the precision of the prevalence estimations. The significant variation in the incidence of anemia observed in different research, along with the possibility of biases in study publication, emphasizes the challenge of developing a standardized measure of anemia prevalence and emphasizes the importance of being cautious when interpreting the findings.

Conclusion

This systematic review and meta-analysis underscores the critical and widespread prevalence of anemia across Africa, with an overall pooled estimate of 29.2%. Notably, the high prevalence found in countries such as Egypt, Nigeria, and Malawi, compared to lower rates in Ethiopia, indicates regional disparities that require targeted interventions. Addressing anemia in Africa will necessitate region-specific strategies that consider local conditions and challenges, alongside broader initiatives to improve nutritional quality and healthcare access.

Acknowledgments

The research team would like to acknowledge funding and support from the following sources: Center for Research and Development, SIMAD University.

Financial support and sponsorship

Financial support for this study was provided by Center for Research and Development, SIMAD University.

Conflicts of interest

There are no conflicts of interest.

References

- 1. Kassebaum NJ, GBD 2013 Anemia Collaborators. The global burden of anemia. Hematol Oncol Clin North Am 2016;30:247-308.
- Kassebaum NJ, Jasrasaria R, Naghavi M, Wulf SK, Johns N, Lozano R, *et al.* A systematic analysis of global anemia burden from 1990 to 2010. Blood 2014;123:615-24.
- 3. Mare KU, Aychiluhm SB, Sabo KG, Tadesse AW, Kase BF, Ebrahim OA, *et al.* Determinants of anemia level among reproductive-age women in 29 Sub-Saharan African countries: A multilevel mixed-effects modelling with ordered logistic regression analysis. PLoS One 2023;18:e0294992.
- Minchella PA, Donkor S, Owolabi O, Sutherland JS, McDermid JM. Complex anemia in tuberculosis: The need to consider causes and timing when designing interventions. Clin Infect Dis 2015;60:764-72.
- 5. Karava V, Dotis J, Kondou A, Christoforidis A, Taparkou A, Farmaki E, *et al.* Fibroblast growth-factor 23 and Vitamin D are associated with iron deficiency and anemia in children with chronic kidney disease. Pediatr Nephrol 2023;38:2771-9.
- 6. Breymann C. Iron deficiency anemia in pregnancy. Semin Hematol 2015;52:339-47.
- Sifakis S, Pharmakides G. Anemia in pregnancy. Ann N Y Acad Sci 2000;900:125-36.
- Deressa T, Damtie D, Workineh M, Genetu M, Melku M. Anemia and thrombocytopenia in the cohort of HIV-infected adults in Northwest Ethiopia: A facility-based cross-sectional study. EJIFCC 2018;29:36-47.
- 9. Gürbüz F, Yağcı-Küpeli B, Kör Y, Yüksel B, Zorludemir S, Gürbüz BB, *et al.* The first report of cabergoline-induced immune hemolytic anemia in an adolescent with prolactinoma. J Pediatr Endocrinol Metab 2014;27:159-63.
- 10. Msemo OA, Bygbjerg IC, Møller SL, Nielsen BB, Ødum L, Perslev K, *et al.* Prevalence and risk factors of preconception anemia: A community based cross sectional study of rural women of reproductive age in Northeastern Tanzania. PLoS One 2018;13:e0208413.
- 11. Nambiema A, Robert A, Yaya I. Prevalence and risk factors of anemia in children aged from 6 to 59 months in Togo: Analysis from Togo demographic and health survey data, 2013-2014. BMC Public Health 2019;19:215.
- 12. Addis Alene K, Mohamed Dohe A. Prevalence of anemia and associated factors among pregnant women in an Urban Area of Eastern Ethiopia. Anemia 2014;2014:561567.
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, *et al.* The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst Rev 2021;10:89.
- 14. George BJ, Aban IB. An application of meta-analysis based on DerSimonian and Laird method. J Nucl Cardiol 2016;23:690-2.
- Hunter JP, Saratzis A, Sutton AJ, Boucher RH, Sayers RD, Bown MJ. In meta-analyses of proportion studies, funnel plots were found to be an inaccurate method of assessing publication bias. J Clin Epidemiol 2014;67:897-903.
- 16. Higgins JP, Thompson SG. Quantifying heterogeneity in a metaanalysis. Stat Med 2002;21:1539-58.
- 17. Widiyanti M, Ubra R, Fitriana E. Low body mass index increases risk of anemia in patients with HIV-AIDS receiving antiretroviral therapy. Universa Medicina 2017;36:221-7.

- Bongomin F, Olum R, Kyazze AP, Ninsiima S, Nattabi G, Nakyagaba L, *et al.* Anemia in Ugandan pregnant women: A crosssectional, systematic review and meta-analysis study. Trop Med Health 2021;49:19.
- 19. Tamir Z, Alemu J, Tsegaye A. Anemia among HIV infected individuals taking ART with and without Zidovudine at Addis Ababa, Ethiopia. Ethiop J Health Sci 2018;28:73-82.
- 20. Alamdo AG, Fiseha T, Tesfay A, Deber MK, Tirfe ZM, Tilahun T. Anemia and its associated risk factors at the time of antiretroviral therapy initiation in public health facilities of Arba Minch Town, Southern Ethiopia. Sci Res 2015;7:1657-64.
- 21. Woldeamanuel GG, Wondimu DH. Prevalence of anemia before and after initiation of antiretroviral therapy among HIV infected patients at Black Lion Specialized Hospital, Addis Ababa, Ethiopia: A cross sectional study. BMC Hematol 2018;18:7.
- 22. Beyene HB, Tadesse M, Disassa H, Beyene MB. Concurrent plasmodium infection, anemia and their correlates among newly diagnosed people living with HIV/AIDS in Northern Ethiopia. Acta Trop 2017;169:8-13.
- 23. Melese H, Wassie MM, Woldie H, Tadesse A, Mesfin N. Anemia among adult HIV patients in Ethiopia: A hospital-based crosssectional study. HIV AIDS (Auckl) 2017;9:25-30.
- 24. Alem M, Kena T, Baye N, Ahmed R, Tilahun S. Prevalence of anemia and associated risk factors among adult HIV patients at the anti-retroviral therapy clinic at the University of Gondar Hospital, Gondar, Northwest Ethiopia Scientific Report 2013;2:96-101. [doi: 10.4172/scientificreports.662].
- Fiseha T, Tamir Z, Seid A, Demsiss W. Prevalence of anemia in renal insufficiency among HIV infected patients initiating ART at a hospital in Northeast Ethiopia. BMC Hematol 2017;17:1.
- Tesfaye Z, Enawgaw B. Prevalence of anemia before and after initiation of highly active antiretroviral therapy among HIV positive patients in Northwest Ethiopia: A retrospective study. BMC Res Notes 2014;7:745.
- 27. Gedefaw L, Yemane T, Sahlemariam Z, Yilma D. Anemia and risk factors in HAART naïve and HAART experienced HIV positive persons in south west Ethiopia: A comparative study. PLoS One 2013;8:e72202.
- Milkias WH, Lerebo WT, Melaku YA, Girmay KH. Incidence and risk factors of anemia among HIV/AIDS patients taking antiretroviral erapy at tertiary hospitals in Addis Ababa, Ethiopia: A retrospective cohort study. J HIV AIDS Infect Dis 2014;2:1-6.
- 29. Assefa M, Abegaz WE, Shewamare A, Medhin G, Belay M. Prevalence and correlates of anemia among HIV infected patients on highly active anti-retroviral therapy at Zewditu Memorial Hospital, Ethiopia. BMC Hematol 2015;15:6.
- Enawgaw B, Tadele A, Melku M, Edafile R. Prevalence of zidovudine induced megaloblastic anemia among human immunodeficiency virus positive patients attending University of Gondar hospital antiretroviral therapy clinic, Northwest Ethiopia. HIV Adv Res Dev 2014;1:105.
- Daka D, Lelissa D, Amsalu A. Prevalence of anaemia before and after the initiation of antiretroviral therapy at ART centre of Hawassa University Referral Hospital, Hawassa, South Ethiopia. Sch J Med 2013;3:1-6. Available from: https://www.scholarlyjournals.com/SJM. [Last accessed on 2024 Jul 29].
- Ferede G, Wondimeneh Y. Prevalence and related factors of anemia in HAART-naive HIV positive patients at Gondar University Hospital, Northwest Ethiopia. BMC Hematol 2013;13:8.
- 33. Dessalegn G, Bayissa DD, Birhanu S, Gudina E. Prevalence of anemia and associated factors among PHIVs attendants antiretroviral therapy clinics in public health institutions in Dire Dawa town, East Ethiopia. J Med Physiol Biophys 2016;22:66-74.
- 34. Sahle T, Yemane T, Gedefaw L. Effect of malaria infection on hematological profiles of people living with human immunodeficiency virus in Gambella, Southwest Ethiopia. BMC Hematol 2017;17:2.

- Wubetu M, Mebratu E. Assessment of the prevalence of zidovudine-induced anemia among adult HIV/AIDS patients on HAART in an Ethiopian hospital. Occup Med Health Aff 2018;6:271.
- 36. Gedle D, Gelaw B, Muluye D, Mesele M. Prevalence of malnutrition and its associated factors among adult people living with HIV/AIDS receiving anti-retroviral therapy at Butajira Hospital, Southern Ethiopia. BMC Nutr 2015;1:1-11.
- Hadgu TH, Worku W, Tetemke D, Berhe H. Undernutrition among HIV positive women in Humera hospital, Tigray, Ethiopia, 2013: Antiretroviral therapy alone is not enough, cross sectional study. BMC Public Health 2013;13:943.
- Alemayehu M, Meskele M, Alemayehu B, Yakob B. Prevalence and correlates of anemia among children aged 6-23 months in Wolaita Zone, Southern Ethiopia. PLoS One 2019;14:e0206268.
- Woldie H, Kebede Y, Tariku A. Factors associated with anemia among children aged 6-23 months attending growth monitoring at Tsitsika Health Center, Wag-Himra Zone, Northeast Ethiopia. J Nutr Metab 2015;2015:928632.
- Tegegne M, Abate KH, Belachew T. Anaemia and associated factors among children aged 6-23 months in agrarian community of Bale zone: A cross-sectional study. J Nutr Sci 2022;11:e96: 1-9. [doi: 10.1017/JNS.2022.63].
- 41. Gebrehaweria Gebremeskel M, Lemma Tirore L. Factors associated with anemia among children 6-23 months of age in Ethiopia: A multilevel analysis of data from the 2016 Ethiopia demographic and health survey. Pediatric Health Med Ther 2020;11:347-57.
- 42. Sorsa A, Habtamu A, Kaso M. Prevalence and predictors of anemia among children aged 6-23 months in Dodota District, Southeast Ethiopia: A community-based cross-sectional study. Pediatric Health Med Ther 2021;12:177-87.
- Molla A, Egata G, Mesfin F, Arega M, Getacher L. Prevalence of anemia and associated factors among infants and young children Aged 6-23 months in Debre Berhan Town, North Shewa, Ethiopia. J Nutr Metab 2020;2020:48-61.
- 44. Malako BG, Teshome MS, Belachew T. Anemia and associated factors among children aged 6-23 months in Damot Sore District, Wolaita Zone, South Ethiopia. BMC Hematol 2018;18:14.
- Malako BG, Asamoah BO, Tadesse M, Hussen R, Gebre MT. Stunting and anemia among children 6-23 months old in Damot Sore District, Southern Ethiopia. BMC Nutr 2019;5:3.
- Roba KT, O'Connor TP, Belachew T, O'Brien NM. Anemia and undernutrition among children aged 6-23 months in two agroecological zones of rural Ethiopia. Pediatric Health Med Ther 2016;7:131-40.
- 47. Heinrichs H, Endris BS, Dejene T, Dinant GJ, Spigt M. Anaemia and its determinants among young children aged 6-23 months in Ethiopia (2005-2016). Matern Child Nutr 2021;17:e13082.
- Abebaw A, Gudayu TW, Kelkay B. Proportion of immediate postpartum anaemia and associated factors among postnatal mothers in Northwest Ethiopia: A cross-sectional study. Anemia 2020;2020:89-96.
- 49. Bireda A, Mohammed A, Hailu M, Ali K. Magnitude and Factors Associated With Immediate Postpartum Anemia Among Singleton Postpartum Women at Public Hospitals in Dire Dawa Administration, Eastern Ethiopia. Research Square 2022. p. 211-135.
- 50. Abebe GT, Kure MA, Yadeta TA, Roba KT, Amante TD. Immediate postpartum anemia and associated factors among women admitted to maternity ward at public hospitals in Harari Regional State, Eastern Ethiopia: A facility-based cross-sectional study. Front Glob Womens Health 2022;3:916245.
- 51. Bambo GM, Kebede SS, Sitotaw C, Shiferaw E, Melku M. Postpartum anemia and its determinant factors among postnatal women in two selected health institutes in Gondar, Northwest Ethiopia: A facility-based, cross-sectional study. Front Med (Lausanne) 2023;10:306-18.

- Elmugabil A, Adam I. Prevalence and associated risk factors for anemia in pregnant women in white Nile State, Sudan: A crosssectional study. SAGE Open Nurs 2023;9:214-25.
- 53. Elmardi KA, Adam I, Malik EM, Abdelrahim TA, Elhag MS, Ibrahim AA, *et al.* Prevalence and determinants of anaemia in women of reproductive age in Sudan: Analysis of a cross-sectional household survey. BMC Public Health 2020;20:1125.
- 54. Regasa RT, Haidar JA. Anemia and its determinant of in-school adolescent girls from rural Ethiopia: A school based cross-sectional study. BMC Womens Health 2019;19:98.
- 55. Teji K, Dessie Y, Assebe T, Abdo M. Anaemia and nutritional status of adolescent girls in Babile District, Eastern Ethiopia. Pan Afr Med J 2016;24:62.
- Seyoum Y, Humblot C, Nicolas G, Thomas M, Baye K. Iron deficiency and anemia in adolescent girls consuming predominantly plant-based diets in rural Ethiopia. Sci Rep 2019;9:17244.
- 57. Gonete KA, Tariku A, Wami SD, Derso T. Prevalence and associated factors of anemia among adolescent girls attending high schools in Dembia District, Northwest Ethiopia, 2017. Arch Public Health 2018;76:79.
- Mengistu G, Azage M, Gutema H. Iron deficiency anemia among in-school adolescent girls in Rural Area of Bahir Dar City administration, North West Ethiopia. Anemia 2019;2019:109-22.
- 59. Engidaw MT, Wassie MM, Teferra AS. Anemia and associated factors among adolescent girls living in Aw-Barre refugee camp, Somali regional state, Southeast Ethiopia. PLoS One 2018;13:e0205381.
- 60. Demelash S, Murutse M. Cronicon Prevalence of Anemia and its Associated Factors among School Adolescent Girls Addis Ababa. Cronicon 2019. p. 1-11.
- 61. Tura MR, Egata G, Fage SG, Roba KT. Prevalence of anemia and its associated factors among female adolescents in Ambo Town, West Shewa, Ethiopia. J Blood Med 2020;11:279-87.
- 62. Alemu T, Gebremedhin S. Prevalence and predictors of anaemia among adolescent Girls in Rural Hadero Tunto District, Southern Ethiopia: Community based study. Int J Nutr Food Sci 2020;9:16.
- Gebreyesus SH, Endris BS, Beyene GT, Farah AM, Elias F, Bekele HN. Anaemia among adolescent girls in three districts in Ethiopia. BMC Public Health 2019;19:92.
- 64. Wolde-Gebriel Z, West CE, Gebru H, Tadesse AS, Fisseha T, Gabre P, *et al.* Interrelationship between Vitamin A, iodine and iron status in schoolchildren in Shoa Region, central Ethiopia. Br J Nutr 1993;70:593-607.
- 65. Mekasha A, Zerfu M. Prevalence of anemia among school children in Addis Ababa. Ethiop Med J 2009;47:129-33.
- Herrador Z, Sordo L, Gadisa E, Buño A, Gómez-Rioja R, Iturzaeta JM, *et al.* Micronutrient deficiencies and related factors in school-aged children in Ethiopia: A cross-sectional study in Libo Kemkem and Fogera districts, Amhara Regional State. PLoS One 2014;9:e112858.
- 67. Alelign T, Degarege A, Erko B. Prevalence and factors associated with undernutrition and anaemia among school children in Durbete Town, Northwest Ethiopia. Arch Public Health 2015;73:34.
- Mahmud MA, Spigt M, Mulugeta Bezabih A, López Pavon I, Dinant GJ, Blanco Velasco R. Risk factors for intestinal parasitosis, anaemia, and malnutrition among school children in Ethiopia. Pathog Glob Health 2013;107:58-65.
- Assefa S, Mossie A, Hamza L. Prevalence and severity of anemia among school children in Jimma Town, Southwest Ethiopia. BMC Hematol 2014;14:3.
- Mesfin F, Berhane Y, Worku A. Anemia among primary school children in Eastern Ethiopia. PLoS One 2015;10:e0123615.
- 71. Teji K, Dessie Y, Assebe T, Abdo M. Anaemia and nutritional status of adolescent girls in Babile District, Eastern Ethiopia. Pan Afr Med J 2016;24:62.

- Desalegn Wolide A, Mossie A, Gedefaw L. Nutritional iron deficiency anemia: Magnitude and its predictors among school age children, Southwest Ethiopia: A community based crosssectional study. PLoS One 2014;9:e114059.
- Gutema B, Adissu W, Asress Y, Gedefaw L. Anemia and associated factors among school-age children in Filtu Town, Somali region, Southeast Ethiopia. BMC Hematol 2014;14:13.
- Adem OS, Tadsse K, Gebremedhin A. Iron deficiency aneamia is moderate public health problem among school going adolescent girls in Berahle District, Afar, Northeast Ethiopia. J FoodNutr Sci 2015;3:10-6.
- Tesfaye M, Yemane T, Adisu W, Asres Y, Gedefaw L. Anemia and iron deficiency among school adolescents: Burden, severity, and determinant factors in Southwest Ethiopia. Adolesc Health Med Ther 2015;6:189-96.
- Chane H. Magnitude of Anemia and its Contributing Factor Among School age Children in Mihur Aklil District, Gurage Zone, Ethiopia. Addis Ababa: Addis Ababa University, Addis Ababa University Press; 2016. p. 80.
- Tandu-Umba B, Mbangama AM. Association of maternal anemia with other risk factors in occurrence of Great obstetrical syndromes at university clinics, Kinshasa, DR Congo. BMC Pregnancy Childbirth 2015;15:183.
- Kefiyalew F, Zemene E, Asres Y, Gedefaw L. Anemia among pregnant women in Southeast Ethiopia: Prevalence, severity and associated risk factors. BMC Res Notes 2014;7:771.
- 79. Alemu T, Umeta M. Reproductive and obstetric factors are key predictors of maternal anemia during pregnancy in Ethiopia: Evidence from demographic and health survey (2011). Anemia 2015;2015:649815.
- Obse N, Mossie A, Gobena T. Magnitude of anemia and associated risk factors among pregnant women attending antenatal care in Shalla Woreda, West Arsi Zone, Oromia Region, Ethiopia. Ethiop J Health Sci 2013;23:165-73.
- 81. Nega D, Dana D, Tefera T, Eshetu T. Anemia associated with asymptomatic malaria among pregnant women in the rural surroundings of Arba Minch Town, South Ethiopia. BMC Res Notes 2015;8:110.
- 82. Yihunie Akalu T, Gebreegziabher Baraki A, Wolde HF, Desyibelew HD, Derseh BT, Dadi AF, et al. Anemia and determinants among severely malnourished children admitted to Amhara Regional Referral Hospitals, Northwest Ethiopia. Open J Nutr Food Sci 2020;2:1007.
- Ajakaye OG, Ibukunoluwa MR. Prevalence and risk of malaria, anemia and malnutrition among children in IDPs camp in Edo State, Nigeria. Parasite Epidemiol Control 2020;8:e00127.
- Getawa S, Getaneh Z, Melku M. Hematological abnormalities and associated factors among undernourished under-five children attending university of Gondar Specialized referral hospital, Northwest Ethiopia. J Blood Med 2020;11:465-78.
- 85. Adelman S, Gilligan DO, Konde-Lule J, Alderman H. School feeding reduces anemia prevalence in adolescent girls and other vulnerable household members in a cluster randomized controlled trial in Uganda. J Nutr 2019;149:659-66.
- Tekile AK, Woya AA, Basha GW. Prevalence of malnutrition and associated factors among under-five children in Ethiopia: Evidence from the 2016 ethiopia demographic and health survey. BMC Res Notes 2019;12:391.
- Girum T, Kote M, Tariku B, Bekele H. Survival status and predictors of mortality among severely acute malnourished children <5 years of age admitted to stabilization centers in Gedeo Zone: A retrospective cohort study. Ther Clin Risk Manag 2017;13:101-10.
- Padovese V, Egidi AM, Melillo TF, Farrugia B, Carabot P, Didero D, *et al.* Prevalence of latent tuberculosis, syphilis, hepatitis B and C among asylum seekers in Malta. J Public Health (Oxf) 2014;36:22-7.

- Cheong I, Samsudin LM, Law GH. Methicillin-resistant *Staphylococcus aureus* bacteraemia at a tertiary teaching hospital. Br J Clin Pract 1996;50:237-9.
- Ughasoro M, Emodi I, Okafor H, Ibe B. Prevalence and risk factors of anaemia in paediatric patients in South-East Nigeria. S Afr J Child Health 2015;9:14-7.
- 91. da Silva-Júnior EF, de Araújo-Júnior JX. Peptide derivatives as inhibitors of NS2B-NS3 protease from Dengue, West Nile, and *Zika flaviviruses*. Bioorg Med Chem 2019;27:3963-78.
- 92. Thorne CJ, Roberts LM, Edwards DR, Haque MS, Cumbassa A, Last AR. Anaemia and malnutrition in children aged 0-59 months on the Bijagós Archipelago, Guinea-Bissau, West Africa: A crosssectional, population-based study. Paediatr Int Child Health 2013;33:151-60.
- Mbabazi E. Prevalence of Anemia and Associated Socio-Economic Determinants amongst Malnourished Children Aged 6-59 Months, Centre Hospitalier Universitaire Kanyamuhunga. Rwanda Med J 2021;78:29-36. Available from: https://www.ajol. info/index.php/rmj/article/view/218460/206058. [Last accessed on 2024 Jul 29].
- 94. Abaker M, Mohammed S. ISSN 2347-954X (Print) Original Research Article Some Hematological Parameters among Patients with Pulmonary Tuberculosis-Khartoum State. Scholars J Appl Med Sci SJAMS 2016;4:99-111.
- 95. Isanaka S, Mugusi F, Urassa W, Willett WC, Bosch RJ, Villamor E, *et al.* Iron deficiency and anemia predict mortality in patients with tuberculosis. J Nutr 2012;142:350-7.
- 96. Abdelkareem Y, Hashim A, Abdelazeem H. Hematological Changes in Pulmonary Tuberculosis. Int J com Med Pub Health 2019.
- 97. Atomsa D, Abebe G, Sewunet T. Immunological markers and hematological parameters among newly diagnosed tuberculosis patients at Jimma University Specialized Hospital. Ethiop J Health Sci 2014;24:311-8.
- Gunda DW, Kilonzo SB, Bulegesi SM, Mpondo BCT, Shao ER. Risk factors for mortality among tuberculosis patients on treatment at Bugando Medical Centre in North-Western Tanzania: A retrospective cross-sectional study. Tanzan J Health Res 2016;18:19-28. [doi: 10.4314/thrb.v18i4.1].
- 99. van Lettow M, West CE, van der Meer JW, Wieringa FT, Semba RD. Low plasma selenium concentrations, high plasma human immunodeficiency virus load and high interleukin-6 concentrations are risk factors associated with anemia in adults presenting with pulmonary tuberculosis in Zomba district, Malawi. Eur J Clin Nutr 2005;59:526-32.
- 100. Abay F, Yalew A, Shibabaw A, Enawgaw B. Hematological abnormalities of pulmonary tuberculosis patients with and without HIV at the University of Gondar Hospital, Northwest Ethiopia: A comparative cross-sectional study. Tuberc Res Treat 2018;2018:147-59.
- 101. Bashir BA, Abdallah SA, Mohamedani AA. Anemia among patients with pulmonary tuberculosis in Port Sudan, Eastern Sudan; 2015;6:4128-31. Available from: https://www.recentscientific. com. [Last accessed on 2024 Jul 29].
- 102. Yang SN, Maher B, Wang C, Wagstaff KM, Fraser JE, Jans DA. High throughput screening targeting the dengue NS3-NS5 interface identifies antivirals against dengue, Zika and West Nile Viruses. Cells 2022;11:730.
- 103. Pessôa R, Patriota JV, Lourdes de Souza M, Felix AC, Mamede N, Sanabani SS. Investigation into an outbreak of dengue-like illness in pernambuco, Brazil, revealed a cocirculation of Zika, Chikungunya, and dengue virus type 1. Medicine (Baltimore) 2016;95:e3201.
- 104. Kerkhoff AD, Meintjes G, Opie J, Vogt M, Jhilmeet N, Wood R, et al. Anaemia in patients with HIV-associated TB: Relative contributions of anaemia of chronic disease and iron deficiency. Int J Tuberc Lung Dis 2016;20:193-201.

- 105. Kahase D, Solomon A, Alemayehu M. Evaluation of peripheral blood parameters of pulmonary tuberculosis patients at St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia: Comparative study. J Blood Med 2020;11:115-21.
- 106. Hella J, Cercamondi CI, Mhimbira F, Sasamalo M, Stoffel N, Zwahlen M, *et al.* Anemia in tuberculosis cases and household controls from Tanzania: Contribution of disease, coinfections, and the role of hepcidin. PLoS One 2018;13:e0195985.
- 107. Yesuf M. Evaluation of hematological and lipid profiles in pulmonary tuberculosis patients: A case control Study at Metema and Gondar Referral Hospitals, North West Ethiopia; 2017.
- 108. Nagu TJ, Spiegelman D, Hertzmark E, Aboud S, Makani J, Matee MI, *et al*. Anemia at the initiation of tuberculosis therapy

is associated with delayed sputum conversion among pulmonary tuberculosis patients in Dar-es-Salaam, Tanzania. PLoS One 2014;9:e91229.

- Islam MN, Islam KM, Islam N. Hepatitis-B virus infection in Dhaka, Bangladesh. Bangladesh Med Res Counc Bull 1984;10:1-6.
- 110. Engle-Stone R, Aaron GJ, Huang J, Wirth JP, Namaste SM, Williams AM, *et al.* Predictors of anemia in preschool children: Biomarkers reflecting inflammation and nutritional determinants of anemia (BRINDA) project. Am J Clin Nutr 2017;106:402S-415S.
- 111. Namaste SM, Rohner F, Huang J, Bhushan NL, Flores-Ayala R, Kupka R, *et al.* Adjusting ferritin concentrations for inflammation: Biomarkers reflecting inflammation and nutritional determinants of anemia (BRINDA) project. Am J Clin Nutr 2017;106:359S-71S.

Supplementary Table 1: Quality of included studies by Joanna Briggs Institute critical appraisal checklist for studies reporting prevalence data

Name of authors and year of publication				JB	I checkl	ist*				Total
	1	2	3	4	5	6	7	8	9	
Widiyanti <i>et al.</i> , 2017 ^[17]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Msemo <i>et al</i> ., 2018 ^[10]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Bongomin <i>et al.</i> , 2021 ^[18]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Tamir <i>et al.</i> , 2018 ^[19]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Alamdo <i>et al</i> ., 2015 ^[20]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Woldeamanuel and Wondimu, 2018 ^[21]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Beyene <i>et al</i> ., 2017 ^[22]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Melese <i>et al.</i> , 2017 ^[23]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Alem, 2013 ^[24]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Deressa <i>et al.</i> , 2018 ^[8]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Fiseha <i>et al.</i> , 2017 ^[25]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Tesfaye and Enawgaw, 2014 ^[26]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Gedefaw et al., 2013 ^[27]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Milkias <i>et al.</i> , 2014 ^[28]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Assefa <i>et al.</i> , 2015 ^[29]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Bamlaku <i>et al</i> ., 2014 ^[30]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Daka <i>et al.</i> , 2013 ^[31]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Ferede and Wondimeneh, 2013 ^[32]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Dessalegn et al., 2016 ^[33]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Salhe <i>et al</i> ., 2017 ^[34]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Wubetu and Mebratu, 2018 ^[35]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Gelde <i>et al.</i> , 2015 ^[36]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Hadgu <i>et al.</i> , 2013 ^[37]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Alemayehub <i>et al.</i> , 2019 ^[38]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Woldie <i>et al.</i> , 2015 ^[39]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Tegegne <i>et al.</i> , 2022 ^[40]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Gebrehaweria Gebremeskel and Lemma Tirore, 2020 ^[41]	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18
Sorsa <i>et al.</i> , 2021 ^[42]	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18
Molla <i>et al</i> ., 2020 ^[43]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Malako <i>et al</i> ., 2018 ^[44]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Malako <i>et al.</i> , 2019 ^[45]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Roba <i>et al</i> ., 2016 ^[46]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Heinrichs <i>et al.</i> , 2020 ^[47]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Heinrichs <i>et al.</i> , 2020 ^[47]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Heinrichs <i>et al.</i> , 2020 ^[47]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Abebaw <i>et al.</i> , 2020 ^[48]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Bireda <i>et al.</i> , 2022 ^[49]	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18
Abebe <i>et al.</i> , 2022 ^[50]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Bambo <i>et al</i> ., 2023 ^[51]	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18
Elmugabil and Adam, 2023 ^[52]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Elmardi et al., 2020 ^[53]	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18
Regasa and Haidar, 2019 ^[54]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Teji <i>et al</i> ., 2016 ^[55]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Seyoum <i>et al.</i> , 2019 ^[56]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Gonete <i>et al.</i> , 2018 ^[57]	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18
Mengistu <i>et al.</i> , 2019 ^[58]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Engidaw <i>et al.</i> , 2018 ^[59]	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18
Demelash and Murutse, 2016 ^[60]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Tura <i>et al</i> ., 2020 ^[61]	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18
Alemu and Gebremedhin, 2020 ^[62]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Gebreyesus <i>et al.</i> , 2019 ^[63]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Wolde-Gebriel <i>et al.</i> 1993 ^[64]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Mekasha and Zerfu, 2009 ^[65]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16

Contd...

Name of authors and year of publication				JB	I checkl	ist*				Total
	1	2	3	4	5	6	7	8	9	
Herrador <i>et al</i> ., 2014 ^[66]	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18
Alelign <i>et al</i> ., 2015 ^[67]	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	18
Mahmud <i>et al</i> ., 2013 ^[68]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Assefa <i>et al</i> ., 2014 ^[69]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Mesfin <i>et al</i> ., 2015 ^[70]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Teji <i>et al</i> ., 2016 ^[71]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Desalegn Wolide <i>et al</i> ., 2014 ^[72]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Gutema <i>et al.</i> , 2014 ^[73]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Adem <i>et al.</i> , 2015 ^[74]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Fesfaye <i>et al</i> ., 2015 ^[75]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Chane, 2016 ^[76]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Fandu-Umba and Mbangama, 2015 ^[77]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Addis Alene and Mohamed Dohe, 2014 ^[12]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Kefiyalew <i>et al.</i> , 2014 ^[78]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Alemu and Umeta, 2015 ^[79]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Obse <i>et al</i> ., 2013 ^[80]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Nega <i>et al</i> ., 2015 ^[81]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Yihunie Akalu <i>et al.</i> , 2020 ^[82]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Ajakaye and Ibukunoluwa, 2020 ^[83]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Getawa <i>et al.</i> , 2020 ^[84]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Adelman <i>et al.</i> , 2019 ^[85]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Fekile <i>et al.</i> , 2019 ^[86]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Girum <i>et al.</i> , 2017 ^[87]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Padovese <i>et al.</i> , 2014 ^[88]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Cheong <i>et al.</i> , 1996 ^[89]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Roba <i>et al.</i> , 2016 ^[46]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Jghasoro <i>et al.</i> , 2015 ^[90]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
a Silva-Junior et al., 2019[91]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Nambiema <i>et al.</i> , 2019 ^[11]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Thorne <i>et al.</i> , 2013 ^[92]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Mbabazi, 2021 ^[93]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Abaker and Mohammed, 2016 ^[94]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
sanaka <i>et al.</i> , 2012 ^[95]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Abdelkareem <i>et al.</i> , 2019 ^[96]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Atomsa <i>et al.</i> , 2014 ^[97]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Gunda <i>et al.</i> , 2016 ^[98]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
ran Lettow, 2005 ^[99]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Abay <i>et al.</i> , 2018 ^[100]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Bashir <i>et al.</i> , 2015 ^[101]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
'ang <i>et al.</i> , 2022 ^[102]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Pessoa <i>et al.</i> , 2016 ^[103]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Ainchella <i>et al.</i> , 2015 ^[4]	Yes	No								
Kerkhof <i>et al.</i> , 2016 ^[104]	Yes	No	Yes Yes	Yes Yes	Yes Yes	Yes	Yes Yes	Yes Yes	Yes Yes	16 16
Kahase <i>et al.</i> , $2010^{(105)}$						Yes				
	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	1
Hella <i>et al.</i> , 2018 ^[106]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	10
(esuf, 2017 ^[107]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
Nagu <i>et al.</i> , 2014 ^[108]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16
slam <i>et al.</i> , 2017 ^[109]	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	16

Scores are coded as Yes=2 and No=0. 1=Appropriate sampling frame to address target population, 2=Appropriate sampling way of study participants, 3=Adequate sample size, 4=Detail description of study participants and settings, 5=Data analysis with sufficient coverage of identified sample, 6=Use of valid methods to identify the condition, 7=Standard, reliable way of measurement of condition for all participants, 8=Availability of appropriate statistical analysis, 9=Adequate response rate and management of low response rate, JBI=Joanna Briggs Institute

Kerkhof et al Subgroup South Africa (I^2=NA , P=NA) Overall (I^2=99.28 % , P=0.000)	0.856	(0.791, (0.252,		29608/78271			~
		(0.791,	0.903)	131/155			~
Verticed et al.	0.856	(0.791,		131/153 131/153			
Subgroup Gambia (I^2=NA , P=NA)		(0.507,		26/39			
Minchella et al	0.667	(0.507,	0.796)	26/39			
van Lettow van Lettow et al Subgroup Malawi (I^2=0 % , P=0.766)	0.846	(0.820, (0.803, (0.825,	0.882)	270/319 697/819			
Subgroup Egypt (I^2=NA , P=NA) van Lettow		(0.926, (0.820,		100/100 427/500			-
Abdelkareem et al	0.995	(0.926,	1.000)	100/100			
Mbabazi and Kanyamuhunga Subgroup Rwanda (I^2=NA , P=NA)		(0.599, (0.599,		78/113 78/113			
Thorne et al Subgroup Guinea Bissau (I^2=NA , P=NA)	0.802	(0.762, (0.762,	0.837) 0.837)	353/440 353/440			- - \$
Subgroup Togo (I^2=NA , P=NA)		(0.749,		172/213 353/440			-
Nambiema et al	0.808	(0.749,	0.855)	172/213			
Adelman et al Subgroup Ugandan (I^2=NA , P=NA)	0.719 0.719	(0.683, (0.683,	0.753) 0.753)	451/627 451/627			
Subgroup Nigeria (I^2=93.87 % , P=0.000)	0.647	(0.411,	0.828)	223/392			
Ajakaye and ibukunouwa Ughasoro et al Erhabor et al	0.478	(0.403, (0.412, (0.798,	0.546)	100/209 71/80			
Subgroup Congo (I^2=95.52 % , P=0.000) Ajakaye and Ibukunoluwa		(0.387,		341/612 52/103			
Barthelemy and Andy Mulenga et al Subgroup Congo (I^2=95.52 % , P=0.000)	0.695	(0.442, (0.628, (0.387,	0.755)	202/412 139/200 341/612			
Subgroup Sudan (I^2=91.66 % , P=0.000)		(0.370,		1690/4619			
Mohammed Bashir et al	0.440	(0.704, (0.346,	0.538)	34/40 44/100			
Abdelmageed and Ishaq Khalid et al	0.356	(0.376, (0.342,	0.370)	92/208 1520/4271			•
Subgroup Ethiopia (I^2=99.35 % , P=0.000)		(0.158,		22568/65411			•
Kahase et al Yesuf	0.250	(0.140, (0.532,	0.405)	10/40 30/44			·
Atomsa et al Abay et al	0.370	(0.285, (0.432,	0.465)	40/108 53/100			
Roba et al. Ahmed	0.772	(0.711, (0.546,	0.823) 0.682)	166/215 119/193			
Girum et al Abera	0.125	(0.100, (0.356,	0.155)	68/545 165/410			
Akalu ét al Getawa et al Tekile et al	0.534	(0.365, (0.472, (0.618,	0.595)	333/837 134/251 4003/6354			-
kediretal Nega etal Akalu etal	0.347	(0.416, (0.300, (0.365,	0.399)	737/1678 123/354 333/837			
Abrilha et al Alemu and umeta	0.220	(0.167, (0.198,	0.245)	125/637 267/1212		_	- -
Chane et al Akene and Dolhe	0.568	(0.183, (0.527,	0.608)	112/517 330/581			
Adem et al Tesfaye et al.	0.228	(0.186, (0.121,	0.276) 0.192)	77/338 62/405			
Desalegn et al Gutem et al	0.437	(0.397, (0.195,	0.477) 0.284)	256/586 84/355		_	
Mesfin et al Teji et al.	0.271 0.320	(0.251, (0.282,	0.293) 0.360)	476/1755 175/547			- B
Alelign et al Mahmud et al Assefa et al.	0.110	(0.080, (0.086, (0.330,	0.140)	41/384 58/525 152/404	-	-	
Mekasha et al Herrador et al Alelion et al	0.309	(0.043, (0.277, (0.080,	0.343)	41/707 236/764 41/384	•	•	
Gebreyesus et al Wolde et al Mekasha et al	0.186	(0.266, (0.180, (0.043,	0.192)	384/1323 2742/14740 41/707			
Tura et al Alemu et al Gebrauerus et al	0.152	(0.380, (0.121,	0.191)	232/551 62/407 384/1323			_
Engidaw et al Demelash et al Tura et al	0.210	(0.184, (0.180,	0.245)	100/456 125/594 232/551		_	- _
Gonete et al Megistu et al	0.111	(0.218, (0.085,	0.143)	118/462 49/443	-	•	
Teji et al Seyoum et al	0.086	(0.284, (0.057,	0.127)	192/600 22/257	-	-	
Getachew Regassa et al	0.269	(0.411, (0.230,	0.311)	132/282 122/454			
Asima Gizawu	0.281	(0.231, (0.243,	0.323)	128/476 136/484			-+- -+-
Heinrichs et al. Abebaw	0.719 0.243	(0.703, (0.204,	0.735) 0.286)	2204/3064 103/424		_	•
Heinrichs et al Heinrichs et. al	0.712	(0.686, (0.630,	0.736) 0.666)	918/1290 1809/2790			-*
Malako et al. Roba et al	0.520	(0.475, (0.470,	0.564)	248/477 116/216			- -
Molla et al Malako et al	0.419 0.489	(0.380, (0.446,	0.460) 0.531)	242/577 255/522			- - -
Gebrehaweria et al Sorsa et al	0.727	(0.709, (0.412,	0.744)	1857/2554 407/917			-#-
Woldie et al Tegegne et al	0.631	(0.580, (0.434,	0.679)	231/366 369/787			
Hadgu et al Alemayehub et al	0.021	(0.011, (0.624,	0.042)	8/376 650/993	•		-
Gaine et al Muluken et al Gelde et al	0.013	(0.023, (0.006, (0.013,	0.032)	5/376 8/305			
rerede et al Geleta et al Salhe et al	0.019	(0.005, (0.009, (0.023,	0.037)	8/425 8/172			
Bamiaku etai Daka etai Ferede etai	0.018	(0.009,	0.038)	7/384 5/400			
Wolde et al Assefa et al Bamlaku et al	0.008	(0.003, (0.004, (0.007,	0.015)	5/616 8/1061 5/319	ŝ.		
Tesfaye et al Gedefaw et al	0.026	(0.012, (0.012,	0.056)	8/349 6/234	-		
Deressa et al Fiesha et al	0.021	(0.013, (0.011,	0.042)	8/320 8/373			
Melese et al Alem et al	0.021	(0.011, (0.010,	0.041)	8/377 8/384			
Woldeamanuel et al Beyene et al	0.015	(0.016, (0.008,	0.030)	8/255 8/528	1		
Tamir et al Alamdo et al	0.015	(0.008, (0.007,	0.032)	7/394 6/411			
Subgroup Uganda (I^2=99.45 % , P=0.000)		(0.040,		333/663	_		
Bongomi Barungi et al.		(0.104, (0.695,		37/263 296/400			
Nagu et al Subgroup Tanzania (I^2=99.31 % , P=0.000)	0.857 0.637	(0.836, (0.424,	0.875) 0.808)	1067/1245 2395/3980			
Gunda et al Hella et al	0.511 0.725	(0.474, (0.631,	0.548) 0.803)	358/701 74/102			
Omari et al Isanaka et al	0.367	(0.341, (0.604,	0.394)	458/1248 438/684			-#-
Subgroup Papua new gunine (I^2=NA , P=NA)			0.655) 0.655)	50/90 50/90			
Widiyanti et al							

Supplementary Figure 1: Subgroup in relation to country

				· · · · ·	1
Overall (I^2=99.28 % , P=0.000)	0.292 (0.2	52, 0.337)	29608/78271	<	\$
Subgroup Children (I^2=98.27 % , P=0.000)	0.588 (0.5	36, 0.638)	15796/25463		\diamond
Mbabazi and Kanyamuhunga	0.690 (0.5	99, 0.769)	78/113		
Nambiema et al Thorne et al	0.808 (0.7				_ _
Jghasoro et al Ahmed	0.478 (0.4 0.617 (0.5	16, 0.682)	119/193		_
Roba et al.	0.772 (0.7	L1, 0.823)	166/215		
Abera Barungi et al.	0.402 (0.3				
Girum et al	0.630 (0.6	00, 0.155)	68/545		-
Adelman et al Tekile et al	0.719 (0.6	33, 0.753)	451/627		
Ajakaye and Ibukunoluwa Getawa et al	0.505 (0.4				
Akalu et al	0.398 (0.3	55, 0.431)	333/837		—
Heinrichs et. al Heinrichs et al.	0.648 (0.6				*
Heinrichs et al	0.712 (0.6	86, 0.736)	918/1290		
Malako et al. Roba et al	0.520 (0.4	75, 0.564)	248/477		_
Molla et al Malako et al	0.419 (0.3		255/522		_ _
Sorsa et al	0.444 (0.4	12, 0.476)	407/917		
Tegegne et al Sebrehaweria et al	0.469 (0.4				-#-
Woldie et al	0.631 (0.5	30, 0.679)	231/366		
Alemayehub et al	0.655 (0.6				_=_
van Lettow et al Subgroup Adult (I^2=98.82 % , P=0.000)	0.846 (0.8		270/319 13812/52808		
Naguetal	0.857 (0.8	36, 0.875)	1067/1245		
Yesuf	0.682 (0.5	32, 0.802)	30/44		
Kahase et al Hella et al	0.250 (0.1	10, 0.405)	10/40 74/102		
Minchella et al Kerkhof et al	0.667 (0.5	91, 0.903)	26/39 131/153		
Erhabor et al	0.888 (0.7	98, 0.940)	71/80 26/39		
Bashir et al Mulenga et al	0.440 (0.3	28, 0.755)	44/100 139/200		
Abay et al	0.530 (0.4	32, 0.625)	53/100		
Sunda et al /an Lettow	0.511 (0.4		358/701 427/500		
Atomsa et al	0.370 (0.2	35, 0.465)	40/108		
lsanaka et al Abdelkareem et al	0.640 (0.6		438/684 100/100		_ _ _
Nega et al Mohammed	0.347 (0.3	04, 0.931)	123/354 34/40		• • • · · · · · · · · · · · · · · · · ·
kedir et al	0.439 (0.4	16, 0.463)	737/1678		
Abrilha et al Alemu and umeta	0.196 (0.1 0.220 (0.1	98, 0.245)	267/1212	-=	
Akene and Dolhe	0.568 (0.5	27, 0.608)	330/581	-	
Chane et al Barthelemy and Andy	0.217 (0.1				_ _
Tesfaye et al.	0.153 (0.1	21, 0.192)	62/405		
Gutem et al Adem et al	0.237 (0.1		84/355 77/338		-
Desalegn et al	0.437 (0.3	97, 0.477)	256/586	_	
Mesfin et al Teji et al.	0.271 (0.2		476/1755 175/547	-	
Assefa et al.	0.376 (0.3	30, 0.425)	152/404	-	
Alelign et al Mahmud et al	0.110 (0.0	36, 0.140)	58/525		
Herrador et al	0.309 (0.2			_	
Mekasha et al	0.058 (0.0	13, 0.078)	41/707	÷ •	
Gebreyesus et al Wolde et al	0.290 (0.2		384/1323 2742/14740		-
Alemu et al	0.152 (0.1	21, 0.191)	62/407		
Demelash et al Tura et al	0.210 (0.1		125/594 232/551		
Engidaw et al	0.219 (0.1	34, 0.260)	100/456		
Gonete et al Megistu et al	0.255 (0.2	35, 0.143)	118/462 49/443		
Seyoum et al	0.086 (0.0	57, 0.127)	22/257		
Regassa et al Teji et al	0.269 (0.2	34, 0.358)	122/454 192/600		
Khalid et al	0.356 (0.3	12, 0.370)	1520/4271		=
Getachew Abdelmageed and Ishaq	0.468 (0.4		132/282 92/208		
Gizawu	0.281 (0.2	13, 0.323)	136/484		
Abebaw Asima	0.243 (0.2	31, 0.311)	128/476		
Hadgu et al	0.021 (0.0	1, 0.042)	8/376	•	
Muluken et al Gelde et al	0.013 (0.0		5/376 8/305	₽ ₽-	
Salhe et al	0.047 (0.0	23, 0.090)	8/172	_ -	
Ferede et al Geleta et al	0.012 (0.0		5/400 8/425	B- B-	
Daka et al	0.016 (0.0		5/319 7/384	•	
Assefa et al Bamlaku et al	0.008 (0.0	04, 0.015)	8/1061	ē	
Gedefaw et al Wolde et al	0.026 (0.0		6/234 5/616	-	
Tesfaye et al	0.023 (0.0	L2, 0.045)	8/349		
Deressa et al Fiesha et al	0.025 (0.0		8/320 8/373	-	
Alem et al	0.021 (0.0		8/384		
Beyene et al Melese et al	0.015 (0.0		8/528 8/377		
Alamdo et al Woldeamanuel et al	0.015 (0.0 0.031 (0.0		6/411 8/255	•	
Tamir et al Alamdo et al	0.018 (0.0		7/394	B- B-	
Oman et al Bongomi	0.367 (0.3		458/1248 37/263		
Widiyanti et al Omari et al	0.556 (0.4				

Supplementary Figure 2: Subgroup in relation in relation to maturity

Inten Details Restar (Mode) Sector (Mode) Sector (Mode) Sector (Mode) Sector (Mode) Sector (Mode) Sector (Mode) Sect	Ptudiaa	Fabin			Ter (Ter			1	
Diminiso 0.420	Studies	Estim	late (95	% C.I.)	Ev/Trt				
Tare et al Class									
Number of al 0.21 0.463 0.224 0.463 0.224 Deckase of al 0.23 0.464 0.403 0.224 0.444 0.444 Deckase of al 0.23 0.454 0.433 0.424 0.444 Deckase of al 0.23 0.444 0.433 0.424 0.444 Deckase of al 0.23 0.444 0.433 0.444 0.434 0.444 Maders of al 0.24 0.444 0.434 0.444 0.								-	
Name of if is a set of is a set						÷			
Demospine () 200 0/200 0						_			
Base at at 0.20 0.400 0.400 0.400 0.400 Manyaba at 0.400 0.400 0.400 0.400 0.400 Mase at 0.400 0.400 0.400 0.400 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td>						_			
Base of all 0.47 0.423 0.424 0.423 0.424 Base of all 0.424 0.424 0.427 0.444 0.427 Base of all 0.424 0.424 0.427 0.444 0.427 Base of all 0.424 0.424 0.427 0.444 0.427 Base of all 0.424 0.424 0.424 0.427 0.444 Base of all 0.424 0.425 0.444 0.427 0.444 0.427 Base of all 0.424 0.426 0.444 0.427 0.444 0.447 0.444									
Altery due 0 0 0 0	Salhe et al	0.047	(0.023,	0.090)	8/172				
Bacheland al 2, 22 (0, 23, 0, 23, 0, 24, 0) (22, 23, 24, 1) Mailor al 2, 23 (0, 27, 0, 24, 0) (24, 24, 24, 24, 24, 24, 24, 24, 24, 24,						•			_
Make af 0.12 0.13 0.400 0.2077 Mass af 0.21 0.400 0.400 0.2077 Name of al 0.21 0.400 0.400 0.2077 Name of al 0.21 0.400 0.207 0.400 0.400 0.400 Name of al 0.21 0.400 0.210 0.207 0.400 0.400 0.400 Mass af al 0.210 0.400 0.210 0.207 0.207 0.207 0.400 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
Maile al 0.20 0.70 0.400 2407 Wate al 0.70 0.70 0.700 0.700 Wate al 0.70 0.700 0.700 0.700 Wate al 0.700 0.700 0.700 0.700 0.700 Wate al 0.700									-
Name of all 0.10								•	
Names at at 9,22 0,24 0,24 0,152,27 Names at at 9,24 0,252,27 0,252,27 0,252,27 Names at at 9,24 0,252,27 0,252,27 0,252,27 Names at at 0,24 0,252,17 0,252,27 0,252,27 Names at at 0,24 0,252,17 1,252,27 0,252,27 Observed at at 0,24 0,252,17 1,252,27 0,272,27 Observed at at 0,24 0,252,17 1,252,27 0,272,27 Observed at at 0,24 0,252,17 1,252,27 0,272,27 Observed at at 0,24 0,253,17 0,273,17 0,273,17 Observed at at 0,24 0,253,17 0,273,17 0,273,17 Observed at at 0,24 0,253,17 0,273,17 0,273,17 0,273,17 Observed at at 0,24 0,253,17 0,273,17 0,273,17 0,273,17 0,273,17 0,273,17 0,273,17 0,273,17 0,273,17 0,273,17 0,273,17 0,273,17		0.520	(0.475,	0.564)				_	-
Namenta et al 0.40								-	-
Abdes 0.20 <t< td=""><td>Heinrichs et. al</td><td>0.648</td><td>(0.630,</td><td>0.666)</td><td>1809/2790</td><td></td><td></td><td></td><td>+</td></t<>	Heinrichs et. al	0.648	(0.630,	0.666)	1809/2790				+
Shade d al 9,140 0,125 0,127 122/241 Shade d al 0,260 0,255 0,221 122/241 Shade d al 0,220 0,255 0,220 122/241 Shade d al 0,220 0,220 122/241									-
Regista of all 0.20 0.213 0.2244		0.243	(0.204,	0.286)			-		
Bigment rel 0.160 0.175 0.127 0.2014 Dipublic rel 0.160 0.116 0.201 0.2014 Dipublic rel 0.160 0.160 0.201 0.2014 Dipublic rel 0.160 0.201 0.2014 0.2014 Dipublic rel 0.200 0.160 0.201 0.2014 Dipublic rel 0.200 0.400 0.2014 0.2014 Dipublic rel 0.200 0.400 0.2014 0.400 Dipublic rel 0.200 0.400 0.2013 0.400 Dipublic rel 0.200 0.200 0.2014 0.400 Dipublic rel 0.200 0.200 0.2014 0.400 0.400 Dipublic rel 0.200 0.201 0.2014 0.2014 0.2014 0.201								÷ -	
Soute at al 0.250 0.251 0.121 0.140 Wether at all 0.150 0.150 0.120 0.140 0.140 Demains at all 0.120 0.120 0.120 0.120 0.120 Advanced in the stal 0.130 0.120 0.120 0.120 0.120 Advanced in the stal 0.120 0.120 0.120 0.120 0.120 0.120 Advanced in the stal 0.120 0.120 0.120 0.120 0.120 0.120 Advanced in the stal 0.120 <td></td> <td>0.320</td> <td>(0.284,</td> <td>0.358)</td> <td>192/600</td> <td></td> <td></td> <td></td> <td></td>		0.320	(0.284,	0.358)	192/600				
Maghale II al 0.111 (0.95, 0.13) 0.944 0.120 (94) 120 (94						-	-		
Bigbes et al 0.120 0.114 0.200 1101 0.120 0.114 0.120 0.114 0.120 0.115 0.121 0.115 0.121 0.115 0.121 0.115							+ ·		
Derive at al Derive							- 		
Altern et al 0.120 0.121	Demelash et al	0.210	(0.180,	0.245)	125/594		•		
Schergens et al. 0, 200 0, 246, 0, 250 0, 341, 242 0, 245, 0, 250 0, 342, 0, 243 0, 320, 244 0, 345, 0, 243 0, 345, 0, 243 0, 345, 0, 243 0, 245, 0, 243 0, 345, 0, 243 0, 245, 0, 243 0, 345, 0, 243 0, 245, 0, 243 0, 345, 0, 243 0, 245, 0, 243 0, 345, 0, 243 0, 245, 0, 243 0, 345, 0, 243 0, 245, 0, 243 0, 345, 0, 243 0, 245, 0, 243 0, 345, 0, 243 0, 245, 0, 243 0, 345, 0, 243 0, 245, 0, 243 0, 245, 0, 243 0, 245, 0, 243 0, 245, 0, 243 0, 245, 0, 243 0, 245, 0, 243 0, 245, 0, 243 0, 245, 0, 245 0, 245, 0, 245 0, 245, 0, 245 0, 245, 0, 245 0, 245, 0, 245 0, 245, 0, 245 0, 245, 0, 245 0, 245, 0, 245 0, 245, 0, 245 0, 245, 0, 245 0, 245, 0, 245 0, 245, 0, 245 0, 245, 0, 245 0, 245, 0, 245 0, 245, 0, 245 0							_		
Tig night 0.200 0.200 12/0/14/1 Made dia 0.200 12/0/14/1 12/0/14/1 Made dia 0.200 0.200 12/0/14/1 Made dia 0.200 0.200 12/0/14/1 Made dia 0.200 0.200 0.200 12/0/14/1 Made dia 0.200 0.200 0.200 0.200 0.200 Made dia 0.200							•		
Date et al							-		
Aldange and Labucabiana Aldange and Labucabiana Additional of all Additional of all A	Chane et al	0.217	(0.183,	0.254)	112/517				
Genova et al Markow et al Harle et al Advance et al Harle et al Advance et al Harle et al									
Addmast al 0.719 0.719 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72									_
Take and									
Aben 0.122 0.126 0.410 157/10 Reas # al 0.772 0.711 0.123 167/11 Reas # al 0.722 0.712 0.423 167/11 Marge # al 0.526 0.752 171 0.423 Marge # al 0.526 0.752 171 0.423 171 Marge # al 0.526 0.752 171 0.423 171 Marge # al 0.526 0.752 171 0.423 171 Marge # al 0.756 0.759 171 0.423 171 0.423 171 Marge # al 0.756 0.579 171 0.423 0.424 0.423 0.423 0.424 0.423 0.423 0.424 0.424 0.425 0.427 0.427 0.427 0.427 0.427 0.427 0.427 0.427 <	Tekile et al	0.630	(0.618,	0.642)	4003/6354				•
Barong stal. Darong stal. Da	Girum et al	0.125	(0.100,	0.155)	68/545		•		
Rea et al. 0.727 0.711 0.729 1.710 0.729 1.710 0.729 1.710 0.729 1.710 0.729 1.710 0.729 1.710 0.729 1.710 0.729 1.710 0.729 1.710 0.729 1.710 0.729 1.710 0.729 1.710 0.729 1.710 0.729 1.710 0.729 1.710 0.729 1.710 0.729 1.710 0.710 0.729 1.710 0.710 0.729 1.710 0									
Makabar di Kayamihunga Makabar di Kayamihunga Aber et al Aber e									
Malamend	Mbabazi and Kanyamuhunga	0.690	(0.599,	0.769)					- _
Manga al al 2.45 (0.52) 0.259 139/200 Factor al 0.548 (0.74) 0.400 7.1/03 Factor al 0.549 (0.22) 0.532 (0.50) 139/2 Factor al 0.549 (0.24) 0.533 (0.60) 1497/7 Factor al 0.549 (0.24) 0.549 (0.25) 0.527 Factor al 0.549 (0.24) 0.549 (0.25) 0.527 Factor al 0.549 (0.24) 0.549 (0.25) 0.527 Factor al 0.549 (0.24) 0.549 (0.25) 0.529 (0.25) Factor al 0.549 (0.22) 0.520 (0.25) 0.529 (0.25) Factor al 0.549 (0.22) 0.550 (0.22) 0.549 (0.2) 0.550 (0.2) 0.529 (0.2) 0.550 (0.2) 0.529 (0.2) 0.550 (0.2) 0.529 (0.2) 0.550 (0.2) 0.529 (0.2) 0.550 (0.2) 0.529 (0.2) 0.550 (0.2) 0.529 (0.2) 0.550 (0.2) 0.529 (0.2) 0.550 (0.2	Mohammed								
Encode et al 2, 2000 (2000) 21/20 (2000) 21/		0.530	(0.432,	0.625)					
Sachol et al 2, 200 (0, 200) 122/103									•
Hells & al 0.722 0.631, 0.030 77/102 Subgroup 2016 - 2020 (P2-99,1%, P=0.000) 0.349 0.728, 0.030 37743 Subgroup 2016 - 2020 (P2-99,1%, P=0.000) 0.349 0.728, 0.030 37743 Subgroup 2016 - 2020 (P2-99,1%, P=0.000) 0.349 0.728, 0.030 37743 Alma 3 0.440 0.410, 0.120, 0.230 377417 Alma 4 0.440 0.230, 0.230 1277417 Alma 5 0.440 0.411, 0.520 1327416 Goldward 11ban 0.420 0.323 67411					131/153				_ - -
Yend 0.62 0.532. 0.100 37/46 549 0.532. 0.100 37/46 549 0.525. 0.000 37/46 549 0.545 0.000 3407/97 Tegepte tal 0.164 0.144, 0.189 37/263 500 at al 0.464 0.142, 0.000 3407/97 500 at al 0.464 0.142, 0.000 3407/97 500 at al 0.464 0.141, 0.526 1322 1257434 500 at al 0.464 0.141, 0.526 1322 1257434 500 at al 0.464 0.141, 0.526 1320 12724 500 at al 0.420 0.376, 0.510 9771 500 at al 0.420 0.376, 0.510 977 500 at al 0.420 0.376 at al 0.420 0.375 0 500 0.420 1373 500 0.420 1373 500 0.420 1373 500 0.420 1373 500 0.420 1373 500 0.420 1373 500 0.420 1373 500 0.420 1373 500 0.420 1373 500 0.420 1373 500 0.420 1373 500 0.420 1373 500 0.420 1373 500 0.420 1373 500 0.420 1373 500 500 0.420 137 500 0.420 1373 500 500 0.420 137 500 0.420 1373 500 500 0.420 137 500		0.250	(0.140,	0.405)					
Buggroup 219 - 3220 (P2=89.1 %, P=0.000) 9. 349 (0.255, 0.400) 18/37.24858 Bragmini 0.142 (0.144, 0.189 37/263 Fregrise 4 al 0.444 (0.422, 0.479) 47/317 Fregrise 4 al 0.444 (0.422, 0.479) 47/316 Fregrise 4 al 0.444 (0.422, 0.479) 47/316 Fregrise 4 al 0.444 (0.422, 0.479) 47/316 Fregrise 4 al 0.444 (0.422, 0.429) 47/316 Fregrise 4 al 0.444 (0.442, 0.449) 47/317 Fregrise 4 al 0.444 (0.442, 0.449) 47/317 Fregrise 4 al 0.444 (0.444, 0.449) 47/317		0.725	(0.631,	0.803)					
Tegepe et al Sons								~~	
Tergepe et al. Sons et al. So									
Sona et al . 0.444 (0.412, 0.476) 407/91 Atama 0.269 (0.231, 0.11) 1297/16 Grawn 0.251 (0.243, 0.23) 136/494 Abdetmaged and Ishing . 0.469 (0.11, 0.526) 132/202 Abdetmaged and Ishing . 0.420 (0.176, 0.16) 32/202 Abdetmaged and Ishing . 0.420 (0.176, 0.16) 32/202 Abdetmaged and Ishing . 0.420 (0.176, 0.41) 32/212 Ammod et al . 0.621 (0.001, 0.143) 97/34 Finaha et al . 0.621 (0.011, 0.042) 97/34 Finaha et al . 0.621 (0.012, 0.042) 97/34 Finaha et al . 0.620 (0.012, 0.042) 97/34 Finaha et al . 0.621 (0.012, 0.042) 97/34 Finaha et al . 0.620 (0.012, 0.042) 97/36 Finaha et al . 0.620 (0.012, 0.042) 97/36 Finaha et al . 0.620 (0.013, 0.012) 97/36 Finaha et al . 0.620 (0.014) 0.77/38 Finaha et al . 0.620 (0.016, 0.012) 97/38 Finaha et	Bongomi Tececine et al								
Grawin 0.281 0.242 0.011, 0.023 135/494 Abstemaged and lohan 0.442 0.017, 0.010 52/201 Subgroup 2021 - 2024 (1/2+98.05 %, P=0.00) 0.349 0.027, 0.033 6/411 - Alem at al 0.021 0.020, 0.043 9/373 - Fesha at al 0.022 0.022, 0.043 9/373 - Resha at al 0.022 0.023, 0.044 9/374 - Starbin 0.024 0.022, 0.044 9/374 - Vedic tal 0.026 0.030, 0.033 5/410 - Starbin 0.026 0.030, 0.033 5/410 - Mende tal 0.026 0.030, 0.333 5/410 - Madge tal 0.021 0.056, 0.333 5/430 - Starbin 0.021 0.028, 0.333 5/430 - - Wold et al 0.021 0.028, 0.333 5/430 - - Starbard 0.021 0.028, 0.333 5/430 - - Wold et al 0.021 0.027, 0.4333 5/4700 -<									
Gladalewick 0.468 0.111, 0.520 132/282 Subgroup 2021 - 2024 (I*2=96.06 %, P=0.00) 0.349 (0.77, 0.613) 1301/3617 Alem de al 0.15 (0.007, 0.032) 6/411 - Fleaha et al 0.215 (0.012, 0.042) 8/733 - Fleaha et al 0.226 (0.012, 0.042) 8/733 - Gladelwe et al 0.226 (0.012, 0.042) 8/733 - Testays et al 0.226 (0.012, 0.042) 8/733 - Gladelwe et al 0.226 (0.012, 0.044) 8/733 - Samitatu et al 0.226 (0.012, 0.044) 8/733 - Face et al 0.210 (0.040, 0.033) 7/744 - Assets et al 0.210 (0.040, 0.033) 7/744 - Vidio et al 0.221 (0.237, 0.247) 21/764 - Vidio et al 0.221 (0.237, 0.247) 21/764 - Vidio et al 0.226 (0.237, 0.247) 21/764 - - Vidio et al 0.226 (0.237, 0.247) 21/744							-	÷	
Abdelmagest and ishan							-	-	
Bubgroup 2021 - 2024 (IV2=88.06 %, P=0.00) 0.349 0.370 0.371 1301/3417 Almido tal 0.015 0.007, 0.323 6/411 1 Flash et al 0.021 0.010, 0.043 8/343 1 Flash et al 0.021 0.042, 0.943 8/343 1 Traitage et al 0.026 0.012, 0.943 8/343 1 Sadefa et al 0.026 0.012, 0.943 8/343 1 Sadefa et al 0.026 0.012, 0.943 8/343 1 Sadefa et al 0.026 0.015 7/34 1 Face at al 0.016 0.015 7/34 1 Gide et al 0.024 0.012 9/376 1 Manda et al 0.024 0.012 9/376 1 Sadefa et al 0.024 0.012 9/376 1 Adapt et al 0.224 0.035 0.425 1 Manda et al 0.226 0.127 0.439 1 1 Valot et al									
Alem et al 2012 (0.020, 0.041) 8/214 (0.021, 0.024) 8/213 (0.022, 0.044) 8/213 (0.022, 0.044) 8/213 (0.022, 0.044) 8/213 (0.022, 0.044) 8/213 (0.022, 0.044) 8/213 (0.022, 0.044) 8/213 (0.022, 0.044) 8/213 (0.022, 0.044) 8/213 (0.022, 0.044) 8/213 (0.022, 0.044) 8/213 (0.022, 0.044) 8/213 (0.004, 0.015) 9/216 (0.027, 0.037) 5/219 (0.022, 0.024) 8/2105 (0.022, 0.024) 8/2105 (0.022, 0.024) 8/2105 (0.022, 0.024) 8/2105 (0.022, 0.024) 8/2105 (0.022, 0.024) 8/2105 (0.022, 0.024) 8/2105 (0.022, 0.024) 8/2105 (0.022, 0.024) 8/2105 (0.022, 0.024) 8/2105 (0.022, 0.024) 8/2105 (0.022, 0.024) 8/2105 (0.022, 0.024) 8/2105 (0.022, 0.024) 8/2105 (0.022, 0.024) 8/2105 (0.022, 0.024) 8/2105 (0.022, 0.024) 8/2105 (0.022, 0.024) 8/2105 (0.024, 0.024) 8/2112 (0.024, 0.024) 8/2112 (0.024, 0.024) 8/2112 (0.024, 0.024) 8/2112 (0.024, 0.024) 8/2112 (0.024, 0.024) 8/2112 (0.024, 0.024) 8/2112 (0.024, 0.024) 8/2112 (0.024, 0.024) 8/2112 (0.024, 0.024) 8/2112 (0.024, 0.024) 8/2112 (0.024, 0.025) 8/2112 (0.024, 0.025) 8/2112 (0.024, 0.025) 8/2112 (0.024, 0.025) 8/212 (0.024, 0.025) 8/212 (
Alem et al 0.022 (0.020, 0.041) 8/214 4 Tenfave et al 0.022 (0.020, 0.044) 8/213 4 Tenfave et al 0.022 (0.022, 0.046) 8/213 4 Codedwet et al 0.026 (0.020, 0.056) 6/214 - Wolds et al 0.026 (0.020, 0.057) 5/219 - Data et al 0.016 (0.040, 0.015) 5/216 - Data et al 0.016 (0.040, 0.015) 7/214 - Hadgu et al 0.026 (0.030, 0.029) 8/210 - Hadgu et al 0.027 (0.040, 0.012) 8/210 - Hadgu et al 0.021 (0.060, 0.142) 8/213 - Herrador et al 0.110 (0.060, 0.142) 8/215 - Herrador et al 0.127 (0.060, 0.142) 15/255 - Herrador et al 0.127 (0.051, 0.289) 4/2/155 Gutam et al 0.127 (0.051, 0.289) 4/2/155 Gutam et al 0.277 (0.158) 0.2619 4/2/155 Gutam et al 0.277 (0.158) 0.2619 4/2/155 Batheten al 0.277 (0.158) 0.2619 4/2/155 Herrador et al 0.277 (0.158) 0.2619 4/2/155 Gutam et al 0.277 (0.158) 0.2619 4/2/155 Gutam et al 0.277 (0.158) 0.2619 4/2/155 Batheten al 0.277 (0.159, 0.261) 25/2/141 - Adem et al 0.277 (0.159, 0.261) 25/2/152 Herrador et al 0.277 (0.158) 0.2619 4/2/155 Batheten al 0.277 (0.158) 0.2619 4/2/155 Batheten al 0.277 (0.158) 0.2619 4/2/152 Herrador et al 0.277 (0.158) 0.2619 4/2/152 Herrador et al 0.277 (0.158) 0.2619 123/234 Herrador et al 0.277 (0.158) 0.2619 123/234 Herrador et al 0.277 (0.158) 0.2619 123/234 Herrador et al 0.279 (0.158) 0.2619 123/234 Herrador et al 0.279 (0.250 0.665 30) 122/213 Herrador et al 0.279 (0.158 0.663 30/511 - Herrador et al 0.170 (0.064 0.676 13) 123/244 Herrador et al 0.170 (0.265 0.685 127/213 - Herrador et al 0.170 (0.265 0.695	Alamdo et al	0.015	(0.007.	0.032)	6/411				
Testage et al 0.023 (0.022, 0.04) 8/249 + Wolke tal 0.026 (0.022, 0.05) 5/2616 + Section 1 0.004 (0.004, 0.015) 0/1061 + Barnisku et al 0.001 (0.004, 0.03) 7/319 + Ferede et al 0.010 (0.004, 0.03) 7/314 + Ferede et al 0.010 (0.004, 0.03) 7/314 + Ferede et al 0.010 (0.004, 0.03) 7/314 + Hadgu et al 0.011 (0.009, 0.03) 7/315 + Hadgu et al 0.011 (0.009, 0.03) 7/315 + Hadgu et al 0.011 (0.000, 0.03) 7/315 + Hadgu et al 0.021 (0.011, 0.042) 8/3755 + Hadgu et al 0.010 (0.000, 0.012) 12/316 + Harador et al 0.010 (0.000, 0.012) 12/318 + Harador et al 0.010 (0.000, 0.012) 12/318 + Harador et al 0.010 (0.000, 0.012) 12/318 + Harador et al 0.027 (0.030) 0.027) 256/56 + Harador et al 0.027 (0.030) 0.027) 256/56 + Harador et al 0.027 (0.030) 0.027) 256/56 + Harador et al 0.027 (0.030) 0.027) 12/318 + Harador et al 0.027 (0.030) 0.025) 12/318 + Harador et al 0.027 (0.040, 0.023) 12/318 + Harador et al 0.027 (0.040, 0.023) 12/318 + Harador et al 0.027 (0.040, 0.023) 12/318 + Harador et al 0.028 (0.166, 0.021) 12/112 + Harador et al 0.028 (0.166, 0.021) 12/112 + Harador et al 0.029 (0.156, 0.025) 12/213 + Harador et al 0.029 (0.156, 0.025) 12/213 + Harador et al 0.028 (0.769, 0.855) 12/2148 + Harador et al 0.028 (0.769, 0.855) 12/2148 + Harador et al 0.028 (0.769, 0.855) 12/2148 + Harador et al 0.848 (0.830, 0.978) 12/717 + Harador et al 0.848 (0		0.021	(0.010,	0.041)					
Gadelaw et al Gadelaw et al Code (0.003, 0.05) Source (0.003, 0	Fiesha et al	0.021	(0.011,	0.042)		_			
Vedes et al Seven et al Dambaux et al Dambaux et al Data et al									
Asefe et al									
Bamblaw et al Data et al Da		0.008	(0.004,	0.015)					
Faceda et al 0.012 (0.050, 0.030) 5/400 Hadgu tol 0.021 (0.011, 0.042) 8/376 Hadgu tol 0.611 (0.030, 0.023) 23/376 Winkie et al 0.610 (0.030, 0.023) 23/376 Hadgu tol 0.611 (0.030, 0.023) 23/376 Mahmod et al 0.107 (0.080, 0.122) 21/384 Mahmod et al 0.117 (0.080, 0.122) 1/384 Mahmod et al 0.117 (0.221, 0.232) 23/764 Mahmod et al 0.217 (0.221, 0.232) 23/764 Mahmod et al 0.217 (0.221, 0.232) 23/764 Mahmod et al 0.217 (0.128, 0.224) 8/7155 Trafage et al 0.228 (0.186, 0.226) 7/7318 Mahmod et al 0.220 (0.186, 0.226) 27/112 Adem and Dohe 0.660 (0.327, 6.603) 33/740 Mahma at al 0.439 (0.422, 0.539) 12/714/4 Wagi et al 0.400 (0.422, 0.539) 12/714/4 Wagi et al 0.479 (0.326, 0.327) 10/7199		0.016	(0.007,	0.037)	5/319	•			
Geide et al 0.026 0.030, 0.092 9/305 Hadgu et al 0.021 0.030, 0.675 231/366 Herrador et al 0.330 0.675 231/366 Herrador et al 0.300 0.675 231/366 Herrador et al 0.300 0.677 0.333 236/764 Herrador et al 0.307 0.333 236/764 Associa et al 0.376 0.330, 0.623 152/404 Mestin et al 0.377 0.377, 0.717 266/366 Guide et al 0.427 0.377, 0.717 266/366 Guide et al 0.427 0.1281, 0.122 0.2717 Bartheimy and Andy 0.440 0.428 0.2717 Akeme at al 0.128 0.1281, 0.122 0.4718 Velopasoro et al 0.143 0.121, 0.122 0.27401 Akeme at al 0.168 0.127, 10.718 - Velopasoro et al 0.142, 0.122, 0.123 0.7671 - Akeme at al 0.168 0.1623 127/116/8 - Mamod Andy 0.426, 0.6221 127/156 - -									
Hadgu et al									
Wolkie et al 0.431 0.431 0.430 0.679 231/366 Herrador et al 0.309 0.277 0.333 236/764									
Aleligne stal 0.107 (0.060, 0.122) 41/384	Woldie et al	0.631	(0.580,	0.679)	231/366	_			
Mahmud et al Assels et al Assels et al Desalegn et al 0.271 (0.221, 0.221) 0.225) 152/04 Masfine et al 0.221 (0.124, 0.225) 152/04 Advent et al 0.228 (0.186, 0.276) 7/338 Advent et al 0.228 (0.186, 0.276) 7/338 Advent et al 0.228 (0.186, 0.276) 7/338 Advent et al 0.228 (0.186, 0.275) 152/012 Batheleny and Andy Advent et al 0.228 (0.186, 0.275) 152/012 Advent et al 0.140 (0.182, 0.248) 267/112 4. Advent et al 0.230 (0.198, 0.242) 257/112 4. Advent et al 0.437 (0.300, 0.399) 123/354 4. Ammed 0.617 (0.366, 0.675) 143/654 Advent et al 0.439 (0.762, 0.139) 355/440 4. Ammed 0.617 (0.366, 0.675) 433/654 Advent et al 0.439 (0.246, 0.675) 433/654 4. Advent et al 0.439 (0.246, 0.675) 433/654 4. Advent et al 0.439 (0.245, 0.675) 127/213 Thome et al 0.439 (0.245, 0.645) 433/654 4. Advent et al 0.439 (0.245, 0.645) 433/654 4. 4. 4. 4. 4. 4. 4. 4. 4. 4							_		
Aserfa et al. 0.376 (0.330, 0.425) 122/424 Hesfin et al 0.271 (0.250, 0.292) 476/1260 Dealegner al 0.437 (0.397, 0.477) 256/566 Quinne at al 0.227 (0.195, 0.224) 86/305 Bartheleny and Andy 0.430 (0.427, 0.533) 207/412 Bartheleny and Andy 0.430 (0.427, 0.546) 330/513 Atoma tal 0.437 (0.300, 0.395) 123/354 Wega at al 0.437 (0.300, 0.395) 123/354 Atoma du uneta 0.461 (0.422, 0.553) 320/513 Atoma du uneta 0.461 (0.422, 0.553) 327/1212 Atoma du uneta 0.461 (0.422, 0.553) 327/1212 Atoma du uneta 0.461 (0.422, 0.553) 327/1212 Atoma du uneta 0.467 (0.555, 127/1212 Atoma du uneta 0.467 (0.555, 127/1212 Atoma du uneta 0.461 (0.422, 0.553) 337/400 Atoma du uneta 0.461 (0.644, 0.655) 127/213 Atoma du uneta 0.467 (0.565, 1435/654 Atoma du al 0.468 (0.662) 417/1246 Atoma du al 0.468 (0.620, 147, 1468) 47/120 Atoma du al 0.468 (0.620, 147, 1468) 47/120 Atoma du al 0.468 (0.620, 147, 1468) 47/120 Bashi et al 0.461 (0.320, 0.756) 267/31 Atoma du al 0.467 (0.576, 0.756) 267/32 Michella et al 0.468 (0.620, 147, 147) Michella et al 0.468 (0.630, 0.759) 172/247 Michella et al 0.466 (0.630, 0.759) 172/247 Michella et al 0.466 (0.630, 0.759) 172/247 Michella et al 0.466 (0.630, 0.759) 1767/247 Michella et al 0.466 (0.430, 0.759) 1767/247 Michella et al 0.466							•		
Mesfin et al 0.21/1 (0.251, 0.29) 4/6/1/56 Densingn et al 0.437 (0.397, 0.477, 256/56 Gutem et al 0.227 (0.195, 0.274) 8/7195 Adem et al 0.228 (0.186, 0.276) 7/7395 Bartheemy and Andy 0.248 (0.182, 0.253) 22/412 Akene and Dolte 0.568 (0.327, 0.668) 330/561 Akene and Dolte 0.568 (0.327, 0.668) 330/561 Akene and Dolte 0.568 (0.327, 0.668) 330/561 Akene and Dolte 0.568 (0.198, 0.264) 267/1212 • • • • • • • • • • • • • • • • • • •							-		
Gutam tal 0.227 (0.196, 0.244) 94(795) Testage et al. 0.153 (0.121, 0.192) 62/405 Adem et al 0.153 (0.121, 0.192) 62/405 Aken and Dobe 0.568 (0.527, 0.608) 320/551 Aken and Dobe 0.568 (0.70, 0.208) 123/354 Ughasorot al 0.419 (0.422, 0.546) 100/209 Ahmed 0.617 (0.366, 0.662) 119/103 Namblem at al 0.608 (0.749, 0.855) 122/213 Isanaka tal 0.609 (0.749, 0.855) 122/213 Substrate al 0.609 (0.762, 0.601) 100/100 Akekarem et al 0.750 (0.285, 0.465) 40/138 Guta et al 0.750 (0.570, 0.756) 26/39 Nau Lettow 0.846 (0.603, 0.892) 270/319 Volde et al 0.756 (0.614, 0.675) 25/39 Subgroup 2005 (Mesfin et al	0.271	(0.251,	0.293)	476/1755			•	
Adem et al 0.228 (0.166, 0.276) 7/338 Trafaye et al 0.153 (0.121, 0.122) 62/05 Barthetery and Andy 0.400 (0.422, 0.535) 202/412 Aberina at al 0.166 (0.167, 0.273) 152/617 Aberina at al 0.166 (0.167, 0.273) 152/617 Alema and umeta 0.200 (0.196, 0.245) 267/1212 Aberina at al 0.427 (0.300, 0.395) 123/354 Athemed 0.427 (0.442, 0.442) 100/209 Athemed 0.467 (0.422, 0.468) 127/213 Athemed 0.467 (0.422, 0.468) 127/213 Athemed 0.6749, 0.685 1127/213 Athemed 0.6749, 0.685 1127/213 Athemed 0.6749, 0.685 1127/213 Athemed 0.600 (0.640, 0.675) 435/684 Abeteliarem et al 0.495 (0.286, 0.675) 435/684 Abeteliarem et al 0.401 (0.286, 0.465) 435/750 Guida et al 0.412 (0.468) 349/701 Bashi et al 0.410 (0.246, 0.585) 427/213 Widehene et al 0.410 (0.246, 0.585) 427/500 Bashi et al 0.410 (0.246, 0.585) 427/500 Bashi et al 0.410 (0.246, 0.586) 427/1245 Subgroup 2011 - 2015 (P'2=98,94 %, P=0.000) 0.220 (0.164, 0.288) 678/22500 Wideke et al 0.456 (0.480, 0.382) 277/319 Mekasha et al 0.568 (0.430, 0.378) 41/707 Weakasha et al 0.558 (0.430, 0.582) 427/319 Mekasha et al 0.558 (0.430, 0.578) 41/707 Weakasha et									
Testage et al. 0.153 (0.121, 0.122) 62/405 Bartheleny and Andy Akene and Dohe 0.042, 0.559 202/12 Akene and Uneta 0.166 (0.167, 0.259) 125/51 Akene and uneta 0.220 (0.198, 0.245) 227/1212 Akene and uneta 0.220 (0.198, 0.245) 227/1212 Akene and uneta 0.200 (0.759, 0.555) 127/2713 Akene and 0.410 (0.242, 0.455) 127/213 Thome et al 0.000 (0.759, 0.555) 127/213 Akene at al 0.100 (0.769, 0.555) 127/213 Akene at al 0.100 (0.265, 0.455) 437/130 Akene at al 0.100 (0.265, 0.456) 40/138 Subgroup 2011 - 2015 (P2=98.94 %, P=0.000) 0.220 (0.144, 0.286) 219/131 Subgroup 2005 - 2010 (P2=NA, P=NA) 0.282 (0.252, 0.337) 2960/78271 Akene at al 0.156 (0.436, 0.198) 217/136 Akene at al 0.156 (0.436, 0.198) 217/136 Akene at al 0.156 (0.180, 0.192) 2742/14740 Metasha et al 0.456 (0.430, 0.076) 41/707 Akene at al 0.456 (0.430, 0.192) 2742/14740 Akene at al 0.456 (0.430, 0.193) 2742/14740 Akene at al 0.456 (0.430, 0.198) 41/707 Akene at al 0							_		
Barthelmy and Andy Akene and Dohe Abriha et al Abriha et									
Akene and Dohe Akene and Dohe 0.666 (0.527, 0.666) 330/681	Barthelemy and Andy	0.490	(0.442,	0.539)	202/412				
Alemu and umeta 0.220 (0.188, 0.245) 257/1212 Wage at al 0.439 (0.45, 0.462) 123/354 Wage at al 0.437 (0.300, 0.395) 123/354 Mamed 0.417 (0.45, 0.462) 115/133 Anned 0.617 (0.364, 0.662) 115/133 Anned 0.617 (0.364, 0.652) 115/133 Anned 0.610 (0.756, 0.655) 172/213 Torme tal 0.626 (0.654, 0.675) 155/1420 Adebtairem et al 0.650 (0.675, 0.653) 435/540 Atomas at al 0.120 (0.765, 0.653) 435/540 Atomas at al 0.120 (0.765, 0.653) 435/540 Atomas at al 0.120 (0.764, 0.655) 435/540 Atomas at al 0.120 (0.265, 0.656) 40/138 Minchella tal 0.456 (0.820, 0.282) 27/500 Subgroup 2011 - 2015 0.286 (0.346, 0.285) 1067/1245 Subgroup 2005 0.287 (0.346, 0.282) 27/519		0.568	(0.527,	0.608)				-	•
kedir et al 0.439 0.426, 0.403 77/16/6 • Wega et al 0.347 0.300, 0.359 123/354 • Uphasoro et al 0.478 0.428, 0.460 107/209 • Nambé 0.617 0.366, 0.355 122/313 • • Nambéma et al 0.408 0.478, 0.655 127/213 • • Nambéma et al 0.408 0.675, 0.337 135/440 • • Manda et al 0.408 0.626, 0.465 433/684 • • • Subarda et al 0.350 0.285, 0.465 439/701 • • • Subarda et al 0.350 0.285, 0.456 439/701 • • • Subarda et al 0.351 0.285, 0.456 439/701 • • • • Subarda et al 0.357 0.757, 0.756 26/39 • <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td></td<>							•		
Nega et al 0.347 (0.300, 0.399) 123/354 Upbascro et al 0.418 (0.420, 0.440, 100/209) Anmed 0.617 (0.364, 0.622) 119/133 Mamberia et al 0.610 (0.749, 0.655) 122/213 Torme et al 0.610 (0.644, 0.675) 435/440 Janaba et al 0.610 (0.644, 0.675) 435/454 Abcidkamen et al 0.635 (0.757) 435/454 Abcidkamen et al 0.635 (0.753) 435/454 Abcidkamen et al 0.637 (0.565) 40/108 Abcidkamen et al 0.637 (0.565) 40/108 Minchella et al 0.636 (0.762) 0.536 41/100 Minchella et al 0.647 (0.362, 0.255) 106/130									
Ughasoro et al 0.478 (0.412, 0.544) 107/299 Anmed 0.617 (0.546, 0.622) 119/193 Namblem at al 0.688 (0.745, 0.855) 112/213 Thorne et al 0.688 (0.745, 0.855) 112/213 Januala et al 0.680 (0.664, 0.675) 438/684 AbdeKarem et al 0.510 (0.285, 0.465) 439/684 AbdeKarem et al 0.510 (0.285, 0.465) 439/701 Gunda et al 0.511 (0.744, 0.546) 397/101 Bashir et al 0.510 (0.280, 0.455) 107/1245 Bashir et al 0.660 (0.664, 0.675) 438/2050 Januale to 0.510 (0.570, 0.756) 26/39 Nagu et al 0.687 (0.507, 0.756) 26/39 Nagu et al 0.687 (0.507, 0.756) 26/39 Nagu et al 0.687 (0.180, 0.182) 27/3195 Subgroup 2011 2015 (1^2=98,94 %, P=0.000) 0.252 (0.041, 0.582) 327/319 Mekasha et al 3.658 (0.643, 0.078) 41/797 Overall (1^2=99,26 %, P=0.000) 0.292 (0.252, 0.337) 29608/78271	Nega et al							_ 	
Namblem at al Diome et al Dio	Ughasoro et al	0.478	(0.412,	0.546)	100/209				
Thome et al 0.002 (0.762; 0.037) 355/400								-	<i></i>
Isanaka et al 0.400 (0.504, 0.675) 439/644									
Abdekarsen et al 0.495 (0.296, 1.000) 102/100 Abdekarsen et al 0.370 (0.295, 0.465) 407/109 Gunda et al 0.511 (0.474, 0.548) 298/701 Bashir et al 0.511 (0.474, 0.548) 298/701 Bashir et al 0.667 (1.507, 0.756) 267/32 Bugger 201 2015 (n*2=99.94 %, P=0.000) 0.220 (0.164, 0.288) 678/2050 Wolde et al 0.466 (0.180, 0.192) 2742/14/40 Bugger 2010 2005 (n*2=99.76 %, P=0.000) 0.528 (0.047, 0.562) 207/319 Mekasha et al 0.658 (0.043, 0.078) 41/707 Mekasha et al 0.658 (0.043, 0.078) 41/707 Overall (n*2=99.28 %, P=0.000) 0.292 (0.252, 0.337) 29608/78271									
Gunda et al 0.11 (0.474, 0.549) 398/701	Abdelkareem et al	0.995	(0.926,	1.000)					
van Lettow 0.654 (0.620, 0.82) 427/500 Bashi et al 0.667 (0.366, 0.553) 427/500 Minchella et al 0.667 (0.567, 0.795) 26/39 Mague et al 0.657 (0.567, 0.795) 26/39 Volde et al 0.186 (0.180, 0.192) 2742/16749 Volde et al 0.186 (0.180, 0.192) 2742/16749 Volde et al 0.866 (0.803, 0.822) 277319 Subgroup 22005 (P2=99.76 %, P=0.000) 0.528 (0.043, 0.078) 41/707 Subgroup 2005 - 2010 (P2=NA, P=NA) 0.558 (0.043, 0.078) 41/707 Subgroup 2005 - 2010 (P2=NA, P=NA) 0.558 (0.043, 0.078) 41/707 Overall (P2=99.28 %, P=0.000) 0.292 (0.252, 0.337) 29608/78271								-	
Bashi et al 0.400 (0.346, 0.558) 4/100 Micchale et al 0.667 (0.507, 0.756) 26/39 Nagu et al 0.657 (0.507, 0.756) 26/39 Nogu et al 0.857 (0.568, 0.875) 1067/1245 6783/2550 ← ← Widde et al 0.186 (0.180, 0.182) 2742/14/40 Subgroup 2005 (1/2=99.76 %, P=0.000) 0.528 (0.447, 0.582) 3012/1505 Mekasha et al 0.658 (0.643, 0.078) 41/707 ← Subgroup 2005 - 2010 (1/2=NA, P=NA) 0.658 (0.643, 0.078) 41/707 ← Overall (1/2=99.28 %, P=0.000) 0.222 (0.252, 0.337) 29608/78271									
Michchelle et al 0.667 (0.507, 0.796) 26/39 Subgroup 2011 - 2015 (1^2=99.94 %, P=0.000) 0.220 (0.164, 0.288) 6783/20500 Wolde et al 0.1%6 (0.180, 0.192) 2742/14740 Van Leitov et al 0.866 (0.683, 0.882) 270/319 Subgroup 2005 (1^2=99.76 %, P=0.000) 0.528 (0.047, 0.078) 41/707 Mekasha et al 0.058 (0.043, 0.078) 41/707 Subgroup 2005-2010 (1^2=NA, P=NA) 0.058 (0.043, 0.078) 41/707 Overall (1^2=99.28 %, P=0.000) 0.292 (0.252, 0.337) 29608/78271		0.440	(0.346,	0.538)				.	-
Subgroup 2011 - 2015 (*2=98.94 %, P=0.000) 0.220 (0.164, 0.286) 6783/20500 Wolde et al 0.136 (0.180, 0.192) 2/42/14/40 ■ van Latow et al 0.86 (0.180, 0.192) 2/42/14/40 ■ subgroup 2005 (*2=99.76 %, P=0.000) 0.528 (0.047, 0.528) 302/15059 ■ Mekasha et al 0.058 (0.043, 0.078) 41/707 ■ Subgroup 2005 - 2010 (*2=NA, P=NA) 0.058 (0.043, 0.078) 41/707 Overall (*2=99.28 %, P=0.000) 0.292 (0.252, 0.337) 29608/78271	Minchella et al	0.667	(0.507,	0.796)	26/39				
Woke et al 0.156 (0.180, 0.192) 2742/14/40 van Lethow et al 0.866 (0.803, 0.822) 273/319 Subgroup 2005 (*2=99.76 %, P=0.000) 0.528 (0.047, 0.562) 3012/15059 Mekasha et al 0.658 (0.043, 0.078) 41/737 Subgroup 2005 - 2010 (*2=NA, P=NA) 0.558 (0.043, 0.078) 41/737 Overall (*2=99.28 %, P=0.000) 0.292 (0.252, 0.337) 29608/78271							~	-	+
van Lattov et al 0.866 (0.803, 0.802) 270/319 Subgroup 2005 (h*2=99.76 %, p=0.000) 0.528 (0.047, 0.962) 3012/15059 Mekasha et al 0.658 (0.043, 0.078) 41/707 Subgroup 2005 - 2010 (h*2=NA, P=NA) 0.658 (0.043, 0.078) 41/707 Overall (h*2=99.28 %, P=0.000) 0.292 (0.252, 0.337) 29608/78271	Gaogroup 2011 - 2015 (I*2=98.94 % , P=0.000)				ord3/20500		~_>		
Subgroup <2005 (^2=99,76 %, P=0.000) 0 . 528 (0 .047, 0 .952) 3012/15059 Mekasha et al 0.058 (0 .043, 0 .078) 41/707 ← Subgroup 2005 - 2010 (^2=NA, P=NA) 0 .058 (0 .043, 0 .078) 41/707 ← Overall (^2=99.28 %, P=0.000) 0 .292 (0 .252, 0 .337) 29608/78271	Wolde et al								
Mekasha et al 0.058 (0.043, 0.078) 61/707 Subgroup 2005 - 2010 (I^2=NA , P=NA) 0.058 (0.043, 0.078) 41/707 Overall (I^2=99.28 % , P=0.000) 0.292 (0.252, 0.337) 29608/78271									
Subgroup 2005 - 2010 (I+2=NA, P=NA) 0.058 (0.043, 0.078) 41/707 Overall (I+2=92.8%, P=0.000) 0.292 (0.252, 0.337) 29608/78271	van Lettow et al		10.047,	0.962)	3012/15059				
Overall (M2=99.28 %, P=0.000) 0.292 (0.252, 0.337) 29608/78271	van Lettow et al	0.528							
0 025 0.5 0.75	van Lettow et al Subgroup <2005 (I^2=99.76 % , P=0.000) Mekasha et al	0.058				- 🚆			
0 0.25 0.5 0.75	van Lettow et al Subgroup <2005 (I^2=99.76 % , P=0.000) Mekasha et al Subgroup 2005 - 2010 (I^2=NA , P=NA)	0.058 0.058	(0.043,	0.078)	41/707	• •			
	van Lettow et al Subgroup <2005 (I^2=99.76 % , P=0.000) Mekasha et al Subgroup 2005 - 2010 (I^2=NA , P=NA)	0.058 0.058	(0.043,	0.078)	41/707	₽ ◇	<	\$	

 $\label{eq:supplementary Figure 3: Subgroup analysis in relation to year of publication$

Supplementary File

Supplementary File 1: Search strategies for the prevalence of anemia in Africa *1. PubMed*

(("Anemia" [MeSH] OR "Anaemia" OR "Iron Deficiency Anemia" [MeSH] OR "Hemoglobinopathies" [MeSH]) AND ("Prevalence" [MeSH] OR "Epidemiology" [MeSH] OR "Incidence" [MeSH] OR "Frequency") AND ("Africa" [MeSH] OR "Sub-Saharan Africa" [MeSH] OR "North Africa" OR "Nigeria" OR "Kenya" OR "South Africa") AND ("Children" [MeSH] OR "Pregnant Women" [MeSH] OR "Women of Reproductive Age" OR "Adolescents" OR "Adults"))

("Anemia" [MeSH Terms] OR "Anaemia" [All Fields] OR "Hemoglobinopathies" [MeSH Terms]) AND ("Prevalence" [MeSH Terms] OR "Epidemiology" [MeSH Terms] OR "Incidence" [MeSH Terms] OR "Frequency" [All Fields]) AND ("Africa" [MeSH Terms] OR "North Africa" [All Fields] OR "Nigeria" [All Fields] OR "Kenya" [All Fields] OR "South Africa" [All Fields]) AND ("Pregnant Women" [MeSH Terms] OR "Women of Reproductive Age" [All Fields] OR "Adolescents" [All Fields] OR "Adults" [All Fields])

2. Scopus

("anemia" OR "anaemia") AND ("prevalence" OR "epidemiology" OR "incidence" OR "frequency" OR "rate") AND ("Africa" OR "Sub-Saharan Africa" OR "North Africa" OR "East Africa" OR "West Africa" OR "Central Africa" OR "Southern Africa" OR "Nigeria" OR "Kenya" OR "South Africa" OR "Egypt" OR "Ghana" OR "Ethiopia" OR "Tanzania" OR "Uganda" OR "Morocco" OR "Algeria" OR "Angola" OR "Zimbabwe")

3. ScienceDirect

(prevalence OR incidence) AND (anemia OR anaemia OR "iron deficiency anemia" OR "sickle cell anemia") AND ("Sub-Saharan Africa" OR "North Africa" OR "West Africa" OR "East Africa" OR "Central Africa" OR "Southern Africa") AND (children OR "pregnant women" OR "women of reproductive age" OR "HIV/AIDS" OR malaria OR "adult")

4. Google Scholar

Main search terms

- Prevalence of anemia in Africa
- Anemia in African countries
- Iron deficiency anemia in Africa
- Hemoglobin levels in Africa
- Nutritional anemia in Africa
- Pediatric anemia in Africa
- Anemia in pregnant women in Africa

Specific conditions

- Malaria-associated anemia in Africa
- HIV/AIDS and anemia in Africa
- Sickle cell anemia in Africa
- Genetic anemia in Africa
- Infectious diseases and anemia in Africa

Regions and demographics

- Anemia in sub-Saharan Africa
- Anemia in North Africa
- Rural vs. urban anemia in Africa
- Anemia in children in Africa
- Anemia in women of reproductive age in Africa
- Regional disparities in anemia prevalence in Africa

Combining terms

- "Prevalence of anemia in Africa" AND "iron deficiency"
- "Anemia in African countries" OR "hemoglobin levels in Africa"
- "Malaria-associated anemia" AND "sub-Saharan Africa"
- "Nutritional anemia" AND "pregnant women" AND "Africa"

Exclusion terms

- "Anemia in Africa" -animal -plant (to exclude studies not related to human anemia)
- "Prevalence of anemia in Africa" -review (to exclude review articles if primary studies are desired)

Date range

• We set a specific date range to retrieve old to recent studies (1900-2024), to ensure the inclusion of all data to get an up-to-date research.

5. Web of Science

TS=(anemia OR anaemia OR "iron deficiency anemia" OR "iron deficiency anaemia" OR hemoglobin OR haemoglobin) AND TS=(prevalence OR incidence OR epidemiology OR frequency OR occurrence) AND TS=(Africa OR "Sub-Saharan Africa" OR Algeria OR Angola OR Benin OR Botswana OR "Burkina Faso" OR Burundi OR "Cape Verde" OR "Central African Republic" OR Chad OR Comoros OR "Democratic Republic of the Congo" OR Djibouti OR Egypt OR "Equatorial Guinea" OR Eritrea OR Eswatini OR Ethiopia OR Gabon OR Gambia OR Ghana OR Guinea OR Guinea-Bissau OR Ivory Coast OR Kenya OR Lesotho OR Liberia OR Libya OR Madagascar OR Malawi OR Mali OR Mauritania OR Mauritius OR Morocco OR Mozambique OR Namibia OR Niger OR Nigeria OR Rwanda OR "Sao Tome and Principe" OR Senegal OR Seychelles OR Sierra Leone OR Somalia OR "South Africa" OR "South Sudan" OR Sudan OR Tanzania OR Togo OR Tunisia OR Uganda OR Zambia OR Zimbabwe).