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ABSTRACT

Background:
The zero-divisor graph T’y (R) is central in algebraic graph theory. Let R be a commutative ring with

identity 1 # 0. In this work we define the multiplicative regular graph ',z (R) as a generalization that
captures the behavior of regular elements those satisfying a = aba or b = bab.

Materials and Methods:

The graph 'z (R) is defined using ring-theoretic conditions and graph-theoretic representations, Two
distinct none-zero elements x and y are adjacent if and only if xy € Reg(R). A Python-based algorithm
is used to construct and visualize T,z (R) for finite commutative rings.

Results:

We prove that T'y;g (R) = Ty (R) ifand only if R = {0,1}, and T'y;g (R) = Gy ,,-+(R) When R is a regular
ring. The study includes analysis of key graph invariants such as connectivity, diameter, girth, and
regularity.

Conclusion:

The graph 'z (R) offers a generalization of existing graphs of commutative rings. By emphasizing
regular elements, this model uncovers new structural relationships within the ring and explores ring-
theoretic properties through graph-theoretic methods.

Keywords:
Multiplicative regular graph, connectivity of a graph, regularity of a graph, diameter of a graph, girth of a
graph.
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1. INTRODUCTION

Obtaining graphs from algebraic structures is one of the extended branches of mathematics
recently; Beck took the first steps in this area in 1988. He introduced the zero-divisor graph
I'o(R) of a commutative ring V(['y(R)) = R, his work became the bridge between commutative
algebra and graph theory and was mainly interested in coloring of graphs. In 1999 Anderson and
Livingston associated the graph I'(R) to R with elements of R excluding zero. The zero divisor
graphs are also studied and generalized in [3-7].

Throughout this paper, R is a commutative ring with identity 1 # 0, unless otherwise stated.
The set of zero divisors, units, idempotent elements, nilpotent elements, regular elements of R
denoted by Z(R), U(R), Idem(R), Nil(R), Reg(R) respectively.

In the present work, we introduce a multiplicative regular graph of R, denoted by I'y,z (R),
which is undirected with V(T'y,z(R)) = R. We focus on various properties of I'y;z(R), including
diameter, cycles, girth, chromatic number, connectivity, regularity, and when the graph does
become Eulerian. As an introduction to the graph theory, we start with the concept of an
undirected simple graph, which is a fundamental object in graph theory. An undirected graph G
consists of a non-empty finite set of vertices V(G) , and a finite set of edges E(G), where each
edge is an unordered pair of distinct vertices. These edges indicate a mutual relationship with no
direction between the connected vertices. Two vertices v and w are said to be adjacent if they are
joined by an edge, typically written as vw, and both are said to be incident to that edge. The
degree of a vertex v, denoted by deg(v), is the number of edges connected to it. A vertex with
degree 0 is called an isolated vertex, while one with degree 1 is known as an end-vertex.

A sub graph is any graph formed by selecting a subset of vertices and edges from a larger graph
G. If a graph has no edges at all, it is called a null graph. A graph where every pair of distinct
vertices is adjacent is known as a complete graph, denoted by K,, for n vertices. A cycle graph
C, 1s a connected graph where each vertex has degree 2, forming a closed loop. If an edge is
removed from C,, , the resulting graph is a path graph, denoted B, . A wheel graph W,, is obtained
by connecting a new central vertex to all vertices of a cycle C,,_; . A graph is called regular if all
vertices have the same degree; specifically, if each vertex has degree r, it is called an r-regular
graph.

If V(G) could be partitioned into two disjoint subsets A and B such that an edge in G joins a
vertex in A to a vertex in B, then G is called a bipartite graph [16]. The distance between two
distinct vertices x and y, denoted by d(x,y), is the length of the shortest path between two x
and y, and if there is no such path, thend(x,y) = o, andd(x,x) = 0. The graph G is
connected if any two distinct vertices are joined by a path [17], the diameter of G, is defined
as diam(G) = sup{d(x,y):x,y € V(G)}. Two graphs G and H are isomorphic if there is a
bijective function (one — to — one and onto) f : (G) — (H) with (G) = (H), (G) = (H) and
foru,v € V(G), (u,v) € E(G), ifand only if (f(w), f(v)) € E(H).

The length of the shortest cycle in G is called the girth of G and denoted by gr(G), if G has no
cycles, then gr(G) = oo [9,10].
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2. MULTIPLICATIVE REGULAR GRAPH OF A COMMUTATIVE RING R

An element a in R is said to be regular, (in the sense of von Neumann), if a = aba for some
b € R and R is called regular if each element of R is regular. It is clear that every unit of R is
regular.

Examples 2.1: We provide some examples to understand our definition of the multiplicative
regular graph I'y;z (R) and it consolidates the definition we present in this research. In [14], P. A.
Rashid and H. S. Rashid defined an undirected graph G for R, denoted by R;(R), with
V(Rs5(R)) = R\{0} and a # b € R are adjacent if and only if a = aba or b = bab and in [15],
Ali Jafari Taloukolaei and S. Sahebi defined an undirected graph, Gy,,.+(R), with
V(Gyn+(R)) =R, and a # b € R are adjacent if and only if a + b is regular. In this work we
introduce a new version of undirected graphs for R, called a multiplicative regular graph,
denoted by I'yz(R) with V(I'yzr(R)) =R and a # b € R are adjacent if and only if ab is
regular. We give some examples to show that our definition is different from the both above two
mentioned definitions. Now clearly, R5(R) is a subgraph of I'yz(R) since, V(R3(R)) =
R\{0} c R =V (T'yg(R)) and if (a,b) € E(R3(R)), then a = aba or b = bab. In both cases we
get ab is regular, so that (a, b) € E(T'yz(R)), and thus E(Ry(R)) S E(T'yr(R)). Hence, Ry (R)
is a sub graph of I'yzx(R). Now, in Z;,, we have 2.10 = 8 € Reg(Z,;), SO that (2,10) €
E(Tyr(Z43)), but we have 2 # 2.10.2 and 10 # 10.2.10, so that (2,10) € E(R,(R)) and this
proves that our definition is different from that P. A. Rashid and H. S. Rashid defined in [14]. In
fact, T'yg(R) is a generalization of Ry;(R) in the sense that, V(Ry(R)) c V(I'yr(R))
and E(R5(R)) € E(T'yr(R)). Next, we consider the ring Zg. We have 2.4 = 0 which is a
regular element in Zg, but 2 + 4 = 6, which is not regular in Zg. On the other hand, we have 2 +
6 = 0 which is regular in Zg, but 2.6 = 4, which is not regular in Zg and this proves that our
definition is independent with that Ali Jafari Taloukolaei and S. Sahebi defined in [15]. Finally,
if x and y are regular, then one can easily show that xy is also regular. InZ;,, we have 2
and 10 are not regular, but 2.10 = 8, which is regular in Z,,, that means it is possible that a
given ring contains non regular elements but their multiplication is regular. All these examples
give the validity of our basic definition in this research and now we are able to introduce our
main definition.

Definition 2.2: The multiplicative regular graph of R denoted by I';y,z (R), it is undirected graph
with V(I'yz(R)) = R and x # y € R are adjacent if and only if xy € Reg(R).
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Examples 2.3: (1) clearly 0 is a regular element. For all 0 # x € R, Ox = 0 is regular, that
means 0 is adjacent to all nonzero elements of R in Tz (R).

(2) The multiplicative regular graphs of Z,,, for some positive integers n.

1 2
1
0
Mvr(Z2) Mvr(Z3)
3\
4
2
0\
2
Mvr(Z4) Mvr(Zs)
Figure 1

Remark 2.4: Ty(R) is always a subgraph of I'y,z(R). In fact, V(['((R)) = R = V(I'yz(R)) and
if (a,b) € E(T'y(R)), then ab = 0 and as 0 is regular, we have ab is regular, so that (a,b) €
E(Tyr(R)). Hence, Ty(R) is a sub graph of Iz (R). In Example 2.1, we see that (2,10) €
E(Tyr(Z43)) but (2,10) ¢ I'y(Z4,) and this makes us able to consider the multiplicative regular
graph, I'yz (R) as a generalization of T'y(R) in some sense.

Now, we prove that the multiplicative regular graph of a ring with only additive and
multiplicative identities is nothing just ['y(Z,).

Proposition 2.5: Let R = {0, 1}, then Tz (R) = T'((Z,).

Proof: If we define f:R — Z, as f(0) = 0 and f(1) = 1. In R, since we have 0.1 = 0 which is
regular, so that 0 is adjacent to 1, so (0,1) € E (T (R)) which is the only edge in E(Tyz (R)),
so that E(Tyg (R)) ={(0,1)}. On the other hand, inZ,,0.1 =0, so that (0= f(0),1=
f(1)) € E(Ty(Z3)) which is the only edge in E(T'4(Z;)), so that E(Ty(Z,)) = {(0,1)}. Now,
we have

) 1V(ITur RD] = 2 = [V(To(Z2))]-

Page | 214

ISSN: 2312-8135 | Print ISSN: 1992-0652

info(@journalotbabylon.com | jub(@itnet.uobabylon.edu.ig | www.journalotbabylon.com


mailto:info@journalofbabylon.com
mailto:jub@itnet.uobabylon.edu.iq
mailto:jub@itnet.uobabylon.edu.iq
https://www.journalofbabylon.com/index.php/JUB/issue/archive
https://www.journalofbabylon.com/index.php/JUB/issue/archive

JOURNAL OF UNIVERSITY OFBABYLON

ll'lll:le For Dure and Appled Seionces (JUBPAS) Vol. 33;No.2 | 2025

Ty D T T ey S Ty S D T P ey 6

T

Y >

Tt

ey e

v‘)‘lv

TSy S Y T

(ii) | E(FMR (R))| =1= |E(F0(Zz))|-

(iii) (0,1) € E(Tyg (R)), then (£(0),£(1)) = (0,1) € E(T(Z)). Also, (0,1) € E(To(Zy)),
then (0,1) = (£71(0), f~1(1)) = (0,1) € E(Tyz (R)). Hence, we get Ty (R) = To(Zy).

Corollary 2.6: LetR = {0,1}, then ',z (R) is regular graph with degree one (1-regular) and
complete graph K.

Proof: By Proposition 2.5, we have I'yz (R) = T'y(Z,), as, I'((Z,) is complete graph K, and
regular graph with degree one (1-regular), so that T'yz (R) is a complete graph K, and regular
graph with degree one.

Theorem 2.7: Let R be regular. Tz (R) = T'y(R) ifand only if R = {0, 1}.

Proof: Let T'yz (R) = T'h(R). If R # {0, 1}, then there exists x € R such that x = 0 and x # 1.
As R is regular, we have x is regular, thenx.1 = x € Reg(R). Hence (x,1) € E(T'yg (R)),
asTygr (R) =TH(R), we get(x,1) € E(Ty(R)), so thatx.1 =0, that isx = 0, which is a
contradiction. Hence, R = {0,1}. next letR = {0,1}. Clearly, V(T'yz (R)) = R =V (T,(R)),
Then, 0.1=0€Reg(R), so that (0,1)€E(Iyz(R)) and (0,1)€ E(T,(R)).
Clearly, E( Tyg (R)) = {(0,1)} = E(T, (R)), Hence Ty (R) = Ty (R).

Corollary 2.8: If R is a field, then T'yz (R) = I'y(R) ifand only if R = {0, 1}.
Proof: As a field is regular, the proof is obvious.

Example 2.9: Consider the ring Z¢, which is regular and since Z # {0, 1}, so that by (Theorem
2.7)Tyr (Zg) £ Ty(Ze). It is clear from their graphs as given in below, that T'y(Zg) is a sub

graph of T'yr (Zs).

AN DN
SN~
N~ N\

Figure 2

Proposition 2.10: If R is regular, then Tz (R) and Gy,,+(R) are complete and Ty (R) =
GVnr+(R)-

Proof: Letx,y € R, then xy and x + y are regular. Hence, each pair of vertices in both graphs
IF'yr (R) and Gy,,,+(R) are adjacent, thus T'yz (R) and Gy,,+(R) are complete graphs. Now,
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V(Tyr (R)) = R =V (Gy,y+(R)). Then, the identity map I: R — R is the required isomorphism

between I'yr (R) and Gy,,-+(R). Hence, T'yr (R) = Gyppt (R).

Corollary 2.11: For a field R, Tyg (R), Gy,+(R) are complete graphs and Tz (R) =

GVnr"’ (R)

Proof: Since a field is regular, the proof is obvious.

If R is not regular, T'yg (R) and Gy,+(R) may not be complete and may not be isomorphic.
Now, we give some examples to determine the differences between the graphs I'yg (R),

Gynet (R) and Ry (R).

Example 2.12: Consider the ring Zg.

Fvr(Zsg

In the above figure we see that, the ring Zg is not regular (2 is not a regular element). Now,
(1,5) € E(Tyg (Zg)) but (1,5) € Gyn,+(Zg) and (3,6) € Gyp,+(Zg) but (3,6) & E(Tyg (Zs)).

Hence, the two graphs are independent.

For the graph R;(R), even R is regular or not, then the graph R5(R) neither be complete nor

isomorphic to T'yz (R).

)

GVnr+ (ZS)

Figure 3

Example 2.13: We consider the regular ring Z¢ and the irregular ring Zg.

4

I

2

|/

6

Mmr(Zg)

~

3 1

Figure 4
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We see that both graphs for the irregular ring Zg are not complete and clearly, they are also not
isomorphic, but R, (Zg) is a subgraph of T'yg (Zg).

For the regular ring Z, as given in below, we see in Figure 5 that the graph I'yz (Zg) is
complete (since Z¢ is regular), while the graph R;(Ze) is neither complete nor isomorphic to
Tyr (Zg) but Ry (Zs) is a sub graph of Ty (Zg).

AN
RVZEaN

Mmr(Zs) Ra(Zs)
Figure 5
Remark 2.14: If T;(R) and I (R) are two graphs with V(I3 (R)) = V(I3(R)) and E(I3(R)) =

E(I;(R)), then I7(R) = I(R). In fact, the identity mapping between V (I7(R)),V (I1(R)) is the
required isomorphism.

Theorem 2.15: Tz (R) = T’y (R) if and only if 0 and 1 are the only regular elements in R.

Proof: LetT'yz (R) = Ty (R). If R contains a non-zero non unit regular element x € R. then
x.1 =x € Reg(R). Hence, (x,1) € E(T'yg (R)) and since T'yg (R) = Ty(R), we get (x,1) €
E(T, (R)), sothat x.1 = 0, that is x = 0, which is a contradiction. Hence, 0 and 1 are the only
regular elements in R. Next, assume that 0 and 1 are the only regular elements in R. Let
Tyr (R) # Ty (R). Since Ty (R) is a subgraph of Ty (R), we get E(Ty (R)) € E(Tyg (R)). If
E(Tur (R)) € E(Ty (R)), then E(T'yr (R)) = E(Ty (R)) and as V(I'yg (R)) = R =V (T (R)),
by Remark 2.14, T'yr (R) = T, (R), which is a contradiction. Hence, we get E(T'yz (R)) &
E(T, (R)), so that there exist distinct elements a, b € R with (a,b) € E(T'yz (R)) but (a,b) ¢
E(T, (R)), this gives that ab is regular in R and ab # 0, so that a # 0 and b # 0. As R has no
regular elements other than 0 and 1, we get ab = 1, so that a and b are units and hence they are
regular elements in R. We have:

(i) (a = 0 and b = 0), which is a contradiction.
(if) (a = 0 and b = 1), which is a contradiction.
(iii) (a = 1 and b = 0), which is a contradiction.

(iv) (a =1and b = 1), this gives that a = 1 = b, which is a contradiction. Hence, we must
have that ',z (R) = T, (R).
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Proposition 2.16: Tz (R) is connected.

Proof: Let x,y € V(T'yg (R)) with x = y. If x = 0, then y # 0, and clearly xy = 0y = 0 which
is regular, so (x,y) = (0,y) e V(I'yr (R)) and if y =0, similarly we get (x,y) = (x,0) €
V(Cygr (R)). Next, let x # 0 and y # 0. As x0 = 0 and 0y = 0 are regular, so (x,0),(0,y) €
V(Tyr (R)). Hence, x — 0 — y isa path in T'yz (R), that is Ty (R) is connected.

Theorem 2.17: Diam(Tyg (R)) < 2.

Proof: Let Diam(Tyg (R)) > 2, then there exist x,y € R with d(x,y) > 2. If x =y, then
d(x,y) = d(x,x) = 0 which is a contradiction, hence x # y and if x = 0 or y = 0, then clearly
xy = 0 which is regular, so that (x,y) € E(Tyg (R)) and as TI'yz (R) is connected by
Proposition 2.16, we get d(x,y) = 1 which is again a contradiction, so that x and y are distinct
non zero vertices. Now, we get x — 0 — y is a path in I'y,z (R), that means d(x, y) = 2, which is
a contradiction. Thus, we get Diam (T (R)) < 2.

Theorem 2.18: If R contains at least three elements, then gr(Tyg(R)) = or
gr(Tur (R)) = 3.

Proof: If T'yz (R) contains no cycle, then gr(Tyg (R)) = . Now, suppose that Tz (R)
contains acycle C: vy — v, — vy — -+ — v, — v; With lengthn > 3. If v; = 0, then, we have 0 —
v, — v3 — 0 is a cycle with length 3 in T'yz (R) and if v, =0, we have v,,_; —0—v; — v, iSa
cycle with length 3 in Tz (R) and if v; = 0 for some 2 <i <n — 1, then we get that v; — 0 —
v, — v, is a cycle of length 3 in I'y,z (R) and the last case is that when v; = 0 forall 1 <i <n
and for this case we have v; — v, — 0 — v, is a cycle of length 3 in Ty, (R), that means I'y,;z (R)
contains a cycle with length 3 and since the girth of any graph never be less that 3, hence we
have gr(Twz (R)) = 3.

Remark 2.19: If R is regular, Tz (R) is complete (by Proposition 2.10), that means the degree
of all vertices of R are equal. Hence, I'y;z (R) is regular.

Corollary 2.20: If R is a field, '),z (R) is complete graph as well as a regular graph.
Proof: Is obvious from Remark 2.19.

Corollary 2.21: If p is prime, then 'y (Z,) is complete and (p — 1) —regular.

Proof: As Z, is a field, by Remark 2.19, 'z (Z,,) is a regular graph and hence each vertex in
Tmr (Zp) is adjacent to all the remaining p — 1 vertices and hence the degree of each vertex in
Twr (Z,) isp — 1, so that Ty (Z,) isa (p — 1) —regular graph.

Theorem 2.22: The multiplicative regular graph, T'yz (R) of every regular ring R with at least
three distinct vertices is a Hamiltonian graph.
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Proof: By Remark 2.19, I'y,z (R) is complete and as R contains at least three distinct vertices,
so that Ty, (R) contains a Hamiltonian cycle, then T'yz (R) is Hamiltonian.

Recall that a connected graph G is Eulerian if and only if all its vertices have even degree [9,
Th. 6.2].

Proposition 2.23: If R is a field with an odd number of elements, then ',z (R) is Eulerian.

Proof: Let R = {ay,a,, ..., a,}, where n is an odd number greater than 1, then by Corollary
2.20, we get 'y (R) is a regular graph, so that each vertex in Ty (R) is adjacent to the all
remaining n — 1 verticies and as n is odd, we get n — 1 is even, so that the degree of each vertex
in Tz (R) is even and hence I'yz (R) is Eulerian.

Corollary 2.24: If p > 2 is prime, then 'z (Z,,) is Eulerian.

Proof: As Z, is a field and p > 2 is prime, so that p is an odd number, so that by Proposition
2.23, we get Ty (Z,,) is Eulerian.

The chromatic polynomial is the number of possible ways a graph can be colored using no
more than a given number of colors, for chromatic polynomial of a graph see [3].

Proposition 2.25: Let R be a field with n elements. The chromatic polynomial of the graph
Tyg (R) is the polynomial B, A) =2 (A1—-1) (A —=2)--(A-n +1).

Proof: By Corollary 2.20, we have I'y;z (R) is complete. By [3, Th. 1] the proof will be done.

Corollary 2.26: If p is prime, the chromatic polynomial of Iy (Zp) isP,(M)=A(1-1)(A—-
2)-(A-p +1).

Proof. As Z,, is a field, the proof is obvious from Proposition 2.25.

Example 2.27: Consider the ring Z;. as Z3 is a field, by Corollary 2.20, we get that the
multiplicative regular graph I'y,z (Z3) is a complete graph.

Remark 2.28: If n > 1, then the totient function (or ¢ —function) is the number of positive
integers less than n and relatively prime with n [11]. If n = p;'p,? ...p;", is the prime
factorization of n, by [13, Th. 7.3], we have ¢@(n) = (p;* —p" )@ —p52 ™) ... (p3* —
p;"‘l). If a < n is any relatively prime number to n, then ab = 1(modn) for some b € Z, this
means that a is a unit in Z,, and since every unit in a ring is non-zero and regular, this means that
any relatively prime integer to n which is less than n is a non-zero regular element in Z,,.

Theorem 2.29: For n > 5, T'y;z (Z,,) contains at least one Kz with 0 as one of its vertices.

Proof: Letn = 5. As 5 is prime, by Corollary 2.21, Ty (Zs) is a complete graph and as Zg
contains 5 vertices which are 0,1, 2, 3, 4, we get Zc itself is a K. Next, let n = 6. Since Zg is a
regular ring, so by Remark 2.19, T'yr (Zg) is a complete graph. Hence, any five vertices of Zg
will form a complete subgraph of Ty (Ze), S0 that {0, 1, 2, 3,4} is one of these K5’s in [y (Zs).
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Now, let n > 6, then n can be factorized into n = p;'p,? ... ;<. We have two cases, either the
prime factorization of n contains at least a prime number p; = 5 or all the primes in the prime
factorization of n are less than 5. For the first case, suppose that for some 1 <i <k, p; is a

prime number with p; > 5, then p; — p" is a factor of ¢ (n). If p; = 5, then p;i — p;i " =
p Tt (pi—1) =4p]"" >4, and if p;>5, then we get pii—pit=(p,—Dp) >
(5- 1)pl.si_1 = 4pisi_1 > 4, so that in this case there is at least 4 relatively prime numbers to n.
For the second case, suppose that all the prime numbers in the factorization of n are less than 5,
this means that p; < 5, for every 1 <i <k, and thus for each 1 <i < k, we have p; = 2 or
p; = 3. Hence, we get n =2"3M2 where m; =1 and m, =1, then p(n)= 2™ —
2mi—1)(3mz _ 3me-1)pmi=13me=1(p _ 1)(3 —1) = 2.2™1713M2~1 |f 1, =1 =m,, then
n = 2.3 = 6, which is a contradiction, since n > 6. Hence, we have m; > 2orm, > 2. If m; >
2, then @(n) = 2.2M~13M2~1 > 22 3M2~1 = 4, 3M271 > 4 and if m, > 2, then we get
p(n) = 2.2M"13m2~1 > 7 2mi—1 3 = 6, 2M~1 > 6 > 4, Hence, all cases implies that there is
at least 4 relatively prime numbers to n. Then, by Remark 2.28, every relatively prime number
to n is a unit in Z,, and as every unit is nonzero and regular, so that Z,, contains at least four
distinct nonzero regular elements, say v,,v,,v5,v, and as 0 is always regular, so that
0, v4,v,, v3, v, are five distinct regular elements in Z,, and since the product of any two regular
element is also regular, so that the set {0, v,,v,,v;,v,} Will form a complete subgraph of
I'yr (Z,,) which is, in fact a Kz.

It is clear that Iy, (Z3) and T'y,x (Z,) are planer graphs. In the following corollary, we prove
that I'y,z (Zy,,) is not planer for all n > 5.

Corollary 2.30: For n > 5, the multiplicative regular graph, I'y;z (R) is not planer.

Proof: By Theorem 2.29, I',z (R)) contains at least one Ks. Hence, ')z (R) cannot be planer
graph. [9, Th. 2.21] o.

In view of Theorem 2.29, we can discuss end-regular sub-graphs of multiplicative regular
graphs. Let G and H be graphs. A mapping F:V(G) — V(H) is called a homomorphism from G
to H if for any a,b € V(G), and then a adjacent to b imply that F(a) is adjacent to F(b). A
homomorphism from G to itself is called an endomorphism of G. End(G) is the set of all
endomorphisms of G. A graph G is called end-regular if End(G) is regular and it is called
independent if no two vertices in G are adjacent and it is called split if there is a partition V(G) =
KU U of its vertex set into a complete set K (every two elements are adjacent) and an
independent set U. In the next theorem we prove that for all n > 5, the multiplicative regular
graph I',z (R) contains at least one end-regular subgraph.

Theorem 2.31: Forn > 6, 'z (Z,,) contains at least one end-regular subgraph.

Proof: By Theorem 2.29, we get I'y, (Z,,) contains at least one Ks. Now, let G be a subgraph of
I'yr (Zy,) such thatG = K5 US, where V(Ks) = {0,v,,v,,v3, 14} and S = {v;,v;} forv; # v;
and v;, v; € V(Ks). Now Ky is a complete set, assume that v; is not adjacent with v;, this means
S is independent set, now |Kz| = 5, v; adjacent with 0, means at least the degree of v; is one i.e.
d(v;) =1, now 1 € {1,2,3,4,5} and v; € S, Then by [12, Lemma 1.2] we get end-regular sub-
graph of I'yz (R). O
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3. An algorithm for constructing 'y (Z,,)

Now, we propose an algorithm to visualize the multiplicative regular graph of Z,. The
construction process is explained in a detailed, step-by-step manner, where each step is carefully
elaborated to demonstrate how the graph is drawn according to the specific conditions defined in
our graph’s definition. We construct an algorithm to construct a multiplicative regular graph of
Z,, in which the graph depends on regular elements. We call the algorithm a multiplicatively
regular graph. We must import networkx:

GraphRegular(varl g (Z,):graph)
Import library networkx, matplotlib. pyplot and math
Step one:
Fora,b € Z,
If a2xb=a
Add ato Reg(Zy,)
Else
Go to step one;
End for;
Step two:
ForieZ,
AdditoV (Tyg (Z,)
Forj € Z, do
Ifi #j
Ifi xj € Reg(Z,)
Add i~j to E (Tyz (Z,)
Else

Go to step two:
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Else
Go to step two:
End for:
Step three:

Draw 'y (Z,,)
End;

First we start the algorithm by importing library networkx, matplotlib.pyplot and math. Begin
with step one, as the algorithm checks for the regular elements of Z,,. In Z,, if there is a positive
integer b such that a? xb = a for any a inZ, then a will be a regular element of Z,,. Add a
to Reg(Z,). Otherwise if such b does not exist, the process returns to the privies loop in step
one. For the step two, it is the step of determining the vertex set of the graph i.e. V(FMR (Zn)).
Each i in Z,, becomes the vertex of the graph, add i to V(FMR (Zn)). Then the algorithm checks
the vertex adjacency, that is, if for i € V(T'yg (Zy,)), there exists j € V(Tyg (Z,,)), wWhere i = j,
andi = j € Reg (Zy,), then i and j are adjacent. Adds i to edge set of the graph i.e. E(Tyz (Z,,)),
Else it returns to the loop in step two. Here we have the prepared set of vertices and edges of the
graph; at the end of the algorithm we have the last step which is drawing the multiplicative
regular graph of Z,,.

Example 3.1: Constructing multiplicative regular graph of Z,, forn =3, 4 and5. Ifn = 3,
then Z; = {0,1,2}. In the first step of algorithm, the process checks for regular elements of the
ring. That is for an element a in Z if there is another element a in Z; such that a? x b = a then
a is regular element of the ring Z5. Here in Z; we have 0, 1 and 2 are regular elements of Z; that
is Reg(Zs3) = {0,1,2}. Step two is the step of determining vertices V(Tyz(Z3)). Means all
elements in Z; will be added to vertices of the graph. That is V(FMR(Z3)) = {0,1,2} and in this
step the algorithm determines what vertices are adjacent? That is, for i in V(FMR (Z3)) if there
exists j wheni # j, and i x j € Reg(Zs), then i is adjacent to j. Here in Z5, we have 0~1, 0~2
and 1~2 and the edges will be added to E(FMR(Z3)). The last step draws the multiplicative
regular graph of Z5. As shown in Figure 1.

For n =4 and 5 algorithm works in similar procedure and determines the sets of regular
elements of the rings Z, and Zs. As Reg(Z,) = {0,1,3} and Reg(Zs) = {0,1,2,3,4}. In step
two the algorithm determines set of vertices of both multiplicative regular graphs that we want to
draw, i.e. V(T'yr(Z,)) and V(T yz(Zs)). Also in this step the algorithm checks for the adjacency
of any two distinct vertices in the two vertex sets. That is for any i in V(T4 (Z,)) if there is j in
V(Tygr(Z,)) whenever i # j and i x j € Reg(Z,) for Tyg(Z,) and i = j € Reg(Zs) for T'yg(Zs)
then i is adjacent toj. And i~j will be added to E(Tyg(Z,)) for Tyr(Z,) and E(Tyz(Zs))
for 'y r(Zs). For Z, we have 0~1, 0~2, 0~3 and 1~3, and for Zs we have 0~1, 0~2, 0~3,
0~4, 1~2, 1~3, 1~4, 2~3, 2~4 and 3~4 and the third step of the algorithm is the step of
drawing both graphs I'y,z(Z,) and ',z (Zs), as shown in Figure 1.
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Example 3.2: if n = 8, then Zg = {0,1,2,3,4,5,6,7}. In the first step of algorithm, the process
checks for regular elements of the ring. That is for an element a in Zg if there is another element
b in Zg such that a? x b = a then a is regular element of the ring Zg. We have 0,1,3,5,7 are
regular elements of Zg that is Reg(Zg) = {0,1,3,5,7}. Step two is the step of determining
vertices V(T'yz (Zg)), this means that all elements in Zg will be added to vertices of the graph,
so that V(FMR (Zs)) ={0,1,2,3,4,5,6,7} and in this step the algorithm checks for vertices that
are adjacent, That is for i in V(T'yr (Zg)) if there exists j when i = j, such that i * j € Reg(Zg),
then i is adjacent to j, for example for 0 there is 1 such that 0.1 = 0 € Reg(Zg), so that 0~1,
similarly 0~2, 0~3, 0~4, 0~5, 0~6, 0~7, 1~3, 1~5, 1~7, 2~4, 3~5,3~7, 4~6, 5~7 and the
edges will be added to E(FMR (Zg)). The last step of algorithm draws the multiplicative regular
graph of the ring Zg, as shown in Figure 6.

AN

0

Tmr(Zg) Mmr(Z12)

Figure 6

Example 3.3: ifn = 12, then Z,, = {0,1,2,3,4,5,6,7,8,9,10,11}. In the first step of algorithm,
the process checks for regular elements of the ring. That is for an element a in Z,, if there is
another element b in Z,, such that a? * b = a then a is regular element of the ring Z,,. We have
0,1,3,4,5,7,8,9,11 are regular elements of Z,, that is Reg(Z,,) = {0,1,3,4,5,7,8,9,11}. Step
two determines vertices V(FMR (Zu)), this means that all elements in Z;, will be added to
vertices of the graph, so that V(FMR (Z,,)) ={0,1,2,3,4,5,6,7,8,9,10,11} and in this step the
algorithm checks for vertices that are adjacent, That is for i in V(FMR (le)) if there exists j
when i # j, and i * j € Reg(Z,,), then i is adjacent to j, for the vertex 0 there is the vertex 1
such that 0.1 = 0 € Reg(Z,,), so that 0~1, similarly

0~2,0~3,0~4,0~5,0~6,0~7,0~8,0~9,0~10,0~11,1~3,1~4,1~5,1~7,1~8,1~9,1~11,2~4,
2~6 2~8,2~10,3~4,3~5,3~7,3~8,3~9,3~11,4~5,4~6,4~7,4~8,4~9,4~10,4~11,5~7,5~8,
5~9,5~11,6~10,7~8,7~9,7~11,8~6,8~9,8~10,8~11,9~11 And the edges will be added
to E(FMR (le)). The last step of algorithm draws the multiplicative regular graph of the
ring Z,,, as shown in Figure 6.
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4. CONCLUSIONS

The graph T'yz (R) is a generalization of both T'y (R) and R5(R). For commutative ring R, the
equivalence T'y;g (R) = Ty (R) holds if and only if the set of regular elements of R is {0, 1}. If R
is a commutative regular ring, 'yz (R) is isomorphic to Gy ,,,+(R). Additionally, forn > 5, the
graph Ty (Z,) contains a complete subgraph Ks with 0 as one of its vertices.
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