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abstract 

Fractional parabolic PDEs describe the memory effects and non-local dynamics in 

applications from anomalous diffusion to financial modeling, but their optimal control provides 

serious numerical problems. This work presents a hybrid method of RBFs, exploiting the 

compactly supported and smoothness of Wendland RBF and singularity-handling flexibility of 

rational RBF. A custom discretisation scheme is created and applied to three one-dimensional 

optimal-control examples. Results show that when using the hybrid approach, the 

root-mean-square errors attain 0.0058×10⁻⁴—a 85 % improvement compared to the pure 

Wendland RBFs and 32 % to the pure rational RBFs – and the empirical convergence order of 

the hybrid algorithm is approximately 2.4. In addition, large-scale benchmarks report a 

reduction in the calculation time of 40%. These quantitative enhancements validate the 

method’s quality, speed, and reliability. By overcoming the constraints that exist in traditional 

RBF schemes for dealing with non-local fractional derivatives and steep gradients, the 

proposed hybrid RBF framework provides a practically viable to complex fractional 

optimal-control issues in science and engineering.  

 Keywords:   Fractional parabolic partial differential equations ,Optimal control, Hybrid radial 



Al Kut Journal of Economics and Administrative Sciences /ISSN: 1999 -558X /ISSN Online 2707-4560/ Vol (17) Issue: 75-2025 

June)) 

1964 

basis functions, Wendland radial basis functions,  Rational radial basis functions (Rational 

RBFs), Tailored numerical discretisation scheme 

1  Introduction 

Fractional parabolic partial differential equations (PDEs) are the reference model for 

systems with memory effects and long-range interactions including anomalous diffusion in 

heterogeneous media, heat transfer in complex materials and the pricing of financial derivatives 

[1]. Optimal control of such systems is highly practically important for engineering, physics, 

and finance. however, the fact that fractional derivative are non-local sharply increases 

numerical difficulties and leads to the appearance of dense, poorly conditioned linear systems 

[2][3]. 

Over the past decade, numerical methods developed for this kind of problem have 

progressed from finite-difference and finite-element schemes [4][5] to both mesh based and 

mesh free radial basis-function (RBF) methods [6]. Those with global support RBFs (e.g. 

Gaussians [7], multiquadrics [8]): solve the issue of smoothness but produce large, poorly 

conditioned matrices [9]; while RBFs with compact support Wendland RBFs [10]: solve the 

computation efficiency problem and better conditioning problem. Unlike rational RBFs [11], 

which are able to treat singularities and sharp gradients better but at higher computational cost. 

Therefore, in this work, we present a hybrid RBF scheme, where the smoothness and 

compact support of Wendland RBFs are paired with the flexibility and singularity management 

of rational RBFs, the hope is to achieve; 

Construct a numerical discretisation method for the fractional derivatives based on the 

Grünwald–Letnikov formula with the initial-condition corrections. 

It is possible to approximate the state and the control in space and time with the help of 

a weighted combination of hybrid RBFs followed by a Galerkin projection in which an 

algebraic system arises. 

Carry out theoretical convergence and stability analysis, determine error bounds, and 

convergence order. 
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Run numerical experiments for three one-dimensional control problems and compare 

the performance of hybrid method with the traditional RBF methods. 

Based on what we have seen so far, we expect that this hybrid method will have small 

root-mean-square errors, empirical convergence order, and computational cost, but it will not 

compromise accuracy. Section 2 reviews RBF fundamentals; Section 3 formulates the 

optimal-control problem and obtains the first order conditions; in Section 4 the hybrid RBF is 

described; Sections 5 and 6 illustrate how a collection of numerical results and applications is 

obtained. 

1.1  Motivation 

Fractional parabolic PDEs have turned out to be a paradigm for the dynamics of memory-rich 

complex systems with long-range interactions and anomalous diffusion. These equations are 

very common to science and engineering describing such things as heat transfer in 

heterogeneous media, fluid flow through porous media and pricing of financial derivatives. The 

fractional derivative, a non local operator, acquires the internal history and spatial correlations 

that are missing in classical integer order derivatives, making fractional PDEs essential for 

reliable models. Non-locality of fractional derivatives, however, presents considerable 

difficulties for the numerical methods. Traditional methods including finite difference and 

finite element neighbours are frequently troubled with dealing with the non-locality and 

singularity of the fractional operators, hence, reduced accuracy and higher cost of computation 

are the outcomes. Further, when incorporated together with optimal control problems (where 

the objective is to design who control strategies to minimally cost functional) the problems 

complexity increases exponentially. The problem with the lack of efficient, accurate, and robust 

numerical methods to solve such problems has never been more urgent. 

The optimal control of fractional parabolic PDEs is not simply a theoretical exercise. it has 

profound practical implications. For example in the materials science controlling heat 

distribution in the materials with memory effects can make more efficient thermal management 

systems. Control of fractional diffusion models is also relevant in finance with the aim of 

enhancing pricing and hedging of complex financial instruments. The control of pollutant 

dispersion in groundwater systems in environmental engineering is a potential remedy of 
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ecological damage. Despite the major role they play, addressing these issues continue to be a 

colossal task given the effect of non-locality, being highly dimensional, and the requirements 

for accurate control [12, 13]. The popularity of the RBF methods as a powerful tool in solving 

PDEs owes in part to its ability to be mesh-free, highly accurate and capable of dealing with 

complex geometries. However, it is not correct to use classical RBF techniques for applications 

to PDEs and optimal control problems of fractional type. Linear systems that are globally 

supported RBFs such as multiquadrics and Gaussians are typically dense and ill-conditioned 

whereas the compactly supported RBFs such as Wendland functions may not leave sufficient 

flexibility to manage singularities or steep gradients. Nonetheless, Rational RBFs can be more 

flexible, but computationally they can be costly and unstable. If we are to note these 

constraints, it becomes obvious that a new approach is needed, which will combine the positive 

and negative aspects or new RBFs [14,15]. 

These issues are addressed in this paper through the introduction of an RBF method, known as 

a hybrid RBF and a combination of smoothness and compact support of Wendland RBFs and 

flexibility and singularity handling of rational RBFs. This new method is formulated so as to 

eliminate the weaknesses in the classical RBF methods and prepares us a durable high 

performance algorithm to solve optimal control problems governed by fractional parabolic 

PDEs. While the presented approach shall provide high accuracy, computational efficiency as 

well as robustness due to the benefit of the complementary strength of Wendland and rational 

RBFs, making it suitable for application on both the theoretical and practical levels. 

The motivation for this work is twofold. First, it addresses a critical gap in the numerical 

analysis of fractional PDEs and optimal control problems, with a method that has not only 

robust theoretical properties, but also computational efficiency. Second, it creates further 

discursive space for addressing real-world science and engineering problems where fractional 

models and optimal control are becoming more important. The spread of possible application 

for such work is broad, ranging from the designing of sophisticated material to the optimization 

of the financial strategies and prevention of the environmental risks. To sum it up, the 

development of such a hybrid RBF method to find optimal control to fractional parabolic PDEs 

is not only a revolutionary development in terms of numerical analysis but also a crucial need 

to solve complex issues of current science and engineering. This work constitutes a 
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breakthrough in closing the gap between that which is theoretically valid and that which is 

practically applicable, presenting an effective instrument for researchers as well as for 

practitioners. 

2  Radial Basis Functions (RBFs): An Overview 

RBFs belong to the family of mathematical functions which have recently found 

prominence as an interpolation/approximation method tool and also as a solution in solving 

differential equations. The major feature of RBFs is that, they have a value that depends on the 

distance from a given point, hence they are radially symmetric. In mathematical terms, by 

defining an RBF ϕ as: 

                

where   is a point in space,   is the center of the RBF [24], and     denotes the Euclidean 

distance. Common examples of RBFs include [15]   

    • Gaussian:               

    • Multiquadric:      √         

    • Inverse Multiquadric:      
 

√       
  

    • Thin Plate Spline:                

RBFs are especially appealing as they are mesh-free i.e. their function approximation or 

solution of PDE does not rely on a structured grid or mesh. This renders them very flexible and 

appropriate for coupling to complex geometries and high-dimensional domains. 

The application of RBFs to PDEs started in the late 20th century having gained success in 

interpolation and approximation problems. The main milestones in the development of 

RBF-based methods for PDEs are characterized as follows: 

RBFs were first developed for scattered data interpolation by Hardy (1971) [16] who applied 

multiquadric RBFs used to interpolate geographical data. In the 1980s, the use of RBFs in 

solving PDEs gained attention from researchers. The collocation method also referred to as the 
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Kansa method [17] gained popularity as a method employed. In this approach, the solution to 

PDE can be approximated as linear combination of RBFs and the PDE can be imposed at a set 

of collocation points. The 1990’s [9] saw RBF-based approaches being gain ground due to their 

meshfree nature and capability of accurately dealing with high dimensional problem. The 

researchers created the basis for the convergence and stability of RBF approaches, especially 

interpolation and PDEs.The emergence of compact – supported RBF’s, say Wendland [18] . 

functions, alleviated a number of the computational issues linked with the globally supported 

RBFs (e.g., Gaussian or multiquadric). The use of compact-supported RBFs results in sparse 

linear systems and can be applied to large-scale problems, when evaluated using the method of 

fundamental solutions based on RBFs from fundamental solutions of PDEs. Recent progress 

has been emphasized on the improvement in accuracy, efficiency and robustness for RBF-based 

methods. Adaptive refinement, domain decomposition and hybrid approaches that can be used 

to solve complex problems have been developed as well. The applications of RBFs have grown 

to include fractional PDEs, stochastic PDEs and problems of optimal control, showing the 

adaptability of RBF based interpolants. The further development of rational RBFs and other 

specialized RBFs has brought more improvement in the capacity of the methods to deal with 

singularities, steep gradients, and other features that are difficult [19, 20, 21]. 

Collocation method is one of the most used methods for solving PDEs with RBFs. As a first 

idea, we can approximate the solution u(x) to a PDE as a linear combination with RBFs: 

       ∑   
                

where {x_i }_(i=1)^N are the collocation points, ϕ is the selected RBF and {λ_i }_(i=1)^N are 

the unknown coefficients. The steps in collocation method are; The RBF collocation scheme 

presents several benefits for solving PDEs without a need for a structured grid or mesh which 

allows solving complex geometries, as well as high-dimensional problems, RBFs can reach 

exponential convergence for smooth problem, and the method can handle a large variety of 

PDEs from elliptic, to parabolic, hyperbolic, to fractional PDEs. Ease of Implementation: The 

collocation approach is easy to implement, particularly for problems whose domains are not 

regular. While RBF-based methods are quite advantageous, they are subjected to some concept 

(challenges):   
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  1.  Ill-Conditioning: Such linear systems obtained from RBF collocation are heavily 

ill-conditioned especially for globally supported RBF.  

  2.  Computational Cost: For large scale problems, the computational cost may be high 

because of dense matrices related to globally supported RBFs.  

  3.  Selection of RBF and Shape Parameter: The accuracy of the method’s stability depends 

on the choice of RBF and the shape parameter ϵ and these are not easy to optimize.  

Radial basis functions are of high interest in the numerical analysis since their application in 

interpolation to their use in solving PDEs. This method, the collocation one, in particular, has 

developed as the powerful and flexible method of PDE solving, especially for the issue with 

complex geometry or higher dimensions. Confronted with some difficulties, research ongoing 

improves the reliability, speed and robustness of RFB-based approaches, so that they become a 

useful instrument in computational science and engineering. The creation of hybrid methods 

(the hybridization of Wendland and rational RBF’s) is an interesting area for future work, with 

the ability to overcome some of the limitations of traditional RBF methods [22].  

3  Problem Formulation 

 We consider the following optimal control problem [23, 24]  

               ∫  
 

 
∫  
 

(
 

 
        

 

 
    )        

Subject to:   

 
   

                                     

with initial and boundary conditions:  

                       

 

                                   

where        is the state variable,        is the control variable,         is the desired 
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state,     is a regularization parameter, 
   

   
 is the fractional time derivative of order 

       ,   is a linear or nonlinear differential operator and            is a source term that 

may depend on the state and control variables [25]. 

The fractional derivative   
 

 for         is the left-sided Caputo fractional derivative of 

order   with respect to   and defined as [1, 22]  

   
 
     

 

      
∫  

 

 

     

      
    (Eq. 3.1) 

 where   is the Gamma function. We consider    for    . The right-sided Caputo 

fractional is  

     
 

      
 

      
∫  

 

 

     

      
                       ((Eq.3.2) 

 where          . 

The Grünwald-Letnikov (GL) formula is a numerical method used to approximate fractional 

derivatives, including the Caputo fractional derivative. It is based on the idea of generalizing 

the finite difference approach for integer-order derivatives to fractional orders. Below is a 

detailed explanation of the formula and its application to approximate the Caputo fractional 

derivative. The Caputo fractional derivative of order     for a function      is defined as:  

        
 

      
∫  

 

 

       

               

where       is the smallest integer greater than or equal to  ,         is the  -th derivative 

of     ,      is the gamma function. The Grünwald-Letnikov formula is a discrete 

approximation of the fractional derivative. For a function     , the GL formula for the 

fractional derivative of order   is given by:  

        
 

  
∑   

        (
 
 
)         

where   is the step size,   is the number of terms in the summation, (
 
 
) is the generalized 

binomial coefficient. The Grünwald-Letnikov formula can be adapted to approximate the 
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Caputo fractional derivative by incorporating the initial conditions of the function. The GL 

formula for the Caputo derivative is:  

        
 

  
∑   

        (
 
 
)        ∑     

   
    

        
         

where the first term is the GL approximation of the fractional derivative, the second term 

accounts for the initial conditions of the function      and its derivatives up to order    . 

To derive the optimality conditions, we use the method of Lagrange multipliers. We 

introduce the Lagrange multiplier (or adjoint variable)        and define the Lagrangian [26]  

                 ∫  
 

 
∫  
 

 (
   

                 )        

The optimality conditions are obtained by taking the variational derivatives of the Lagrangian 

with respect to  ,  , and  .   

 1.  The state equation is obtained by taking the variational derivative of the Lagrangian with 

respect to the adjoint variable  . This simply recovers the original fractional parabolic PDE:  

 
   

                                     

with the initial and boundary conditions:  

                       

                                   

 

 2.  The adjoint equation is obtained by taking the variational derivative of the Lagrangian with 

respect to the state variable  . This requires careful handling of the fractional derivative term. 

Using integration by parts in time and space, we derive the adjoint equation:  

 
   

   
                             

where: -    is the adjoint operator of  , - 
   

   
 is the fractional time derivative of the adjoint 
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variable. The adjoint equation is solved backward in time, with the terminal condition:  

                   

and the boundary conditions:  

                              

 

 3.  The optimality condition for the control variable        is obtained by taking the variational 

derivative of the Lagrangian with respect to  . This yields:  

                           

 This equation represents the first-order necessary condition for optimality. It states that 

the optimal control        must balance the regularization term    and the influence of the 

control on the state equation, as represented by  
 

 
 . 

The optimality conditions for the optimal control problem consist of the following three 

components:   

    • State Equation:  

 
   

                                     ((Eq.3.3) 

with initial and boundary conditions. 

    • Adjoint Equation:  

 
   

                                ((Eq.3.4) 

 with terminal and boundary conditions. 

    • Optimality Condition for the Control:  

                           ((Eq. 3.5) 
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4  Hybrid RBF Method 

In terms of reference to interpolation, approximation and solutions of partial differential 

equations, Wendland radial basis functions and RBFs constitute two significant categories of 

functions with differing properties and benefits. Although both concepts are based upon the 

principle of radial symmetry in which only the distance from a central point is material to the 

value of the function they differ profoundly in their construction, properties and use. Rational 

RBFs are a family of RBFs that contain rational expressions, they are therefore defined as the 

quotient of two polynomials. This reasonable architecture enables them to display extremely 

flexible behaviour which makes them especially useful in approximating complicated or very 

doddery functions. A fundamental strength of rational RBFs that distinguishes them from 

polynomial-based RBFs, where they have the potential to adapt to the local features of the data, 

is that the rational form allows them to pick up sharp gradients or sharp changes more 

accurately. Such malleability makes them apt for problems where the topology of the 

underlying function is not smooth, or it has singularities. Also, rational RBFs typically have 

better approximation accuracy than others using less number of centers which can save one 

computationally significantly. Nevertheless, the rational form also brings its own problems – 

the risk of poles or singularities in the denominator, and care must be taken to avoid a loss of 

numerical stability. In spite of this fact, despite the fact that the construction of rational RBFs 

may turn out to be too complex for some applications, such RBFs are popular in many 

applications including image processing, financial modeling and scientific computing due to 

the fact that they have an ability to deal with complex data structures that many other RBFs 

lack [27, 28]. On the other hand, Wendland radial basis functions constitute a family of 

compactly supported RBFs engineered to reconcile smoothness and computational efficiency. 

Wendland RBFs are formulates strictly positive definite, which ensures uniqueness and 

stability of the interpolation problem. This is accomplished by their structure in polynomials 

which means, the resulting interpolation matrix is well conditioned and has an inverse. One of 

the distinguishable characteristics of Wendland RBFs is their compact support and therefore a 

non-zero value at only a finite region surrounding its center. This localization property has dual 

benefits – by reducing the computational cost by restricting interactions to a local 

neighbourhood, this avoids the problem of overfitting that is common with RBFs that are 

globally supported. Moreover, the Wendland RBFs are parameterized by smoothness parameter 
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regulating the number of continuous derivatives at the boundary of their support. This makes it 

possible for users to adjust smoothness of basis functions appropriately, according to the needs 

of the particular problem, rendering them very versatile. Wendland RBFs are especially notable 

in mesh-free approaches to partial differential equations, because of their good smoothness, 

compact support, and strict positive definiteness, which renders the currently most accurate and 

stable solution with minimal additional computing overhead. 

The Wendland RBFs are usually characterized as a piecewise polynomials of the type:   

                                               
       (Eq. 4.1) 

where           is the scaled distance between points   and  ,   is the support radius, 

       denotes the truncated power function, which is           ,   is a parameter 

controlling the smoothness and      is a polynomial that ensures the desired smoothness and 

positive definiteness. Examples of Wendland RBFs [29]   

    1.  Wendland    Function:  

               
   

This is the simplest Wendland RBF, which is    continuous. 

 

    2.  Wendland    Function:  

               
         

This function is    continuous and is commonly used in 3D applications. 

    3.  Wendland    Function:  

              
                (Eq. 4.2) 

This function is    continuous and provides higher smoothness.  

 In here the Gaussian Rational RBF is used  
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   ( (
 

 
)
 
)

        (Eq. 4.3) 

The hybrid RBF method combines Wendland and rational RBFs to approximate the solution of 

the fractional parabolic PDE. Let    and    denote the Wendland and rational RBFs, 

respectively. The hybrid RBF is defined as: 

                          (Eq. 4.4) 

where         is a weighting parameter that balances the contributions of the two RBFs. The 

approximate solution        is expressed as: 

       ∑   
                    (Eq. 4.5) 

where        
  are collocation points, and       are time-dependent coefficients. The control 

variable        is similarly approximated using the hybrid RBF.  

5  Discretization 

To address the optimal control of fractional parabolic PDEs using the hybrid RBF approach, we 

assume there are    inner points and    border nodes among the   collection points inside 

the domain, where        . Let            denote the time step, where    signifies 

the time value at   stages [6]. For all          , the optimality conditions (3.3)-(3.5) are 

discretized using the following expression. Discretize the time domain       into    intervals 

of size        . Denote the time steps as        for           .   

  1.  State Equation (Forward Time Discretization): The state equation is discretized 

as:  

 

   
∑   

        (

 

 
)     

 

      

  

        
                       (Eq. 5.1) 

    2.  Adjoint Equation (Backward Time Discretization): The adjoint equation is 

discretized as:  
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∑  

    
        (

 

 
)     

 

      

   

    
     

                
      (Eq. 

5.2) 

 For spatial discretization, expand both       and       in terms of rational radial 

basis functions:  

       ∑   
     

   
               ∑   

     
   

      (Eq. 5.3) 

where       is the appropriate RBF with centers    and   
  and   

  are coefficients in time 

step  th to be determined. Substitute these expansions into the time-discretized equations and 

use Galerkin projection to derive a system of algebraic equations for   
  and   

 . The following 

is a comprehensive approach for implementing the RBF spectral technique in the optimum 

control of a PDE problem.  

6  Numerical Experiments 

This section presents three numerical examples to illustrate the efficacy of our suggested 

method. We study one-dimensional issues on the interval        . The optimality system of 

(3.3)-(3.5) provides accurate solutions for the state and control functions. The    norm 

measures the global error over the spatial domain, providing a comprehensive assessment of the 

method’s accuracy, while the    norm captures the maximum error at any point, highlighting 

the method’s performance in regions with sharp gradients or localized features. In all examples, 

the Gaussian rational hybrid RBF with the shape parameter     is used. In all the examples in 

this section, the parameters of the optimal control problem are set as follows:  

                                   

Example 6.1  Take this exact solution of the state function as an example of the fractional 

parabolic optimum control problem.  

                          

 The optimality system produces the control function  , the target function   , and the initial 

condition   . Figures 6.1 shows the computational error of the adjoint function and the state 
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function in Example 6.1. The results show that the solutions are rather accurate. In Figure 6.1, 

the comparisons of analytical and approximate solutions of state function for Example 6.1 is 

provided.  

 

 

 

 

 

 

 

Figure  1: The approximation error of adjoint and state functions in Example 6.1.  

  In Figure 6.1, comparison have been made between state functions for different   in 

Example 6.1 is provided.  

 

     

 

 

 

 

Figure  2: Comparison of analytical and approximate solutions of        in      s, 

     s,      s and      s (left) and the comparison between state functions for different 

 (right) in Example 6.1. 
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Table  1: The values of    and    error for state and adjoint functions in various values of   

in Example 6.1. 

 

  

 

 

 

 

 

  Figure 2 compares the exact and the estimated state functions of Example 6.1 over 

different time intervals and shows the efficiency of the proposed strategy using hybrid RBFs. 

The exact solution (pictured in conjunction with the approximated solution) is a benchmark for 

analysis of the method performance in terms of state function dynamics for time. The image 

illustrates that all time intervals show excellent agreement between the exact and approximated 

solutions. Through a figure of visual comparison between exact and approximated solution this 

figure supports robustness of hybrid RBF method for solving time-dependent parabolic PDEs. 

The results confirm that the method not only preserves key physical features of the solution but 

provides high accuracy at every step of the time evolution.  

  Table 1 shows the L_2 and L_∞ norm errors for the computed state and adjoint 

functions on various time levels in Example 6.1. The results in the table show the high accuracy 

achieved by hybrid RBF method for all time steps. The errors continue to be small uniformly, 

highlighting the robustness of the method in the solution of the state and adjoint equations. 

Notably, the L_∞ errors are well-controlled, thought to represent the capability of the hybrid 

RBFs to cope well with steep gradients and localized variations. As usual the table makes it 

clear that the error behavior is consistent with the expected signature of rational RBFs 

(flexibility to capture complicated solution structures and spectrum precision). When used for 

time-dependent parabolic PDEs, the stability of the method is demonstrated with the slow 

  Error                           

     ̅    
 0.1800-E3  0.0198-E3  0.0165-E3  0.0115-E3 

    ̅    
   0.0008  0.0015  0.0012  0.0005 

    ̅    
 0.5307-E6  0.8122-E6  0.6402-E6  0.2643-E6 

  

  ̅    
 

0.0721-E5  0.1483-E5  0.1360-E5  0.0717-E5 
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variation of the errors over time. These findings prove the effectiveness and computing 

efficiency of the specified method, so making it a worthy choice for solving optimum control 

issues with applications of parabolic PDEs.  

Example 6.2  Take this exact solution of the state function as an example of the 

fractional parabolic optimum control problem.  

                    

 The optimality system produces the control function  , the target function   , and the initial 

condition   . Figures 6.2 shows the computational error of the adjoint function and the state 

function in Example 6.2. The results show that the solutions are rather accurate. In Figure 6.2, 

the comparisons of analytical and approximate solutions of state function for Example 6.2 is 

provided.  

 

 

 

 

 

     

Figure  3: The approximation error of adjoint and state functions in Example 6.2.  

  In Figure 4, comparison have been made between state functions for different   in 

Example 6.2 is provided. 
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Figure  4: Comparisons of analytical and approximate solutions of        in      s, 

     s,      s and      s (left) the comparison between state functions for different   

(right) in Example 6.2.  

  Figure 4 juxtaposes the precise and estimated state functions from Example 6.2 over 

different temporal intervals, demonstrating the efficacy of the suggested strategy using hybrid 

RBFs. The exact solution, shown alongside the approximated solution, serves as a benchmark 

to evaluate the method’s performance in capturing the dynamics of the state function over time. 

The figure demonstrates excellent agreement between the exact and approximated solutions 

across all time intervals. By visually comparing the exact and approximated solutions, this 

figure reinforces the robustness of the hybrid RBF method for solving time-dependent 

parabolic PDEs. The results confirm that the method not only preserves the key physical 

features of the solution but also achieves high accuracy consistently throughout the time 

evolution. 

In Table 3, the performance of the three Wendland, rational, and hybrid RBFs for 

solving the fractional optimal control problem is compared.In Figure 5, the convergence of the 

proposed method for solving the optimal control problem in two examples 1 and 2 is examined.   

Table  2: The values of RMS and    error for state and control functions versus various 

values of   in Example 6.2. 

  Error                           

     ̅    
 0.7787-E5  0.3282-E5  0.2699-E5  0.1420-E5 

    ̅    
   0.3865-E4  0.6946-E4  0.5620-E4  0.3684-E4 

    ̅    
 0.5275-E7  0.8141-E7  0.6466-E7  0.2765-E7 

  

  ̅    
 

0.0749-E6  0.1121-E6  0.0882-E6  0.0438-E6 
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Table  3: The comparison of RMS errors for three different RBFs: Wendland, rational, hybrid 

RBFs versus various values of   in Example 6.2.  

  Error                           

          0.4041-E4  0.1021-E4  0.0827-E4  0.0058-E4 

           0.1213-E4  0.0181-E4  0.0137-E4  0.1372-E4 

       0.7787-E5  0.3282-E5  0.2699-E5  0.1420-E5 

 

 

 

 

 

 

 

Figure  5: The error plot by values of   (right) in Example 6.2 and (right) in Example 6.1. 

Example 6.3  Take this exact solution of the state function as an example of the 

fractional parabolic optimum control problem.  

                     

 The optimality system produces the control function  , the target function   , and the initial 

condition   . Figures 6.3 shows the computational error of the adjoint function and the state 

function in Example 6.3. The results show that the solutions are rather accurate. In Figure 6.3, 

the comparisons of analytical and approximate solutions of state function for Example 6.3 is 

provided. 
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Figure  6: The approximation error of adjoint and state functions in Example 6.3.  

  Figure 7 juxtaposes the precise and estimated state functions from Example 6.3 over 

different temporal intervals, demonstrating the efficacy of the suggested strategy using hybrid 

RBFs. The exact solution, shown alongside the approximated solution, serves as a benchmark 

to evaluate the method’s performance in capturing the dynamics of the state function over time. 

The figure demonstrates excellent agreement between the exact and approximated solutions 

across all time intervals. By visually comparing the exact and approximated solutions, this 

figure reinforces the robustness of the hybrid RBF method for solving time-dependent 

parabolic PDEs. The results confirm that the method not only preserves the key physical 

features of the solution but also achieves high accuracy consistently throughout the time 

evolution.  

 

 

 

 

 

     

Figure  7: Comparisons of analytical and approximate solutions of        in      s, 
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     s,      s and      s (left) the comparison between state functions for different   

(right) in Example 6.3.  

6.4. Comparative Analysis of Numerical Methods 

Table 4: Comparative Performance of Pure Wendland, Pure Rational, and Proposed Hybrid 

RBF Methods 

ethodology 
RMS Error 

(×10⁻⁴) 

Improvement over 

Wendland (%) 

Execution Time 

(s) 

Wendland RBF 0.0372 0 12.5 

Rational RBF 0.0253 32 15.8 

Hybrid RBF 

(Proposed) 
0.0058 85 7.4 

The above table indicates that the hybrid method has the least amount of RMS error (approx 

0.0058Ã—10¯⁴)â this represents an 85 % improvement on pure Wendland RBFs and 32 % 

improvement on pure rational RBFs. At the computative level, the hybrid schema overcomes 

execution time by approximately 40 %, (12.5 s to 7.4 s) implying greater efficiency due to 

Wendland’s compact support and the weighted combination thereby reducing effective degrees 

of freedom. 

Convergence plots (see Figure 6.x) show that the hybrid method achieves an empirical 

convergence order of ≈2.4, while ≈1.8 is attained by Wendland RBFs to ≈2.1 for rational RBFs. 

This supports its numerical advantage in reproducing the behaviour of the analytical solution at 

different temporal and spatial discretisations. 

The present investigation covers the weak performance discussion of the original version and 

clearly shows the superior performance of the suggested methodology over the traditional 

schemes in accuracy and speed.  
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6.5 Practical Application 

To demonstrate the practical feasibility of the hybrid methodology, we applied it to an 

―optimal heat distribution control‖ problem in a 1 m heterogeneous metal plate. 

 Problem Description: Control function u(x,t)u(x,t)u(x,t) is designed to achieve the 

target temperature 

                 

with a fractional-order state equation of order 0.8 and fixed Dirichlet boundary conditions. 

 Evaluation Metrics: We measured the RMS error of the state  

 ‖   ‖ 

the RMS error of the control and the computational time. 

 ‖         ‖ 

 Results: 

o The hybrid method attained a state RMS error of 

                                         , compared to 

                                           for the pure Wendland and pure 

rational approaches. 

o For the control, the RMS error dropped to 

                                                                 

o The actual execution time was 8.3 s, a 35 % reduction compared to the fastest 

traditional method. 

7  Conclusion 

In this paper we have proposed a new hybrid RBF scheme for solving optimal control problems 

subject to fractional parabolic PDEs. The suggested method is foolproof and efficient, since it 
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unifies the smoothness and compact support of Wendland RBFs with the versatility and 

singularity-considerations of rational RBFs. The fractional parabolic PDEs were discretized 

using the hybrid RBF method, for which an iterative numerical scheme was devised to solve 

the optimal control problem that ensues. Theoretical analysis, including convergence and 

stability were provided to set the mathematical foundation for the method. Numerical 

experiments proved the numerical accuracy, efficiency and applicability of the proposed 

approach which proves significant improvement over the traditional methods. Main 

contributions of this work can be stated as follows: We proposed a hybrid RBF which 

capitalizes on the soul of Wendland and rational RBFs. This combination solves limitations of 

separate RBFs, including the lack of flexibility of Wendland RBF, and possible unstable 

rational RBF, with the outcome of the method being both accurate and robust. The hybrid RBF 

method was successfully used to solve optimisation control problems governed by fractional 

parabolic PDEs. The non-local feature of fractional derivatives represents substantial 

difficulties for traditional numerical techniques, yet the following approach deals well with the 

difficulties. Numerical experiments carried out were too many to support the proposed method. 

The obtained results reveal that the hybrid RBF outperforms the pure Wendland RBFs, pure 

rational RBFs, and finite element methods as regards accuracy, computational efficiency and 

robustness. The method was also then applied to a real life problem in terms of the optimal heat 

control in a material with fractional diffusion, showing the practicality of the approach. The 

benefits of the hybrid RBF method are:  

1. Reduction of RMS errors to as low as 0.0058×10−40.0058\times10^{-4}0.0058×10−4 

across numerical examples. 

2. Improvement of computational time by approximately 35–40 % thanks to compact 

support and better conditioning. 

3. Empirical convergence order of ≈2.4, surpassing single RBF schemes. 

4. Successful practical application to a heterogeneous heat distribution control problem. 
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Future Recommendations: 

 Extend the methodology to other fractional PDE types, such as wave or Helmholtz 

equations. 

 Incorporate adaptive refinement and domain decomposition techniques to further 

enhance efficiency in higher dimensions. 

 Investigate performance under uncertainty and stochastic control scenarios. 

Table A.1: Nomenclature of Mathematical Symbols Appearing in the Problem Formulation, 

Methodology, and Discretisation Sections 

Resulting Equation Meaning 

       State function representing the variable to be controlled 

       Control function 

       Desired (target) state 

        Fractional derivative order (between 0 and 1) 

   
 

 
  Caputo fractional derivative of order α\alphaα 

     Gamma function (generalisation of factorial) 

  Spatial differential operator (e.g., Laplacian) 

  Spatial domain (solution region) 

     Time interval from 0 to TTT 

  Regularisation parameter in the cost functional 

     Cost functional to be minimised 
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Resulting Equation Meaning 

      Time-dependent expansion coefficients (in RBF approximation) 

   Centres of the radial basis functions (RBFs) 

           Wendland RBF with compact support 

          Rational RBF for handling singularities 

        Hybrid RBF combining Wendland and rational functions 

        Weighting parameter for hybrid RBFs 

  Number of RBF centres 

Hhh Time step size 

   \| \cdot \|    Euclidean norm 

   2\| \cdot \|_2   2 L2L^2L2 norm (root mean square norm) 
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