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Abstract 

This investigation focuses on the pivotal contribution of Particle Swarm 

Optimization (PSO) in designing and optimizing a novel hyperchaotic system. We 

develop a four-dimensional hyperchaotic system with seven nonlinear terms 

through topological modification of the three-dimensional Liu system (six-term 

basis). The PSO algorithm is strategically employed to maximize two positive 

Lyapunov exponents, thereby ensuring robust hyperchaotic characteristics - a 

significant advancement over traditional bifurcation-based parameter selection 

methods. Comprehensive dynamical analysis includes: (i) equilibrium point 

stability via Jacobian linearization, (ii) Lyapunov spectrum quantification, (iii) 

identification of multistability phenomena, and (iv) computation of the fractal 

(Kaplan-Yorke) dimension. Experimental validation through NI Multisim 14.3 

circuit simulations confirms the practical realizability of the optimized system. 

This research demonstrates PSO's transformative potential in hyperchaotic system 

design, offering new possibilities for secure communications and nonlinear control 

applications. 
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 انًهخص

فً تصًٍى وتحسٍٍ  (PSO) ٌزكش هذا انثحج عهى انًساهًح انًحورٌح نخوارسيٍح تحسٍٍ سزب انزسًٍاخ

َظاو فوضوي فائك رذٌذ. تى تطوٌز َظاو فوضوي فائك رتاعً الأتعاد تسثعح حذود غٍز خطٍح يٍ خلال 

ح تحسٍٍ سزب انتعذٌم انطوتونورً نُظاو نٍو حلاحً الأتعاد )عهى أساص ستح حذود(. تسُتخذو خوارسيٍ

 -تشكم استزاتٍزً نتعظٍى أسًُّ نٍاتوَوف يورثٍٍ، يًا ٌضًٍ خصائص فوضوٌح فائمح   (PSO) انزسًٍاخ

وهو تمذو كثٍز يمارَحً تأسانٍة اختٍار انًعايلاخ انتمهٍذٌح انمائًح عهى انتشعة. ٌتضًٍ انتحهٍم انذٌُايٍكً 

ب( تحذٌذ كًٍح طٍف نٍاتوَوف، )د( تحذٌذ ظواهز انشايم: )أ( استمزار َمطح انتواسٌ عثز خطٍح راكوتً، )

 ٌورن(. ٌؤكذ انتحمك انتززٌثً يٍ خلال يحاكاج انذوائز-تعذد الاستمزار، و)د( حساب انثعذ انكسزي )كاتلاٌ
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NI Multisim 14.3 إيكاٍَح تحمٍك انُظاو الأيخم عًهٍاً. ٌوضح هذا انثحج الإيكاَاخ انتحوٌهٍح نـ PSO  ًف

 ئمح انفوضى، يًا ٌوفز إيكاٍَاخ رذٌذج نلاتصالاخ اَيُح وتطثٍماخ انتحكى غٍز انخطٍح. تصًٍى الأَظًح فا

 .PSO ، خوارسيٍحMultisim انكهًاخ انًفتاحٍح: يفزط انفوضى، انذائزج الإنكتزوٍَح، تزَايذ

1. Introduction 

Continuous dynamic systems form the cornerstone of mathematical and physical 

studies, offering profound insights into complex behavior. The first three-

dimensional chaotic system was introduced by Lorenz in 1963 [1], which paved 

the way for the development of numerous other 3D systems featuring increasing 

complexity such as Rossler 3D system 1976[2], Sprott system 1994[3], jerk 

systems[4-6]. Advances im computing tools have allowed researchers to 

ingvestigate higher-dimensional systems, extending the bounds chaos and broading 

its apllicability, whereas early studies mostly concentrated on understanding and 

paths of low systems. Notably amore thorough framework for comprehending 

chaotic behavior has been made available by the shift from studying three-

dimensional systems to high dimensional systems four-dimensional systems [7-9], 

five-dimensional systems [10-12], six-dimensional systems [13- 15].  These 

systems are characterized by their chaotic nature and unpredictability, making 

them widely applicable in various practical fields such as chaos control [16-18], 

chaos synchronization [19] anti-synchronization [14, 20], hybrid function 

projective synchronisation [11], electronic circuits [21, 22], encryption[23-25]. 

Recent research has highlighted the close connection between algorithm and 

dynamic systems chaotic [26,27], demonstrating how optimization techniques may 

identify optimal parameter values that enhance chaotic behavior. Algorithm such as 

particle swarm optimization, Genetic algorithms, a have shown encouraging 

potential in this area. Though repeated optimization of parameter values to enhance 

chaos, these methods generate systems with distinct dynamic properties that are 

appropriate for specific application needs. By examining the complex parameter 

spaces of higher-dimensional dynamic systems, the PSO technique, has shown 

itself to be extremely effective at optimizing Lyapunov exponents (𝐿𝐸𝑠). It is 

therefore a useful instrument for increasing the required dynamic attributes [28-

33]. The objective of this research is to bridge the gap between the theoretical 

study of dynamical systems and the practical application of optimization 

techniques. Specifically, the work focuses on systematically expanding a three-

dimensional system and enhancing its properties using Particle Swarm 

Optimization (PSO) algorithms, with the objective of generating a hyperchaotic 

system characterized by more than one positive Lyapunov exponent. By 

holistically integrating historical perspectives, theoretical, advancements, and 

cutting-edge algorithmic techniques, this proposal aims to drastically transform the 

domains of dynamic systems chaos theory. Both more recent advancements in 
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dynamical systems optimization techniques and classical works. Study makes the, 

methodology’s creative protentional possible by providing the groundwork for the 

incorporation of algorithms like PSO with extensions to dynamical systems [34-

37]. A key step in a successful hyperchaotic process, parameter estimation has 

generated a lot of attention in the field of chaotic control research. In recent years, 

a novel approach to optimization algorithms known as the PSO has emerged. It 

was developed by Mir Jalili and his team and strikes a compromise between 

exploration and exploitation. It might be a powerful tool for solving difficult issues 

in engineering, machine learning, and other fields where optimization is essential. 

This is done to turn the dynamic system into a hyperchaotic state and obtain the 

most accurate and optimal results [38]. 

The Particle Swarm Optimization (PSO) algorithm will be employed to estimate 

the optimal parameters of a multidimensional chaotic dynamical system. This 

technique will help improve model performance by intelligently tuning the 

influencing parameters and computationally efficiencies over traditional methods. 

This improved estimate generated more complex dynamics, resulting in a 

hyperchaotic system with more than one positive Lyapunov exponent. Table 1 

shows a comparison between the current work and other systems available in the 

literature. 

Table 1. Comparison of some 4D mathematical models with the proposed model 

by algorithmic method. 

Ref. Equations Method 
Parameter

s 

Total 

of 

terms 
𝐿𝐸𝑆 

2022, 

[39] 
{ 

�̇�1 = 𝑎(𝑥2 + 0.2(𝑥1 − 𝜀 sinh(𝑥1))

�̇�2 = 𝑏𝑥1 − 𝑥2 + 𝑥3 + 𝑥4                  
�̇�3 = −𝑐 𝑥2 + 𝑥4                                 
�̇�4 = −𝑑𝑥1                                           

 

Bifurcati

on 

diagram 

{
 
 

 
 𝑎 = 8.15
𝑏 = 0.8  
𝑐 = 12.5
𝑑 = 0.5  
𝜀 = 0.5 

 
10-

term 
(+,+,0,−) 

2020, 

[40] 
{ 

�̇�1 = 𝑎(𝑥2 − 𝑥1)                        
�̇�2 = −𝑥1𝑥3 + 𝑏𝑥2 − 5𝑥4 + 1
�̇�3 = 𝑥1𝑥2 − 𝑐𝑥3                        
�̇�4 = 𝑑𝑥2                                      

 

Bifurcati

on 

diagram 
{ 

𝑎 = 30
𝑏 = 20
𝑐 = 3  
𝑑 = 0.1

 
9-

term 
(+,+,0,−) 

2017,[4

1] 
{ 

�̇�1 = 𝑎(𝑥2 − 𝑥1)                  
�̇�2 = −𝑏𝑥2 + 𝑛𝑥1𝑥3 + 𝑐𝑥4
�̇�3 = 𝑑 − 𝑒

𝑥1𝑥2                     
�̇�4 = −𝑚𝑥2                           

 

Bifurcati

on 

diagram 

{
 
 

 
 

  

𝑎 = 1     
𝑏 = 0.5  
𝑐 = 0.2  
𝑑 = 2.5  
𝑛 = 1     
𝑚 = 0.5  

 
8-

term 
(+,+,0,−) 
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2022,[4

2] 
{ 

�̇�1 = 𝑎(𝑥2 − 𝑥1) + 𝑘𝑥1𝑥3 + 𝑥4
�̇�2 = −𝑐𝑥2 − 𝑥1𝑥3                       
�̇�3 = −𝑏 + 𝑥1𝑥2                           
�̇�4 = −𝑚 𝑥2                                  

 

Bifurcati

on 

diagram 

{
 
 

 
 

  

𝑎 = 10        
𝑏 = 100      
𝑐 = 2.7       
𝑘 = −0.2    
𝑚 = 1            

   
9-

term 
(+,+,0,−) 

2024,[4

3] 
{ 

�̇�1 = −24 𝑥1 + 8𝑥2        
�̇�2 = 𝑎𝑥1 + 𝑥2 − 2𝑥1𝑥3  
�̇�3 = 𝑏𝑥1𝑥2 − 4𝑥3 + 𝑥4 
�̇�4 = −𝑥1𝑥2 − 2𝑥3 − 𝑥4 

 

Bifurcati

on 

diagram 
{ 
𝑎 = 20
𝑏 = 1.1

 
11-

term 
(+,+,0,−) 

This 

work 

{
 

 
 

�̇�1 = 𝑎(𝑥2 − 𝑥1)
�̇�2 = −𝑐 + 𝑥1𝑥3
�̇�3 = 𝑏 − 𝑥2

2         
�̇�4 = −𝑑𝑥1𝑥4       

 

Particle 

Swarm 

Algorith

m 

{  

𝑎 = 4.0728
𝑏 = 4.7726 
𝑐 = 0.0487
𝑑 = 2.4745

   
7-

term 
(+,+,0,−) 

  

Comparing this work with several previous studies that relied on finding 

parameters randomly in order to achieve the principles of extreme chaos in a 4D 

system consisting of 7-terms. In contrast, this research proposed the (PSO) 

algorithm, which was able to accurately find optimal parameters, where the 

proposed system, which presents a significant challenge in dynamic systems. This 

algorithm demonstrated great efficiency in achieving extreme chaos in this system, 

reflecting the progress made in parameter determination compared to previous 

works.  

 

The main contribution of this work is summarized as follows: 

1. 4D System: A minimal seven-term hyperchaotic system with dual positive 

Lyapunov exponents is introduced. 

2. PSO Optimization: Parameters are optimized via PSO, ensuring hyperchaotic 

behavior without bifurcation analysis and traditional methods. 

3. Theoretical Minimum: The system achieves the lowest term count for 

hyperchaotic, enhancing implement ability. 

4. Circuit Validation: NI Multisim 14.3 simulations confirm physical realizability. 

The article is structured as: Section 2 introduces the proposed algorithm, followed 

by Section 3, which outlines the suggested method. Section 4 provides a detailed 

description of the constructed 4D hyperchaotic system, while Section 5 explains 
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the dynamics of the system. Section 6 demonstrates the application of the proposed 

system through the design of an electronic circuit, implemented using Multisim 

14.3. Section 7 presents the results, and finally, Section 8 concludes the paper with 

a summary.   

2. Particle Swarm Algorithm 

With the development of computational technologies, various swarm intelligence 

algorithms have been developed together as a consequence of this development. 

Among these alternatives is the Particle Swarm Optimization (PSO) algorithm that 

was introduced in 1995. Observing the movement of bird flocking and fish 

schooling, the PSO algorithm forms a group of individuals in the search space 

called particles which attempt to update their current positions considering 

personal velocities and social velocities. Although the PSO algorithm operates on 

the following simple principles, the algorithm was found to be quite successful on 

many occasions. The attraction that particles create among themselves, with the 

effects of the knowledge, is deducted from other particles either in the personal 

memory or in the neighborhood memory. That's why, through a simple mechanism, 

the particles quickly populate the conforming range. Over time, even though there 

is an attraction to a common area formed on the graph, the possibility of producing 

more volatile results is considered within the adversative vector of the particles. 

Otherwise, it will be possible to eliminate the global expectation on the operation 

of the PSO algorithm. It outperforms other metaheuristic algorithms especially in 

the solution of optimization problems with complex design spaces. Since its 

introduction, the PSO algorithm has been modified at many stages and has given 

rise to a wide range of studies. One of the important steps in using the PSO 

algorithm is the selection of parameter values. If meaningful parameter values are 

set, the PSO algorithm can successfully be applied to many optimization problems. 

However, since the PSO algorithm includes many parameters, finding the most 

suitable parameters is a complex and advanced problem. The PSO algorithm has 

been used for many purposes since its introduction. However, one of the novelties 

in the literature is a modification of the classic PSO algorithm. In this sense, 

various studies are conducted on this subject, and different versions of the PSO 

algorithm are put forward. For instance, a total of 45 different modifications made 

to the classical PSO algorithm have been found [44].  On the other hand, 

researchers from many fields, particularly engineers and scientists, query the 

superior feature-priced and easy-to-implement optimization problems. In this 

sense, the PSO algorithm is considered as an important option. However, the fact 

that the PSO algorithm is a dependent optimization algorithm brings along some 

problems. A recent survey of PSO applications revealed that sequential 

initialization of particle velocities and positions, premature convergence in high-
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dimensional search spaces, and positional convergence to suboptimal solitons are 

considered the main disadvantages of the PSO algorithm. 

 

 

Figure 1. Geometric illustration of particle’s movement in the particle swarm 

optimization Process [44]. 

2.1. Mathematical Formulation 

The mathematical form of the n-dimension search space is given in with the 

learning experience of each other particles, particle swarm optimization has a 

strong global search ability. The PSO algorithm is a population-based optimization 

algorithm, which uses concepts inspired by the behavior of birds hunting for food. 

Birds examine their own food sources and cooperate with others to find the food 

source with the best quality. This is the basis of the PSO algorithm [45]. This is a 

swarm search algorithm in which particles cooperate with each other. If a particle 

can find the optimal solution, the entire particle swarm can quickly find the 

optimal solution. The PSO algorithm has been widely recognized. It has the 

advantages of fast convergence, powerful robustness, and user-friendly concepts. 

At the same time, the PSO algorithm is easy to implement. Over the years, the 

significant effect of the particle swarm optimization algorithm has attracted many 

scholars from the field to study the related issues continuously. Some researchers 

have proposed methods to improve the performance of PSO. There is much 

research applying the PSO algorithm to many scientific fields. Many optimization 

problems are resolved by the PSO algorithm. By using them in different 

applications, superior results are achieved. In recent years, PSO has successfully 

applied to image processing, neural network, function optimization, feature 

selection, data grouping, and mixed-variable optimization problems. With the 

increasing application of the PSO algorithm, PSO also faces some difficulties in 

optimization. Since the PSO algorithm is controlled and decided by some control 

parameters, proper parameters are essential for the performance of the PSO 

algorithm [46]. 
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Therefore, any system that depends on this algorithm will initially be formed from 

a set of random solutions, and the search will be conducted within these random 

solutions for the best solution (optimum solutions) by updating the generations of 

solutions. Also, each particle in the PSO algorithm represents a position vector and 

is described as follows [47]. 

                                                                     𝑆𝑖 = 𝑠𝑖1, 𝑠𝑖2, … , 𝑠𝑖𝑑  
                                                                                (1)  where 𝑑 represents the 

dimension of the problem. The velocity of each particle is described as follows: 

                                                                        𝑉𝑖 = 𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑑                             
                                                (2)  

Since the swarm is formed from the sum of these particles, the best personal 

position obtained by the particle within the swarm, which gives the best fitness 

pbest, is described as follows: 

                                                                        𝑃𝑖 = 𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝑑                                                                               

(3)      

The best location that the particle gets from among all the particles that make up 

the swarm is gbest, which is described as follows: 

                                                                        𝐺𝑖 = 𝑔𝑖1, 𝑔𝑖2, … , 𝑔𝑖𝑑                                                                             
(4)  

 

    The position is also updated, where the position of each particle is added to the 

velocity of that particle, and from its calculation the new position of the particle is 

updated according to the following relationship: 

                                                                       𝑆𝑖
𝑛:1 = 𝑆𝑖

𝑚 + 𝑉𝑖
𝑚:1                                                                            

(5) 

   Where 𝑚 represents the generation frequency, and the velocity update can be 

done according to the following relationship: 

                                              

𝑉𝑖
𝑚:1 = 𝑉𝑖

𝑚 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖
𝑚 − 𝑆𝑖

𝑚) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡
𝑚 − 𝑆𝑖

𝑚)                                        
(6)       

Where 𝑚 refers to the repetition of the generation, 𝐼 refers to the number of 

iterations, 𝑉𝑖
𝑚 to the velocity of the current particle within the swarm, 𝑆𝑖

𝑚 refers to 

the position of the current particle within the swarm, 𝑝𝑏𝑒𝑠𝑡𝑖
𝑚 refers the personal 

best position of the particle can be obtained by modifying the position of the 

particle itself, 𝑔𝑏𝑒𝑠𝑡𝑚 refers to the best global particle site within the entire 
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swarm, 𝑐1𝑐2 they are positive numerical constants used to adjust the equation and 

𝑟1𝑟2 they are random variables between (0,1). 

 

Pseudocode: A standard PSO  

Begin PSO 

Input: 

N – Swarm size. 

P – particle 

V – velocity 

LB – Lower bound of the search space. 

UB – Upper bound of the search space. 

Output: 

Step A. Initialization 

For each particle 𝑖 = 1,… ,𝑁𝑝, do 

1. Put the (P) position with uniformly distribution as 𝑃𝑖 (0)  ∼ 𝑈 (𝐿𝐵, 𝑈𝐵). 
2. Put pbest to its initial position: pbest (𝐼, 0)  = 𝑃𝑖 (0). 
3. Put gbest to the minimal value of the swarm: gbest (0) =argmin f [𝑃 𝑖  (0)]. 

4. Put velocity: 𝑉 𝑖  ∼ 𝑈  (−|UB − LB|, |UB − LB|). 

Step B. Continue until a termination criterion is true. 

For each (P)  𝑖 = 1,… , 𝑁𝑝, do 

1. Put random numbers: 𝑟1, 𝑟2 between U (0,1). 

2. Update P-V. (2.6) 

3. Update   (P) position. (2.5) 

4. 𝑖𝑓  𝑓[𝑃𝑖(𝑡)] < 𝑓[𝑝𝑏𝑒𝑠𝑡(𝑖, 𝑡)], 𝑑𝑜 

a. Update the best position of (P) i: pbest(i,t) = Pi (t). 

𝑖𝑓 𝑓[𝑃𝑖(𝑡)] < 𝑓[𝑔𝑏𝑒𝑠𝑡(𝑡)] update the swarm best known position gbest(t)= Pi (t). 

5. 𝑡 ← (𝑡 + 1). 
Step C. Output 𝑔 𝑏 (𝑡 ) which is the best solution obtained. 

End PSO 

 

3. Proposed Methodology 

The study of chaotic systems has gained significant attention due to their 

unpredictable. Traditional approaches to generating hyperchaotic systems typically 

involve increasing the complexity of the system, such as adding additional 

variables, nonlinear terms, or coupling mechanisms. However, achieving 

hyperchaotic through these traditional approaches can be computationally intensive 

and less than optimal. To solve this challenge, biologically inspires algorithms are 

crucial for accurately and effectively transforming chaotic systems into 
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hyperchaotic ones. These algorithms focus on adjusting the parameters of chaotic 

systems to get the optimal values that integrate hyperchaotic behavior. By 

analyzing the systems dynamics and continuously adjusting the parameter, they 

aim to improve specific features, such as the Lyapunov exponent. This gauges the 

level of chaos. In this study, particle swarm optimization (PSO) algorithms will be 

employed. This method employs a feed-forward techniques that consists of three 

stages: exploration, migration, and exploitation. Its primary objective is to navigate 

the large parameter space and identify values that enhance hyperchaotic properties, 

such as raising the complexity of phase dynamics and chaos dimensionality. 

These algorithm’s performance will also be evaluated on a range of chaotic 

systems to ascertain how different factors affect the algorithm’s dynamic behavior. 

The ultimate objective is to determine the optimal parameter combinations that 

effectively transform conventional chaotic systems into hyperchaotic systems, 

increasing their complexity and boarding their applications in domains such as 

cryptography, secure communications, and nonlinear dynamics. 

 

 

 

 

       

 

 

 

 

 

 

 

 

 

 

Figure 2. Flowchart of particle swarm optimization (PSO) algorithm. 
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  4. A new 4D hyperchaotic system 

In 2013, Liu et al. presented a unique 3D system consisting of six terms [48,49], as 

shown below: 

                                                            { 

�̇�1 = 𝑎(𝑥2 − 𝑥1)
�̇�2 = −𝑐 + 𝑥1𝑥3
�̇�3 = 𝑏 − 𝑥2

2        

                                                                                           

(7) 

where 𝑥1, 𝑥2, 𝑥3  represent the state variables, 𝑎, 𝑏, 𝑐 are the system parameters. 

This system exhibits chaotic attractor when (𝑎, 𝑏, 𝑐) = (1.5, 1.7, 0.05), whereas the 

corresponding 𝐿𝐸𝑠 as (0.1928, 0.0002,−0.6443)  and Lyapunov dimensions 

 (𝐷𝐿 = 2.2992)  [48]. By applying a coupling control strategy, a new 4D 

hyperchaotic system is constructed by combining the original system (7) with Eq. 

( �̇�4 = −𝑑𝑥1𝑥4 ) as shown below: 

                                                            

{
 

 
 

�̇�1 = 𝑎(𝑥2 − 𝑥1)
�̇�2 = −𝑐 + 𝑥1𝑥3
�̇�3 = 𝑏 − 𝑥2

2        
�̇�4 = −𝑑𝑥1𝑥4      

                                                                                       

(8) 

The variables  𝑥1, 𝑥2, 𝑥3 and  𝑥4 represent the state variables, with coupling 

parameter 𝑑 (𝑑 ≠ 0). Under the typical parameters and (IC) given in Eq. (9), Eq. 

(10), this system produces hyperchaotic attractors, the related (𝐿𝐸𝑠) and Lyapunov 

dimensions are described in Eq. (11) and Eq. (12), respectively. Fig. 3 shows the 

phase portraits of the suggest system. 

                                        (𝑎, 𝑏, 𝑐, 𝑑)𝑃𝑆𝑂 =
(4.0728, 4.7726, 0.0487, 2.4745 )⏟                      

Typical parameters

                                                    (9) 

                                                    (𝑥𝑜, 𝑦𝑜, 𝑧𝑜, 𝑤𝑜) =
(0.1,0.2,−0.25,0.1)⏟            

𝐼𝐶

                                                                  (10) 

                                          { 

𝐿𝐸1 = 0.8577         
𝐿𝐸2 =  0.0014        
𝐿𝐸3 =  𝟎. 𝟎𝟎𝟎𝟖  
 𝐿𝐸4 = −3.1677     

,      ∑ 𝐿𝐸𝑖
4
𝑖<1 = −2.3075                                                             

(11) 
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                                 𝐷𝐾𝑌
𝑃𝑆𝑂 = 𝐽 +

1

𝐿𝐸𝑖+1
∑ 𝐿𝐸𝑖 ⇒ 𝐷𝐾𝑌

𝑃𝑆𝑂 = 3 +
0.9454478

|;2.011434|
=

𝐽
𝑖<1

3.3717                                             (12) 

 

Figure 3. Phase portraits of the system (8) in planes, (a)  𝑥1 − 𝑥2 , (b)  𝑥1 − 𝑥3 , (c) 

𝑥2 − 𝑥3. 

5. Dynamic Analysis 

The Lyapunov exponent, equilibrium, dissipation, and bifurcation diagram are 

among the common dynamical phenomena of this system that are examined.  

The divergence (trace of a Jacobian matrix) of the system (8) is computed as: 

                                                       𝑇𝑟 ( 𝐽 ) = ∑
𝜕�̇�𝑖

𝜕𝑥𝑖

4
𝑖<1 = −𝑎 − 𝑑𝑥1                                                                       

(13) 

5.1. Equilibrium with PSO 

Setting ∀ �̇�𝑖 = 0 in system (8), and solved it yields two points: 
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                                                              𝐸1,2
𝑝𝑠𝑜

= (±√𝑏,±√𝑏,±
𝑐

√𝑏
, 0)                                                                      

(14) 

The Jacobian matrix of the new system at the points 𝐸1,2 can be expressed as 

follows: 

           

𝐽𝑃𝑆𝑂 = [

−𝑎 𝑎 0 0
𝑥3 0 𝑥1 0
0 −2𝑥2 0 0

−𝑑𝑥4 0 0 −𝑑𝑥1

]  ⟹ 𝐽(𝐸1,2
𝑝𝑠𝑜
) =

[
 
 
 
 
−𝑎 𝑎 0 0

±
𝑐

√𝑏
0 ±√𝑏 0

0 ±2√𝑏 0 0

0 0 0 ∓𝑑√𝑏]
 
 
 
 

                           (15) 

the characteristic equation and associated eigenvalues at parameters (9), are given 

in Eq. (16) and Eq. (17), respectively. 

          𝜆4 + (𝑎 ± 𝑑√𝑏)𝜆⏟        
𝑝1

3
+ (2𝑏 ± 𝑎𝑑√𝑏 ∓

𝑎𝑐

√𝑏
)𝜆2⏟            

𝑝2

+ (2𝑎𝑏 ± 2𝑏𝑑√𝑏 − 𝑎𝑐𝑑)⏟              
𝑃3

𝜆 ±

2𝑎𝑏𝑑√𝑏⏟    
𝑃4

= 0                             (16) 

                  

  { 

𝜆1 = −5.4060                          
𝜆2 = −4.0869                          
𝜆3,4 = 0.0070 ±  3.0841 𝑖     ⏟                    

𝐸1
𝑝𝑠𝑜

   ,                {  

𝜆1 = 5.4060                               
𝜆2 = −4.0586                          
𝜆3,4 = −0.0070 ±  3.0949 𝑖  ⏟                    

𝐸2
𝑝𝑠𝑜

        

                             (17) 

Therefore, both equilibrium 𝐸1,2
𝑃𝑆𝑂 =  (±√𝑏,±√𝑏,±

𝑐

√𝑏
, 0) are unstable saddle 

foci. 

5.2. Lyapunov exponent with PSO 

Lyapunov exponents are an effective tool for distinguishing between chaotic and 

hyperchaotic attractors. Several algorithms are available for computing Lyapunov 

exponents, with the Wolf algorithm being one of the most commonly used. Using 

the parameters 𝑎 = 4.0728, 𝑏 = 4.7726, 𝑐 = 0.0487, 𝑑 = 2.4745), a step size 
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(sample time) of 0.25, an observation period of 1000, and an initial condition (10), 

the Lyapunov exponents of the proposed system are numerically calculated, as 

shown in Fig. 4. 

 

Figure 4. Lyapunov exponents of the system (8) for 
(𝑎, 𝑏, 𝑐) = (4.0728,4.4426,0.0487)  and 𝑑 = 2.4745. 

 

6. Circuit Implementation  

Hyperchaotic systems can be used to create many possible applications. As 

explained in this article, a readily modifiable analog op-amp circuit is used to 

implement the system's state variable. The circuit equations for integral operation, 

inverse operation, and nonlinear product are carried out by electronic parts such as 

multipliers, capacitor, resistors, and operational amplifiers. A compliant analog 

multiplier with an amplification factor of V is the operational amplifier supply, and 

the parameters are set at  𝑎 = 4.0728, 𝑏 = 4.7726, 𝑐 = 0.0487, 𝑑 = 2.4745).  

                                                   { 

�̇�1 = −4,072.8(𝑥3) − 4,072.8(−𝑥2)     
�̇�2 = −48.7 − 1000(−𝑥1)(𝑥3)                
�̇�3 = −4,772.6(−𝑣0) − 1000(−𝑥2)(𝑥2)
�̇�4 = −2,474.5(𝑥1)(𝑥4)                              

                                                           

(18) 

By utilizing Kirchoff’s law on the aforementioned system, we obtain 
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{
  
 

  
 

 

�̇�1 = −
1

𝑅1𝐶1
(𝑥1) −

1

𝑅2𝐶1
(𝑥2)                 

�̇�2 = −
1

𝑅3𝐶2
(𝑣0) −

1

𝑅4𝐶2
(−𝑥1)(𝑥3)       

�̇�3 = −
1

𝑅5𝐶3
(−𝑣0) −

1

10𝑅6𝐶3
(−𝑥2)(𝑥2)

�̇�4 = −
1

𝑅7𝐶4
(𝑥1)(𝑥4)                                

                                                             

(19) 

Select all the capacitors (∀𝐶𝑖 = 10 𝑛𝐹,  𝑖 =  1, 2, 3, 4)  and 𝑉0 𝑖𝑠 1𝑉. By 

comparing them to Eqs. (18) and (19), the related resistors are found in Eq. (20), 

Fig. (5), Fig. (6) and Fig. (7) which show a screenshot from Multisim 14.3.  

                                               

{
 
 
 
 
 

 
 
 
 
 

 

1

𝑅1𝐶1
= 0.000040728 ⇒ 𝑅1 = 24.5531329   𝐾Ω   

1

𝑅2𝐶1
= 0.000040728 ⇒ 𝑅1 = 24.5531329   𝐾Ω   

1

𝑅3𝐶2
= 0.0000004873 ⇒ 𝑅3 = 2.052 𝑀Ω            

1

10𝑅4𝐶2
= 0.0001 ⇒ 𝑅4 = 10 𝐾Ω                                      

 

1

𝑅5𝐶3
= 0.000047726 ⇒ 𝑅5 = 20.952939  𝐾Ω    

1

10𝑅6𝐶3
= 0.0001 ⇒ 𝑅6 = 10 𝐾Ω                                       

  

1

10𝑅7𝐶4
= 0.00024745 ⇒ 𝑅7 = 4.04122 𝐾Ω                  

                                        

(20) 

 

Figure 5.  Diagram illustrating the circuit implementation of the proposed system.  
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Figure 6.  Simulation results in Multisim via oscilloscope in planes (a)  𝑥1 − 𝑥2 , 

(b)  𝑥1 − 𝑥3 , (c) 𝑥2 − 𝑥3. 

 

 

(a) (b) 

(c) 

(a) 
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Figure 7.  Screenshot from Multisim via Tektronix oscilloscope for simulation 

results of system (8), in planes (a)  𝑥1 − 𝑥2 , (b)  𝑥1 − 𝑥3 , (c) 𝑥2 − 𝑥3. 

7. Discussion of Results  

Following initial random parameter estimation of the chaotic system, the Particle 

Swarm Optimization (PSO) algorithm exhibited exceptional performance by 

increasing the maximal Lyapunov exponent (𝐿𝐸𝑠) from 0.45 to 0.8544745. This 

intelligent parameter optimization approach precisely identified critical parameter 

regions that maximize chaotic behavior, demonstrating both algorithmic precision 

and reliability. The quantitative results validate PSO effectiveness as a robust 

optimization tool for hyperchaotic systems, offering significant improvements over 

conventional parameter estimation methods. These findings advance the theoretical 

understanding of hyperchaotic system dynamics while enabling more sophisticated 

engineering applications in nonlinear dynamics research. 

8. Conclusions 

(b) 

(c) 
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This study presents a novel seven-term four-dimensional hyperchaotic system 

derived through extension of the three-dimensional Liu system. The proposed 

system exhibits hyperchaotic characteristics, as evidenced by two positive 

Lyapunov exponents, and contains two unstable saddle-focus equilibrium points. 

Departing from conventional bifurcation analysis, we employ a Particle Swarm 

Optimization (PSO) algorithm to identify optimal parameter configurations that 

maximize the system's largest Lyapunov exponent. As a state-of-the-art 

metaheuristic optimization technique, PSO demonstrates exceptional efficacy in 

parameter estimation for nonlinear dynamical systems. 

Through comprehensive theoretical and numerical analyses—including 

investigation of multistability phenomena, equilibrium point stability, Lyapunov 

spectrum computation, and Kaplan-Yorke dimension estimation—we elucidate the 

synergistic relationship between optimization algorithms and hyperchaotic system 

dynamics. The theoretical framework is experimentally validated via electronic 

circuit implementation in NI Multisim 14.3, successfully bridging theoretical 

modeling and practical realization. These findings collectively underscore the 

transformative role of computational optimization methods in advancing the 

analysis and control of complex nonlinear systems. 
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