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Abstract 

In recent years, Count Data methods have become very popular in many uses in various 

disciplines. The Count Data (CD) in the Normal-Gamma Exponential (NGE) prior. Where used 

the correct numbers.by method Jittering process Which converts a discrete variable to a 

continuous variable.  And when comparing this method with other methods showing that this 

method performs reasonably well 
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1-Introduction: 

      deem linear model: 

𝑦𝑖 = 𝒙𝑖
𝑇𝛽 + 𝜖𝑖,   𝜖𝑖 ∼ 𝑁(0, 𝜎2), (1) 

where 𝜷 is the 𝑝 × 1 vector of unknown regression variables and 𝜖𝑖 is the error with 𝜎2 

the unknown variance. In this work, we assume that this model operates on count data, 

Bayesian regression of Count data has become a broad and important field. Many studies 

have been proposed on the subject, such as studying university accreditation and its 

importance in the evaluation tests that precede registration [5], and economic and social 

factors and their impact on those infected with tuberculosis in the census tract with this 

disease [13] As well as the application of these data in biological epidemiology [2]. These 

various examples illustrate the importance and necessity of developing numerical data in 

Bayesian regression, which occurred in the development processes in the form of successive 

stages starting from the 1970s until the modern era [2,7,10], especially when dealing with 

numerical data [7], where the dependent variable y takes count values, Such as 0,1,2,3,…. 

While the response variable is normally distributed in cases where the number of 
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observations is very large, in small sample sizes, they become very discrete and sometimes 

skewed [7] and thus a normal distribution may not be the best choice. There are alternatives 

to ordinary regression analysis, the most important of which is the Poisson regression model 

for count-valued responses 

𝒚𝒊|𝝁𝒊 ∼ 𝑷𝒐𝒊𝒔(𝝂𝒊)  (2) 

.  

and 

𝝂𝒊 ∼ 𝒆𝒙𝒑{𝒙𝒊
𝑻𝜷} (3) 

The next step is to convert it back to a continuous variable using what is known as the 

jittering process [8]. This process works by adding an additional random variable 

𝒃𝒊distributed uniformly to the response variable 𝒚𝒊 by 

𝒃𝒊 ∼ 𝑼(𝟎, 𝟏), (4) 

where 𝑼 is the uniform distribution. The last step, is to use the logarithm function to achieve 

the desired continuous variable 

𝒚𝒊
∗ = 𝒍𝒏{𝒚𝒊 + 𝒃𝒊}  

In this work, we will analyze the Bayesian regression framework in the present of count 

data with a normal scale-mixture (exponential- gamma) 

                           𝛽𝑗|𝜎2, 𝑣𝑖
2 ∼ 𝒩(0, 𝜎2𝑣𝑖

2), 𝑖 = 1, … , 𝑝       

                              𝑣𝑖
2 ∼ 𝒢(𝛼, 𝛿𝑖

2),                            (6) 

                              𝛿𝑖
2 ∼ 𝐸𝑥𝑝(𝜆). 

(5) 

2- The normal-mixture (exponential- gamma) prior 

2-1 The compound exponential- gamma prior can be written as 

𝜋(𝑥) = ∫ 𝐺𝑎𝑚𝑚𝑎(𝑥; 𝛼, 𝑟)𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝑟; 𝜆)𝑑𝑟
∞

0

 

 

                                   =
𝛼 𝜆 𝑥𝛼−1

(𝑥+𝜆)𝛼+1
                             (7)  
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Figure 2. An illustration of the F(x) ( 7) with the solid line (𝛼 = 0.2, 𝜆 = 0.65) and dashed 

line (𝛼 = 2.5, 𝜆 = 1.1) 

        

2-2- Posterior Inference: 

Since 

             𝛽|𝑋, 𝑦, 𝜁𝑖
2, 𝜂𝑖

2, 𝜎2 ∼ 𝒩(𝜇𝛽 , 𝑉−1𝜎2).      

𝜎2|𝑋, 𝑦, 𝜁𝑖
2, 𝜂𝑖

2 ∼ ℐ𝒢 (
𝑛+𝑝

2
,

(𝑦−𝑋𝛽)𝑇(𝑦−𝑋𝛽)+𝛽𝑇𝑴−1𝛽

2
).      (8) 

 

𝑃(𝛽|𝑋, 𝑦, 𝜁𝑖
2, 𝜂𝑖

2, 𝜎2) ∝ 𝑃(𝑦|𝛽, 𝜎2) 𝜋(𝛽), 

∝ 𝑒𝑥𝑝 {−
1

2𝜎2
(𝑦∗ − 𝑋𝛽)𝑇(𝑦∗ − 𝑋𝛽) −

1

2𝜎2
𝛽𝑇𝑴−1𝛽} , 

∝ 𝑒𝑥𝑝 {−
1

2𝜎2
(−2𝑦𝑇𝑋𝛽 + 𝛽𝑇𝑋𝑇𝑋𝛽 + 𝛽𝑇𝑴−1𝛽)} , 

                       = 𝑒𝑥𝑝 {−
𝑉

2𝜎2 (−2𝜇𝛽
∗ 𝑇

𝛽 + 𝛽𝑇𝛽)},                  (9) 

 

with 𝝁𝜷
∗ = 𝑽−𝟏𝑿𝑻𝒚∗ and thus we again obtain the normal distribution  

𝛽|𝑋, 𝑦∗, 𝜁
𝑖
2, 𝜂

𝑖
2, 𝜎2 ∼ 𝒩(𝜇

𝛽
∗ , 𝑉−1𝜎2) (10) 

and 
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𝑃(𝜎2|𝑋, 𝑦, 𝜁𝑖
2, 𝜂𝑖

2) ∝ 𝑃(𝑦∗|𝛽, 𝜁𝑖
2, 𝜂𝑖

2, 𝜎2)𝜋(𝛽𝑖|𝜁𝑖
2, 𝜂𝑖

2, 𝜎2)𝜋(𝜎2) 

∝ (𝜎2)−
𝑛
2 𝑒𝑥𝑝 {−

(𝑦∗ − 𝑋𝛽)𝑇(𝑦∗ − 𝑋𝛽)

2𝜎2
} 

                                   × (𝜎2)−
𝑝
2 𝑒𝑥𝑝 {−

𝛽𝑇𝑴−1𝛽

2𝜎2
} × (𝜎2)−1 

∝ (𝜎2)−(
𝑛+𝑝

2
)−1 

                               × 𝑒𝑥𝑝 {−
(𝑦∗ − 𝑋𝛽)𝑇(𝑦∗ − 𝑋𝛽) + 𝛽𝑇𝑴−1𝛽

2𝜎2
} 

 

(11) 

resulting in the inverse-gamma distribution  

𝜎2|𝑋, 𝑦∗, 𝜁𝑖
2, 𝜂𝑖

2 ∼ ℐ𝒢 (
𝑛 + 𝑝

2
,
(𝑦∗ − 𝑋𝛽)𝑇(𝑦∗ − 𝑋𝛽) + 𝛽𝑇𝑴−1𝛽

2
) (12) 

As for count MCEM algorithm, we get 

𝜓(𝛼) =
1

𝑝
∑ 𝔼𝛼𝑘−1[𝑙𝑜𝑔 (𝜁𝑖

2) |𝑦∗]

𝑝

𝑖=1

 (13) 

and 

𝜆−1 =
1

𝑝
∑ 𝔼𝜆𝑘−1[𝑙𝑜𝑔 (𝜂𝑖

−2) |𝑦∗]

𝑝

𝑖=1

 

 

 

(14) 

3- Simulation Studies 

3-1 simulation 1 

In this section we will use simulated data to test how our model performs with respect to 

other models such as the least absolute shrinkage and selection operator(LASSO).[𝟏𝟏],the 

elastic net penalty (ENet).[𝟖],the horseshoe estimator(HS).[𝟐],In addition,we will use three 

parameters of comparison such as the mean squared error(MSE),false positive rate (FPR), 

falls negative rate (FNR)we will use data size of 1500 with 2000 burn-ins For this example, 

we will set 𝜷 = (𝟓, 𝟎, 𝟎, 𝟎, 𝟎, 𝟑, 𝟎, 𝟎), 𝝈𝟐 ∈ {𝟏, 𝟒, 𝟗} and 𝒏 = (𝟏𝟎𝟎). This takes the case 

considers the spare case with only two active covariates out of eight. The results are 
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summarized in Table. This shows that none of the methods considered performed better than 

our model. Moreover, we can see that fitting the prior exponential kamma gives the smallest 

MSE compared to all other models foot. The hyperparameters are updated every 100 

iterations. As well as the proposed model It is very well designed in terms of the FPRs and 

FNRs needed to choose the best model for variable selection. 

Table 1. Results for model with count data and few active covariates. 

Methods 𝒏 MSE (sd)  FPR (FPRsd)  FNR (FNRsd)   

NGE 100 0.0075 (0.0090) 0.1000 (0.3162) 0.0000 (0.0000) 

HS 100 0.0091 (0.0093) 0.1000 (0.3162) 0.0000 (0.0000) 

Lasso 100 0.0296 (0.0214) 0.0000 (0.0000) 0.0000 (0.0000) 

aLasso 100 0.0082 (0.0112) 0.0000 (0.0000) 0.0000 (0.0000) 

ENet 100 0.0461 (0.0346) 0.0000 (0.0000) 0.0000 (0.0000) 

 

 

3-2 Simulation 2 

To study the proposed model further and obtain a more precise study of its behavior with 

different types of data, similar size covariates as the simulation above were used. While 

reducing the sparsity of the model by changing the parameter values 𝛽 =

(3,0,4,1,7,0,1,2)with a size of 𝑛 = 100 repeated simulations with 10,000 iterations. The 

results appear in Table 2. The results show that with increasing Sparsity, The model gives 

better performance at higher values of, 𝑁, and conversely, models with smaller values of,𝑁 

are better candidates for data with lower sparsity. 

 

Table 2. Results for model with count data and most covariates are active. 

Methods 𝒏 MSE (sd)  FPR (FPRsd)  FNR (FNRsd)   

NGE 100 0.0016 (0.0006) 0.2000 (0.4216) 0.0000 (0.0000) 

HS 100 0.0014 (0.0007) 0.0000 (0.0000) 0.0000 (0.0000) 

Lasso 100 0.0039 (0.0059) 0.0000 (0.0000) 0.0000 (0.0000) 

aLasso 100 0.0032 (0.0040) 0.0000 (0.0000) 0.0000 (0.0000) 

ENet 100 0.0040 (0.0064) 0.0000 (0.0000) 0.0000 (0.0000) 
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𝑭𝒊𝒈𝒖𝒓𝒆( 2). 𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑝𝑙𝑜𝑡𝑠 𝑎𝑛𝑑  ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚𝑠 𝑓𝑜𝑟 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 1 

 

 

 
 

𝑭𝒊𝒈𝒖𝒓𝒆( 3). 𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑝𝑙𝑜𝑡𝑠 𝑎𝑛𝑑  ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚𝑠 𝑓𝑜𝑟 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 2 
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4- Conclusions 

The results show that the proposed method of imputation of data using normal 

exponential gamma before scale mixture under normal mixture, performs well 

compared to other existing models such as Bayesian cord, Bayesian adaptive 

cord, and Bayesian elastic network. We hope that this matter will be studied more 

extensively in the future using different types of data such as controlled data, 

quantitative data, etc 
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